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Properties of gauge transformations for singular Lagrangians are investigated to classify types
of gauge groups. A general method of the classification is proposed based on properties of
structure functions of the Poisson brackets (or the commutators) of first class constraints. A
remarkable result is that the algebraic structure of the gauge group is essentially determined by

the first class constraints of the final step of constraint series which are required successively
from the stationarity conditions of the constraints. Owing to this consequence, the
classification of gauge groups is made simple and transparent. The structure and property of
the gauge group can be characterized in terms of the algebraic structure functions among the
final step constraints and the number of the steps of the constraints series. The formulation
proposed will give a clue to find new types of gauge groups.

I. INTRODUCTION

Gauge invariant systems will become more important in
particle physics. The concept of gauge invariance will be-
come one of fundamental principles of field theory. The gen-
eral method to get alocal gauge theory from a global symme-
try theory was given by Yang-Mills' and Utiyama.’ On the
other hand, it will be significant to investigate gauge proper-
ties of singular Lagrangians.

Since the gauge transformations (GT) are the opera-
tions preserving an action invariant, they make a group. It
would be interesting to consider the structure of the gauge
groups and to classify their types in terms of their generators.
Furthermore, it is expected that the result will give a clue to
finding new types of gauge theories.

The generator G of GT leaving the action invariant can
be expressed in terms of a linear combination of first class
constraints (FCC) appearing in its dynamical system.>* It
is therefore obvious that the algebraic structure and the
properties of the gauge group are determined by the struc-
ture functions (in general, functions of dynamical variables)
of Poisson brackets (or commutators) of FCCs. But the al-
gebraic structure of the gauge group is, in essential, deter-
mined by the FCCs of the final step of the constraint series
which appear successively under stationarity conditions of
the constraints. This fact is the most significant result in this
paper.

In Sec. I, we will give a relation of the FCCs and the
generator G. Next, general properties of G and the GT gener-
ated by G will be discussed. In Sec. I11, characteristic proper-
ties and various relations for the algebraic structure func-
tions of Poisson brackets among FCCs and Hamiltonian will
be derived from the conditions required for G.

By using the results in Sec. II and I11, it will be shown in
Sec. IV that the algebraic structure of the gauge group is
essentially given by the FCCs of the final step of the station-
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arity conditions. Owing to this important property, the clas-
sification of the gauge groups can be made simple and trans-
parent. Section V will be devoted to discussion.

Il. FIRST CLASS CONSTRAINTS AND GENERATOR OF
GAUGE TRANSFORMATION

For the sake of simplicity, we consider a dynamical sys-
tem with finite degrees of freedom, described by a Lagran-
gian L(q,g) with dynamical variables ¢’ and §¢‘=dq"/dt
(i=1~N). If L is singular and the rank of the Hessian
matrix

2
= 3 L - (2.1)
9g'dg
is N — A, then there exist 4 primary constraints
¢z (gp) =0 (a=1~4). (2.2)

In this paper, we assume all constraints to be first class for
simplicity. Systems including second class constraints
(SCCs) can be treated in a similar way by vsing the formal-
ism of Ref. 5, if the first class constraints and the Hamilto-
nian are in involution. But for illustration of the essential
part of our analysis, we are sufficient with such systems.

In order for this system to have a consistent solution, ¢,
must be stationary. Following Dirac,® we introduce second-
ary constraints in phase space. The total Hamiltonian H is
given by

H;=H(qp) +v¢.(g;p), (2.3)

where a multiplier v* is an arbitrary function of rand His a
canonical Hamiltonian. The summation convention is em-
ployed for dummy indices. In order to avoid complexity due
to quantum anomaly and operator ordering, we consider
classical theory here.

Let us define recurrently the series of constraints as

gt '={gt,H}Y (k=1~K—-1), (2.4)
{¢&,HY=CE, ¢}, (2.5)
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with the stationarity conditions, where the symbol { , } de-
notes the Poisson bracket. These ¢ satisfy the involutive
relation

{¢5.85 = Cofimdy,

(a.By=1~A4, klm=1~K).

We can express (2.4)—(2.6) as

{¢A’H} = C§¢B’ {¢A’¢B} = Cgs D>

where ¢, = {¢),42,....65}, but the definitions of (2.4)~
(2.6) are convenient to the following argument. The maxi-
mal number K of ¢ will, in general, depend on a and should
be written as K, but we omit the suffix a for the sake of
simplicity.

Since the system has only FCCs, the set of ¢% defined in
terms of H, in place of H is equivalent to the set of ¢% of
(2.4) and (2.5) (Ref. 4).

We observe in (2.4)—(2.6) that ¢% and H are in involu-
tion. Then, the generator G of the gauge transformation
(GT) can be expressed as>*

(2.6)

G = €:¢s, (2.7)
and should satisfy the conditions

L1 {(GH}=0 mod(gl), (2.8)

{G,¢.}=0 mod(g;). 2.9)

Equations (2.8) and (2.9) are necessary and sufficient con-
ditions for G to be the generator of GT leaving the action
invariant. Equation (2.8) is nothing but the stationarity con-
dition of G. It is crucial in this formulation that ¢, identical-

ly vanishes in velocity phase space (¢'.¢");

#.1a.r(4,4)1=0. (2.10)

Here, G thus defined contains A4 arbitrary infinitesimal func-
tions €”(¢) (@ = 1~A), which are gauge functions. The re-
lation between €*(¢) and €} will be presented in Sec. III1. The
GT is given by

8¢'={4'G},
4 d{ 6} (2.11)
8¢' = —14'Gr,
q ar q
and we obtain*
df 4G
L=—|p,——G). (2.12)
dt(p dp; )
Inversely, if a variation of L is expressed as
SL =iF(q,¢'1,e), (2.13)
dt
under the transformation
. K—1 (k) .
8¢'= 3 €“(0fia(a:9), (2.14)
k=0

with
(k)() dke“() ( 1~A4)
é‘a l)=—v—v t a=1~ ,
de*
where €(t) is an arbitrary gauge function, we obtain
A fx_1a=0 (a=1~4), (2.15)
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from identities derived from (2.13) and (2.14). Hence, this
L is singular and the rank of 4, is N — A. The kernel f _ ,,
of 4, is related to the primary constraint ¢, by”

9.,
dp
Further, it is shown that the generator yielding the GT of
(2.14) is given by the above G. The characteristic property
of the gauge group, therefore, can be ascribed to G.

Now let us denote the generators of GTs parametrized
in terms of gauge functions €, (¢) and €3, (¢) by G(ey,)
and G(¢€,, ), respectively. Then, the third generator

G(e(ii) )E{G(E(l)),G(€(2))} (216)

satisfies (2.8) and (2.9), owing to the Jacobi identity. Here,
G(€,, ) is also a linear combination of ¢ ; that is,

G(es)) =5?3)k¢z, (2.17)

since all ¢% are in involution. It may happen for €3,, to
depend on ¢},. Even for this case, we call (2.17) a linear
combination of ¢ . Hence, G(€ 3, ) is also the generator of
GT and comprises 4-gauge functions €7;,, which are ex-
pressed in terms of €3y, (2), €%, (¢), C%;, and C %7, . Since
the essential part of the gauge property is decided by (2.16),
types of the gauge groups can be classified by functional
forms of

€5 =ga(€€1)’€?2)’cgk’c;§?,m)- (2.18)

IfCX%,, and/or C%, depend on gand p (Refs. 7 and 8), €%,
also is g and p dependent and the structure of the gauge
groups will be complex. In the case of g*=0, G(€;,) =0
and then the gauge group is inferred to be Abelian. If G(¢),
however, involves powers of p higher than quadratic, we
need careful consideration. For, the GT (2.11) in velocity
phase space is not equivalent to the GT in phase space:

f;(—la =

i

5qi:{qin}=‘a£9 Spi={Pi’G}= _a_G" (2'19)
ap; dq'
if
2
9G o, (2.20)
ap; an
In fact, p, corresponding to (2.11) can be written as
dp; 4G d (3G
5:‘( ,')=““T o Ai‘_(_)’ (2‘21)
P:(q,q 3¢ 9, " dt \ap,
and we obtain
< G ¢{. aL
8p, — 3, =A,.._( __). (2.22)
" 9p; Ipi oq*

Hence, both transformations accord under the equation of
motion, namely, they are not equivalent for a transformation
between two points off trajectories of motion. It means that
though the equations of motion are invariant under both
transformations, the action

is not necessarily invariant under the transformation (2.19).
Although the algebraic structure of GT in phase space is
completely determined by (2.16) and (2.18), for the alge-

(2.23)
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braic structure in velocity phase space, a further considera-
tion is required. Since the generator of GT in velocity phase
space is given, with (2.11), by
X= éqf-i + Séii. ,
dq' o'
we should examine the structure of the commutator
[Xi1,X; ], where X, denotes the generator associated with
G(€&,, ). It should be noticed that if G contains higher pow-
ers of p, 6q depends on ¢ and 84 on 4, so that the commuta-
tors of X ’s do not close within themselves. Hence, we should
employ the generator

= (d” .\ d
XE:Z(dt’(Sq) .

r=0Q aq,

(2.24)

(2.25)

in an infinite dimensional vector space, in order for the com-
mutator algebra of X to close. This corresponds to the fact
that higher derivatives (é) successively appear in new trans-
formed Lagrangians, through d "(8q)/dt’, by repeatedly ap-
plying GTs, since L(g,¢4) turns out to be

L'(4,49.9) = L(q,9) + 6L(9,9,9), (2.26)
where
d aG d
SL=—|p,— -G |=—/,
dt (p‘ Ip; ) dtf

under the GT generated by G.

If G is at most linear in p, fis a function of only g, and L'
does not depend on 4. In this case the commutators of X ’s
given by (2.24) close within a 2N¥-dimensional vector space.
Denoting the GT generated by X, in terms of §, (¢ = 1,2),
we obtain

(8,8, — 8,8,)L =—3; (F+F), (2.27)
with
d
FE(P: :?_ - 1){G(E(1) );G(e(z) )}
a
= <pl a__ - I)G(6(3) )’ (228)
F < d*’G(e)
F=(5,p, — 8,p,)p, ———-—""
(82p: — 0,0:)p; % 9,
5 3’G(e))
—(6,p; —6,p)p; ——— . 2.29
( l.p: lpl)Pj ap’ ap] ( )

Asseen from (2.28) and (2.29), F = 0for d°G /dp; dp, =0,
and then the expressions of Fand 8L of (2.12) indicate the
consistency between the transformations (2.11) and (2.19).

From the above, we observe that when F #0, the gauge
group is not necessarily Abelian, even if G(€.;,)=0 in
(2.16). If [ X, ,X, ] is not equivalent to {G(e,, ),G (€ )},
the difference of [X;,X, ] and X; associated with G(¢,)
seems at a glance to yield another independent GT. If so,
there would exist a new GT which cannot be expressed in
terms of G(¢€) alone. In order to examine it, put

A,g'= [Xx X, ]qi
and

(2.30)
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Y
8,,4=—{G(e,,),G(ep)) )} (2.31)
dp;
We find
’ i— i i i aL
6,9'=A,9'-6,,9=8B j(Pj - 5) s (2.32)
where
) . 3%G(e,y,) 3%G(e,, )
BY= — B’ = m ki 2 ~(€(1)<->€(2)),
dp; dp; dp; dp;
(2.33)
and the new GT &7, ¢’ produces
’ d ’ i 2 aL ’ '}
o, L= Z (p.61,9") — (Pi - -:9?) 129- (2.34)
By substituting (2.32) into (2.34), the second term vanishes
dueto BY== — B* For an arbitrary BY = — B/, the trans-

formation of the form (2.32) always makes the action invar-
iant. Then, p,8],4" is a conserved quantity, but the Noether
charge vanishes owing to §},¢' = 0 under the equations of
motion. Hence, &}, 4" is trivial transformation and we may
suppose the GT to be essentially determined by G(¢) and
their Poisson bracket.

Since GT always has the ambiguity by BY
(p; — AL /3q’) that is trivial, we define the equivalent class
of GTs with respect to the ambiguity. In what follows, we
will consider the equivalent class of GTs (disregarding the
ambiguity). We, however, should keep in mind that the alge-
braic property of GT cannot be completely determined only
by the Poisson bracket of G(¢), if d°G /dp; dp; #O0.

111, RELATIONS AMONG STRUCTURE FUNCTIONS
ci.,ANDC?,
In order to see the algebraic structure of the gauge

group, we must obtain relations of €7 to C#,, from the re-
quirement that

G(€) = el (3.1)

should satisfy (2.8) and (2.9). With the help of (2.4) and
(2.5), the substitution of (3.1) into (2.8) leads to

&+e_+Chek =0 (2<k<K), (3.2)
where
e
ézzja—f+ {ez,H}. (3.3)

Equation (3.2) is the recurrence formula to decide
€% (k < K) by giving €% .. Since €% can be arbitrarily chosen, it
might be, in general, a function of ¢, p, and ¢. Then, we put

ex = (Np3(g.p), (3.4)

where €°(¢) is an arbitrary function of ¢ (8 =1~4). But G
should also satisfy (2.9) by which the form of p5(g,p) is
restricted. The simplest form is pg = 65 and g = €°(¢).
This form is always allowed by adjusting a multicative func-
tion of ¢.,.

Here, it should be noticed that even if we take in (2.16)
as

€k =€, (1), €0yx = €04, (1), 3.5)
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€%,k turns to depend on g and p, if C%7, and C%, are de-

pendent of g and p. Here, G(€;, ) defined by (2.16) is guar-
anteed to satisfy (2.8) and (2.9), as already seen, owing to

the Jacobi identity, even if €03, « is dependent of ¢ and p.
Now let us derive explicit forms of €; (k <KX) using
(3.2). By iteration, we successively find

€ = —E—Coel, € _, =84+ Coé + (Co —Cl_,)é,

-1

0 '
€x_1=(—) [6"+CZK

0 0
where €% and Cj, are defined by repeatedly applying (3.3)

and
ac g
at

From the Jacobi identity for ¢%, ¢;, and H, and using
(2.4) and (2.5), it follows that

kis ki ] k+ 16 I+ 1ké
Caﬁ,m—] +Caﬁzjl(cym_c +C

afBm Ba,m

- 61;( (anczgm + {Cgm’¢;}}) + 5;((:};”(7;!’/;?'"

(3.7)

Ce = +{C%.H}.

+{C3,..6c}) —{H,C } = Dkt g1, (3.8)
with
D, = —Di,., (3.9)

which is an unknown function of ¢ and p. The antisymmetry
of D with respect to (8,m) and (€,n) is due to the even
Grassmann parity of #%. For ¢% with the odd Grassmann
parity, D is symmetry. The Jacobi identity among ¢%, ¢,
and ¢ yields

: ki
Che Come+{Cks .47} + (cyclic sum on £7.)

=D s (3.10)
From (2.9), we obtain

ECu + {dL.e} =EN¢7 (U>2), (3.11)
with

El.=—EJ. (3.12)

Equations (3.8), (3.10), and (3.11) are the conditions
that should be satisfied by C%Z,, and C%,.

Equations (3.8) and (3.11) play important roles. First,
we determine C ., with the help of (3.11). Since €% is arbi-
trary, put

€x =¢€"(1). (3.13)
Then, (3.11) for / = K gives
CHx=E by (K>2). (3.14)

This relation is valid for K> 2, dueto/>2in (3.11). Now, we
assume €7 to be independent of ¢} [note that €f may be
dependent of ¢ and p owing to (3.6), even €g = €*(#)].
Then, from (3.14), we are led to
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11\,
1 ¢ B+[( 1 ) EK_CZ"—‘]
I—1\®. (1=2\,. 1— 3\,

(5 )en = (5 )em + (1 )en

+ 4 (— )I_ZCZK_Hz + (= ),_lch—wllfﬂ]»

~ Ciroa)

(-2

1 —1). ] —2\. (-3
€ B+{( 2 )Cg"'( 1 )CEK—‘J“CZ"‘Z] e’

(71-2)

C Gk

-4 (-1
€ f’+---+[ C fx—

(3.6)

lky __ 7 1kys m
Caﬂ,K - Caﬁ,Km 5

If CLY, is linear homogeneous in ¢%, the right-hand side
(ths) of (2.6) takes the form C 15, ¢7¢% that is symmetric
with respect to (y,m) and (8,n). Since the antisymmetric
part of C “#%  plays no role, it can be omitted. Thus we may

put

Eem =0, (3.15)
and

£CLHx =0 (K>2). (3.16)
The substitution of (3.6) into (3.16) leads to
C gk — (€ + CoC L

+ (¢ + é‘sCQK + '-')C;{;}”'“

(K—1) (K—2)
+(=D*"'C € P+ € °Ch+-)CLy =0
(3.17)

Since €(?) is arbitrary, all (:)"‘(t) can be regarded as inde-
pendent. In (3.17), (K; I)B appears only in the last term,
hence,

Codx =0.

In this way, we obtain, successively,

Cle =0 (K>k>1 and K>2). (3.18)

Next, putting /=K — 1 in (3.11) and using the first
equation of (3.6), we find

efctlzll(i?’K—l _{¢¢]1!CgK}EB=E¢lzTI‘z—lm¢:Sn (K>3)

(3.19)

From the substitution of (3.6) into (3.19), it follows that,
for K>3,
Ciflxk_1 =0 (k<K—-1), (3.20)
Cigk -1 —{8L,Chc}=0. (3.21)
In (3.21), the weak equality =~ indicates the contribution
from the rhs of (3.19). The strong equality of (3.20) is due
to the same reason as in (3.16). Similar relations are ob-

tained by putting / = K — 2, X — 3 and so on. Summarizing
them, we obtain
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Cln=0 (k<4132), (3.22)
Cbxlm'" —{4..Chx}=0
(m=12,.,K—2K>3), (3.23)
and
CoprZm —CoxCobx ™
+{gL,mChy — Che_,}=0,
(m=12,..K—3K>4). (3.24)

Therelation (3.22) indicates that the stationarity conditions
of ¢ using Hy of (2.3) yield no second class constraint,
since the stationarity condition

¢Z —_ ¢§+1 . Uac¢11’[(£}¢1 zo
leads to ¢%* ' =0 owing to (3.22). This result is consistent
with the starting assumption that all constraints are first
class. Based on these relations and (3.8), more general ex-
pressions of C X7 are derived. A detail of the derivation is
shown in the Appendix.

We have proved in the Appendix that

CHre =0 (k or I<K), (3.25)

at least for K<4, namely, only C 5§% is nonvanishing among
C L% . For K> 5, the proof is so complicated that we have
not yet succeeded, although (3.25) seems, in general, to
hold. We will then conjecture that (3.25) is true for all XK.
[For a practical use, (3.25) is sufficient with X<4.]

The condition (3.25) leads us to the very important con-
clusion that the structure of the gauge group is almost deter-

mined only by CX5%.

IV. ALGEBRAIC STRUCTURES OF GAUGE GROUPS
AND THEIR CLASSIFICATION

Since the generator G(€;, ) defined by (2.16) satisfies
(2.8) and (2.9), €3, also satisfies (3.2). Hence, all €(3,, are
expressed in terms of €33, and G(€3,) can be determined
by €%, From (2.16) and (2.17), it follows that

6?3)/(‘75:; = {€7|)k¢§’6€2)1¢;3}
= €01k €001 C afm®y + €61y {85,600 105

+ € {€di) 05105 + {6‘(’1>k,6‘?2),}¢,’§¢,3-1
4.1)

Asall g% are independent, €33, x can be obtained by identify-
ing the coefficients of ¢5 in both sides of (4.1). Here, let
€%,,x and €%, be functions of ¢ alone and assume {¢f,65}
and {€?,,,,€%,,} to contain no ¢. This assumption would be
reasonable except for very special cases, as seen from the
expressions (3.6) for €7. In the rhs of (4.1), X remains only
in the first term and we have

€k = €1yx€0 C k- (4.2)
In extracting (4.2) from (4.1), there ma§ be an antisymme-
tric term similar to D "¢ in (3.8) or E ¢ in (3.11). Since
such a term, however, disappears in constructing
G(€sy ) = €l ¢%, we have omitted it.

Owing to (3.25), (4.2) reduces to
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€l = €, €0, C 5%,
with
€y =€k (D) (a=12).

Equation (4.3) is the very remarkable result to indicate that
the structure of GT for parametrization €* can be specified
only by C X5%. In other words, the algebraic structure of the
gauge group is determined by the final step #% in the con-
straint series (2.4).

Further relations for CXZ,, and C%, can be derived
from coefficients of 5 ~ ', #X 2 and so on in (4.1) (see the
Appendix).

On the basis of the above observation, we can conclude
that the types of the gauge groups can be classified in terms
of (i) C 5% and (ii) the number of the constraint step K.

In the first classification (i), we have three types.

(1) The case of CXf% =0.

In this case, €73, = 0, namely, G(€3, ) = 0, so that the
gauge group is Abelian. Hence, the gauge theory with a sin-
gle gauge degree of freedom (o = =1) is Abelian. The
model in which all gauge degrees are completely isolated
belongs to this type.

(2) The case of all C k5% = constant#0.

Since €73, also is a function of ¢ alone owing to (4.3),
G(€3, ) has the same form with G(€,,, ). Here G(€)’s close
with respect to the Poisson bracket. The Yang-Mills theory’
is of this type.

(3) The case of C X% being dependent of g and/or p.

Evene€f,, (a = 1,2) arefunctions of only ¢, €(;, depends
on g and/or p. Then G(¢) is not the generator of a Lie group
(fort fixed).® G(€)’s donot close with respect to the Poisson
brackets. By repeatation of the GT, new forms of 5¢' appear
successively, that is G(€.,, ) has a different form from the
one of G(¢€,, ). The generator X given by (2.25) is an ex-
ample of this type. Though the calculation of the commuta-
tor of X is tedious, the Poisson bracket (2.16) for G is rath-
er simple. Hence, we can regard G as a “generator” of the
generator X .

For the case of C 53% being dependent of g and/or p, a
further classification would be needed, basing on a detailed
observation. For instance, there would be an essential differ-
ence according to whether C 55k contains p or not.

A typical example of the case (3) is the relativistic mem-
brane with n(>2) spatial dimensions.’

In the classification (ii) in terms of K, the number of the
constraint steps, we can derive more precise conclusion with
the help of informations concerning CZ, (the structure
functions of {¢X,H}).

(1) Thecase of K = 1.

No specific consequence is derived in the case where
only the primary constraints appear, since the relations ob-
tained in Sec. ITI and the Appendix are available for the case
of K>2.

(2) The case of K = 2.

Most of gauge field theories (e.g., electromagnetic,
Yang-Mills, and gravitational fields, etc.) belong to the
type. As shown in (A40), we have

Cly=Cll =0 (k=12),

(4.3)

(44)
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20, = ZCE,", ={4..C1.} +1{g5.CLL}, 4.5)
208 =C 5,Chh —C3,CHn
—{sL.c5t+1{sp.CL 1}, (4.6)
and
2%, = —{4..Ch ) +{85.C L}
=20, —2{¢).C}, }. (4.7)
From (4.7), we obtain
cir, =0, (4.8)
if
{4:.Ch2} — {85.CL1Y=0. (4.9)
Then, the gauge group is Abelian. Further, if
C8, = C#, = constant, (4.10)
all
cr., =0. (4.11)

These are remarkable results.

In the Yang-Mills theory where (4.9) is not satisfied
and C%, =f% A}(x), we have [except for the factor
6(x—y)l

CZ, =f,5" (thestructure constant of the group)

(4.12)

and all other C%Z,, = 0. Equations (4.4)—(4.7) suggest the
possibility of

C:# #0 or C2 #0, (4.13)
which is a type different from the Yang-Mills theory. Fur-

thermore, even for the Abelian case C2, = 0, we cannot

exclude the case of (4.13); i.e,
ClZr #0 or CZ, #0.

(3) The case of K = 3.
Omitting the derivation, we present only useful rela-
tions;

Cy =Cclr, (k=12), (4.14)

CHh=—Clh, (4.15)
and

Cii?’,'s = (2;39}’2 "{¢ C%s}

= Ltem  Ligery+tigon)
2 2 2
(4.16)

It is observed in (4.16) that C B , #0, that is, non-Abelian
evenif C#, = constant. This is contrast to the case of K = 2.

V. DISCUSSION

In this paper, we have shown that the algebraic struc-
ture and the property of the gauge group is essentially deter-
mined by FCCs of the final step of constraint series appear-
ing in their stationarity conditions. The classification of the
gauge groups can be made in terms of the property of C 55 %
and the number of the constraint steps K, as shown in Sec.

IV. Here, we emphasize that our definition (2.4) and (2.5)
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of the constraint series are crucial in order to obtain such a
simple conclusion. The consequences obtained will be useful
for analysis of the properties of gauge groups.

Remained problems are as follows: (i) to prove (3.25)
for K>5, (ii) to apply our formulation to physically interest-
ing models, (iii) to find new types of gauge theories, and (iv)
to remove the assumption for {€f,4;} and {€%),.,6%,,} to
contain no ¢.

APPENDIX: RELATIONS HOLDING AMONG C % .’S
AND C%&,’S.

First of all, we will derive (3.25). From (3.8) for
m=2K, k=1 and (3.18), it follows that

Clox—1 — Cipx = D \B5md? =0. (A1)
Owing to (3.20), (A1) reduces to
CaBK—l =C<211§,K =0 (1<K), (A2)

where the exact equality is due to the reason same with those
for (3.15) and (3.16). By puttingm =/=K and k=1 in
(3.8), we have '

CaﬂK—l Ctzzltg,’;( +{C£Ky¢é}z0’ (A3)
which yields, with the help of (3.21),

Cln =0 (K>3). (A4)
Combining (3.18), (A2) and (A4), we obtain

Clire=C% =0 (k=1~KK>3). (A5)
Thus only C}i can be nonzero for K>3.

Next, let us prove for K>4

Ci’;’;( =0. (A6)
Equation (3.8) reducesto,form =K — 1,k =2,and /<K,

Clx_=Cllx (I<K), (A7)
owing to (A5) and C%Y, = — CXY, .. From (3.8), for
m=K—1,k=1,l<K, and (3.18), we find

CaBK 2 _CaBK—l C::%TKIZl:O (A8)

in which for /<KX — 2, the first and the third terms vanish
due to (3.18). Further, for / = K — 1, the first and third
terms in (A8) cancel each other, owing to the relation

Capih —Coplc 1 =0 (K>4), (A9)
which is obtained from (3.23). Consequently, we get

Clre 1 =0 (I<KK>4). (A10)
Equations (A7) and (A10) give
Clre =0 (I<KK>4). (Al1)

In order to obtain (All) for /=K, we put m=K—1,
k=1,and /=K in (3.8) to get

Cobk_2 —Cox 1 +ChCl%  +{Ch 185}
—{H,C 5% _ }=0. (A12)

The last term of (A12) turnsouttobe — {H,[#},C 2« ]} by

using (3.23). On the other hand, with the help of (3.23),

(3.24) for m = 1 becomes

Cobi—2—ChxCif 1 +{Chx_ 1,85}

+{¢L,[C5x.H ]} =0. (A13)
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Hence, (A12) and (A13) yield
CaBK—l~ _{CBKa[¢aH]}_ —{Cﬁk’¢a} (K>4)
(A14)

In the above derivation, the Jacobi identity and (2.4) have
been used. Again, puttingm =/=Kand k = 2in (3.8), we
obtain

Chn_ 1 — CEr +{Chx.#% ) =0. (A15)

From (Al4) and (A15), (A6) follows. Thus (A6) and

(A11) are combined to give
Clx =0 (k=1~K,K>4). (A16)
KKy

Consequently, only C_.z% can be nonvanishing among
Chky for K<4.

For K>5, the proof is so complicated that we have not
succeeded in it. But we conjecture, for any X

Cikx =0 (korl<K). (A17)
By the way, the substitution of (A17) into (3.10) with
s = K gives
CH%t, =0 (U<K),
{CEKe .CERe Yy + {CE5s 45} =0.
From (4.1), other expressions of C£%, for m#K can

be derived. From the coefficient of #X —'in (4.1), the follow-
ing relation is derived:

€lk—1 = €i€inCapr—1 + € lda€lng -1}
+ et l€lnk_ 195} + €l 1,600 15
+ (€8 €0k 1 345 (A19)
Due to the first equation of (3.6), (A19) reduces to
- CEKG?S) = e‘(’”kefz),C,’;ZK_ 1
—1€¢1)x8a,C bk Y€l
+ {€8)1,85,C i 3l (A20)

where €7, =¢€{,,x (a = 1,2) are put to be independent of ¢

and p. By substituting the expressions of (3.6) into €} in
(K k)Y (K—k—1)

(A.20), there appear € e while in the left-
]

(A18)

— &
€3y

hand side (lhs) only the first-order time derivative of
€0 6‘(? 2) exist, owing to (4.3). In the rhs of (A20), the coef-
ficients of e((r,)) e((;), (r,s>1) should then vanish;

Clre_, =0 (both k and I<K — 1;K>2).

Hence, only C*X aBk — 1 €an survive.
. . . (K—1 Ve
Since the highest derivative ¢,

(A21)

comes out from
€71y, we have for the coefficient of €7,, in (A20)
Ciflk1 —{80,ChI=0 (K>3).

. (K-2),
Since the term €,

(A22)

appears from €(,,, and €7,,,, the fol-
lowing relation holds:

5 1Ky 2Ky
CrtKCzSB,K— | CaB,K— i

{C6K¢5’CBK}

+{42.Ch} =0 (K>4). (A23)
With the help of (A22), (A23) reduces to

Coflk—1 +{Co.Chelds —{42.Clx} =0.  (A24)
Also, from (A15) and (A24), it follows that

{Cox.Chids = DifRnds (K>4), (A25)
hence,

{CaxCh}=DR, (K>4),

Ciik—1 —{82.Ch} = — D% 41, (A26)
From the coefficient of X ~2in (4.1), we find

Clica=0 (ck_a rex_y) A

Since it is so tedious to obtain further relations for arbi-
trary K, we will apply the above method to the case of K = 2
and find useful relations. Now, we have

Czﬁzfal)eﬂ — CUr (€0, €0, + €0,éh)) — CLCHR €h, €l

= [C?a'zg| - {¢¢2,,C]§2} + {¢%3,C

The coefficient of €7, €7, in (A29) yields
CoH =Cifh —14..Ch ) (A30)

and from the antisymmetric part of €7, €%,, with respecttoa
and B, it follows that

C2 +C}% C,21§762= _C‘ZZ?" +ngcsp1 —ngcaal
+ {¢i9cgz} - {¢g’ aZ}

+ {CZZ !ng¢¢ls} - {CEZ’C22¢¢15}
(A31)

With the use of (A30), (A31) turns out to be
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L} +1C5L,Ch.85) —
12y

X €, €0 + [ — Cofh +{8:.Ch €0, € + [Cofh

€6 = Crzzii}.’zfl(ll)eﬁizr (A28)
The substitution of
€ = — € — nge’f_,
into (A19) for K = 2 yields
{CBZ’ :s12¢¢]$}_c C‘IZ%Y] +CB2C6(ZI
—{85.Ch €, €% (A29)
|
Ci + CHLCE, +C — C5,C8, + CL,CH,
- {¢a’cﬁz} + {¢ﬁ’ a2} + ({CaZsCBZ}
—{C},.Cc5hes =o0. (A32)
On the other hand, (3.8) with Xk =/ = m = 2 becomes
C+CHCL —CoLCL + Ch,CH8,
—{Cr.d2}+1{Ch .42} + Ci},’z =0 (A33)
Then from (A32) and (A33), it follows that
€L, C5,}={CE,,Co ). (A34)
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Again putting k =/ = m = 1 in (3.8) and using (3.22), we

obtain
Cigr =Chr- (A35)
The «, B antisymmetric part of (A30) reduces to
2%, = —{¢,,C5,} + {¢5,C3} (A36)

with the help of (A35), and the a, 8 symmetric part to
CH =1{..Ch} +{85CL }- (A37)
Equatlon (3.8) with k =m = 1 and / = 2, turns out to be
—C2, 4 C5,CH +{C5, 8L} + C22, =0.

(A38)
The a, 8 antisymmetric part of (A38) gives
2020 =~ — C} C”‘S1 +C? C};ﬁ,ﬁ
—{¢:.C5: }+ {5, C2 }. (A39)

Summarizing all results obtained for K = 2, we have
Cih=Cl, =0,
20 =205 ={4.,Ch} + {$p.CL},
Caﬂl~ca2cll3353/1 C3.Cush
—{s..Ch Y+ {spCL 1
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2C7, = —{¢).C5,} + {45,C7,} (A40)

=207, —2{¢..C}.},
{sz ,ng}z{c}}z,ciz},
and
€l = Cogr€0,€h,.

The weak equality ~ means the existence of a contribution
from the D¢ or E¢ term as in (3.8) or (3.12).
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Symmetrized powers of the fundamental irrep of E;

B. G. Wybourne
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The resolution of all possible antisymmetrically symmetrized powers of the fundamental irrep
(27) is given. This reduces the problem of plethysms of the fundamental irrep to the evaluation

of ordinary Kronecker products of E irreps.

I. INTRODUCTION

The group E, has been of considerable interest to parti-
cle model builders' and more recently we? have found it
relevant to interacting boson models (IBM) involving s, d, g,
i bosons. In each case, the 27-dimensional fundamental irrep
of E, plays a key role. In the case of the IBM, the resolution
of symmetrized powers of the fundamental irrep is required.
This problem is equivalent to the evaluation of the branching
rules for SU,, — E, where the vector irrep {1} reduces as

{1}-n.

Il. THEORY

The irreps of E, may be variously labeled. In much of
the physics literature, the irreps have been simply labeled by
quoting their dimensions and using primes (') to distinguish
distinct irreps of the same dimension and underlines and
overbars to distinguish an irrep and its conjugate, ' e.g., (27)
and ( 27). More precise labeling comes from the use of the
corresponding labels based ony the maximal SU, X SU, sub-
group of Ey, the so-called natural labeling.*~® In that scheme
theirreps of E, are labeled as (s:1) where sis an integer label
for SU, and A is a constrained partition such that

s2A + A, + Ay — A, — A

and the weight of A is even. The labels (s:4) are related to the
corresponding Dynkin labels (a, a,a,a,asa, ) by*

s =a,+2a, +3a; +2a +a, + Za(,,
Ay =a+aq +a; + a4 + as,
A, = a, + a, +a, + as,
A, = a, +a, + as,
/14 = a, + as,
As = as.

In terms of the natural labeling the fundamental irrep of E,
is designated as (1:1) and its conjugate irrep as (1:11111).
Using the earlier results of Wybourne and Bowick® to-
gether with King’s method® for evaluating E, Kronecker
products it was possible to adapt the program SCHUR to com-
pute and verify SU,, — E, branching rules given in Table L.
The characters of SU,, can be represented in terms of
Schur functions in the roots of the defining group elements
and hence there is a one-to-one correspondence between the
partitions that label an SU,, irrep and those labeling the
appropriate Schur function. Furthermore, any Schur func-
tion {1} can be expanded as a sum of products of Schur

2345 J. Math. Phys. 31 (10), October 1990

0022-2488/90/102345-01$03.00

TABLE I. Antisymmetric powers of the fundametal irrep (1:1) of E, .

Dimension SU,, - E,

1 {0} (0:0)

27 {1 @

351 {17} (a1

2925 {1y  @a1n

17550 {1} @1nn

80730 {1°}  (5:11111) + (4:2222)

296010 {1°}  (6:0) + (5:22221)

888030 {17} (6:1111) + (5:33322)

2220075 {1°}  (6:22211) + (5:44333)

4686825 {1°F  (6:33222) + (6:222) + (5:54444)
8436285 {1} (6:43333) + (6:33211) + (5:55555)
13037895 {1''}  (6:44444) + (6:43322) + (6:3311)
17383860 {1'*}  (6:44433) + (6:43221) + (6:33)
20058300 {1} (6:44332) + (6:43111) + (6:4222)

functions {1°} and hence Table I permits every plethysm of
the fundamental irrep of E, to be reduced to the evaluation
of Kronecker products of the E, irreps that occur in Table 1.
These can be readily evaluated using King’s algorithm® and
the E, —SU, X SU, branchings that are all known. Thus we
have a complete and systematic procedure for constructing
arbitrary plethysms of the fundamental irrep of E,.

Given that’ (49 B)@C=A4® (B C) it follows that
any irrep of E, that can be expressed as a sum of products of
plethysms of the fundamental irrep can be readily evaluated.
For example, since (1:1) ® {1°} = (2:11) it follows that
2:1) e {i}=((1:1) e {1?He {1}
=(I:D) e ({1’}e{i}).

Thus we conclude that a complete and systematic meth-
od is available for determining arbitrary plethysms of the
fundamental irrep of E, and furthermore can simplify other
E, plethysms. We have used the above results to readily
evaluate the plethysms of the fundamental irrep of E, for all
partitions of weight <8.
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Algebras for the two-sphere and the three-sphere groups of compact simple

Lie groups
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The infinite-dimensional Lie algebras corresponding to the Lie groups of smooth maps from
two and three spheres to compact simple Lie groups are studied. The problem of their central
extension is solved. The problem of the existence of semidirect sum algebras containing these
and the algebras of the groups of diffeomorphisms on the two and three spheres is treated.

I. INTRODUCTION

Some time ago, Bars' studied the structure of the two-
sphere algebra associated with a Lie group. Homotopically
trivial smooth maps from a two-sphere S? to a Lie group G
form a certain infinite parameter group under point-wise
multiplication. The corresponding infinite-dimensional Lie
algebra is the two-sphere algebra associated with G. The con-
cept of the two-sphere algebra is an extension of the idea of
the loop algebra—the algebra of the group of homotopically
trivial smooth maps from a circle to a Lie group. The central
extension of the loop algebra is the Kac-Moody algebra.>*
The latter has found wide applications in physics.* Groups
of maps from d-spheres S ¢ to compact Lie groups and their
associated algebras are expected to find useful physical ap-
plications. For one thing, these structures appear naturally
in the study of current algebras. Indeed, it is motivated by
considerations of current algebras that Mickelsson and Ra-
jeev® were led to the problem of constructing highest weight
representations of d-sphere groups. Moreover, sphere
groups and algebras are expected to prove useful in the de-
scription of spatially extended objects with extension in
more than one spatial dimension (membrane theories). This
is in analogy with the role of the Kac-Moody algebras in
string theories. For all these reasons, as also for the sake of its
intrinsic merit, it appears worthwhile to pursue the study of
these structures as a purely mathematical enterprise.

This paper is addressed to several features of sphere al-
gebras. First, we shall write down the commutation relations
of the three-sphere algebra—the Lie algebra of maps:
S3-G, S* a three-sphere, G a Lie group. This task, of
course, is absolutely straightforward. Secondly, and this is
the main result of this paper, we shall carry out the central
extension of the two-sphere and three-sphere algebras of a
compact, simple Lie group G. Finally, we shall make some
comments on the structure of these algebras.

As far as the two-sphere algebra is concerned, Bars' has
already considered the problem of its central extension. But
his treatment is incomplete. He wrote down a two-term cen-
tral extension, whereas it will be shown in the sequel that the
algebra has an infinite number of central extensions. This,
indeed, must be the case according to a general theorem
proved by Feigin.® Let us recall the Feigin result. Let Mbe a
manifold and G a compact Lie group with g the correspond-
ing Lie algebra. Let g™ denote the Lie algebra of the group of
maps: M — G. By a standard procedure’ one constructs an
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algebraic complex associated with g*, which is contained in
the de Rham complex of the corresponding group. Let H >
(g™) denote the second cohomology group of g™. Then the
Feigin result states that H? (g") is infinite dimensional
whenever the manifold M has a dimension greater than 1.
Since the space H? (g™) has the interpretation as a set of
classes of one-dimensional central extensions of g, the im-
plication is that the algebra g™ possesses an infinite number
of independent central extensions whenever the dimension
of the manifold M is greater than 1. The set of solutions for
the central extensions that we obtain is found to contain one
of the two terms written down by Bars.! The other term,
upon closer scrutiny, will be found to be unacceptable.

This paper is organized as follows. In Sec. II we write
the basic commutation relations of the three-sphere algebra.
In Sec. II1, the problem of central extensions of the two and
three-sphere algebras is solved. The significance of the re-
sults obtained is next analyzed in terms of the anomalies in
the current algebra in Sec. IV. The final Sec. V contains
discussions and comments.

Il. ALGEBRAS

Let G be a Lie group, g the Lie algebras of G, T“ the
elements of a basis for g, and £ “*° the corresponding structure
constants {a, b, ¢ run from 1 to dim (g)]. We denote by g™
the Lie algebra of the group of (homotopically trivial,
smooth) maps: M — G. Here, our interest is confined to the
two cases M = S?and M = S°. A basis for g is provided by
operators of the form 7, “. When M = S?, L stands for the
ordered pair (/,m), / is a non-negative integer and allowed
values of m range from — / to + /, changing in steps of one.
For the case M =S? L stands for the ordered triple
({,m,m’), and here both m and m' separately have the same
spectrum as in the previous case but / is now a non-negative
integer or half-integer. We shall also be making use of the
subscript notation; thus 7, “ would stand for 7%, or
T°) n n, depending on the context.

For the two-sphere algebra the basic commutation rela-
tions is'

[TeL,T", ] =f“C(Ly,Ly; L) T, (1)
where

© 1990 American Institute of Physics 2346



C(L,,L,;L) = {I,m,lm,|Im){1,0,1,0|10)

X[Q2hL +1)2L + 1)/47 (2] + ])]1/2(2)

and terms in brackets that appear above are the standard
Clebsch—-Gordan coefficients. Equation (2) is derivable
from the ‘“defining representation” T{=T7°Y,,, where
Y, (0,¢) are the spherical harmonics that provide a com-
plete set of basis functions for any L ? integrable function on
the two-sphere. Furthermore,

Y[|m|(0)¢)Y12m2(6’¢) - C(L11L2>L)Y[m(05¢) (3)

is the expansion of a product into a sum. It should be noted
that there is a summation over the dummy index L, that is,
over / and m in Eq. (1), with the range of summation being
restricted by the non-vanishing properties of the coefficient
function given by Eq. (2). Actually, a repeated index will
always imply an appropriate summation.

The analog of Eq. (1) for the three-sphere algebra may
now be obtained. The manifold S* is parametrized by the
Euler angles a, B3, 7, the rotation matrices D’ . (a,B,y)
provide a complete basis for functions on S* (from the Pe-
ter-Weyl theorem) and the analog of Eq. (3) for the product
of the two rotation matrices is given by the celebrated
Clebsch—-Gordan expansion for the group SU(2). Thus we
find that in the present instance the basic commutation rela-
tion can still be written formally, exactly as Eq. (1); only this
time the coefficient function is different and is given by

C(L,,L,;L) = (llml’lzmzllm)<llm;ylzm£ |lm'), 4)

where the brackets, once again, are Clebsch—Gordan coeffi-
cients.

lll. CENTRAL EXTENSIONS

We shall now treat the problem of central extension of
the two algebras that we have considered in the preceding
section. Let us write the basic commutation relations for the
centrally extended algebra in the form

[T8,T8 ] =f"CLL;L)T; +d,, K" (5)

where K * are the central generators that commute with each
other and with all the 7'} generators:

[K4KE}=0, [KAT{]=0. (6)
In the above, 4 is an index that labels the independent cen-
tral elements; the precise nature of this index will be made
clear in the sequel. We shall often suppress this index on the
term d "L’j’ 1, for the sake of notational convenience. The Ja-
cobi identity as applied to the commutator Eq. (5) leads to

fade(Ll ,Lz;L)d‘ZfL3 +bedC(L2 wLs ;L)dZTL,
+fC(L,,L;L)d {5, =0, (7

where a summation over the dummy indices d and L is un-
derstood. Notice that the range of L summation is different
for each of the three terms in Eq. (7), and is controlled by the
nonvanishing properties of the coefficient functions. Equa-
tion (7) is the cocycle condition, its solutions will yield the
desired central extensions. However, some of these are tri-
vial in the sense of being coboundaries. These can be elimin-
ated by a suitable change of basis. We seek nontrivial solu-
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tions of Eq. (7). It is clear that such solutions form a vector
space. This is the second cohomology vector space of the
sphere algebra.

At this stage, we restrict our Lie group G' to be compact
and simple. We can now choose the basis for g in which the
structure constants are completely antisymmetric and obey

fabcfabd — 6Cd. (8)
Combining Eqgs. (7) and (8), we have
C(L,,Ly;LYd P, + f*f®C(L,,Ly;L)d rr,

+f"“‘f”"eC(L3,Ll;L)a"’L‘,L2 =0. 9

Taking now, L, =0, L, =0 in Eq. (9) and utilizing the
Jacobi relations for the structure constants % of g and the
antisymmetry property d {°, = —d}°, , we derive

do =ffdy . (10)

On the other hand, Eq. (7) is unchanged under the transfor-
mation

T;-TS +&5.K%, (11)
under which the central terms behave as
d;.l:,Lz(A) "’d;,l:,LZ(A) “‘fabcC(Ll,Lz;L)gi,A, (12)

where £ ¢ , are certain functions. Using Eq. (12) we can set
d{, to zero, for such a and b for which f° does not vanish
identically. In the event f**° does vanish, Eq. (10) says that
d ‘i’:_o vanish also. Thus, quite generally, we can set

d®, =0, (13)

Thus T'§ generate a subalgebra isomorphic with the original
Lie algebra g and the 7' transform as the adjoint represen-
tation of g, for each L. This conclusion follows from Eq. (5).
Taking now L, = 0in Eq. (7) and using Eq. (13) and the
fact C(O,L;L) = C(L,,0;L) ~&,, , we get:

fbadd ch,L3 +bedd ‘Zf,Iﬂ =0, (14)

which is recognized to be the condition thatd §°, is an iso-
tropic tensor under the action of g. From this, it follows that
the dependence on the indices g and & must be of the form
5°°. This is exactly as it happens* with the loop algebra. Thus
we set

di., =06%d,,., (15)
and Eq. (7) reduces to
C(L,,Ly;L)d, ; + C(Ly,Ly;L)d,

+C(Ly,Ly;L)d,, =0. (16)
The above equation plus antisymmetryd, , = —d;, , de-

termine the central extension terms. We proceed to con-
struct solutions to Eq. (16).

Let us first treat the case of the two-sphere algebra. The
coefficient function C(L,,L,;L) is here given by Eq. (2).
Consider the derivative of the product of three spherical har-
monics:

3L, (6 Y, (0.8, (6.6}
= C(L,,Ly;L) Y, (6,)3,Y,, (6,9)

S. K. Bose and S. A. Bruce 2347



+ C(LZ’L3 ,L) YL (9,¢)a, YL: (99¢)
(17)
|

+ C(L3 ’Ll ;L) YL (6’¢)a, YL2 (01¢),

wherei = 1,2;d, =38 /dpand d, =d /dzand z = cos 6. In de-
riving the above result, Eq. (3) has been used. From Eq.
(17) we obtain

(B, Y,)8, (Y, Y, ¥,.) — (3, Y., (¥, ¥, ¥,) = C(Ly LyL) Y, [ (3, Y08, ¥,,) — (8, Y, ) (3, ¥, ]
+ C(L,,Ly;L)Y Y, [(az Y, ) (o, YL, ) — (8, Y..)(d, YL, )]

Now for any pair (L', L) it is true, as is easily verified, that

+ C(Ly L L)Y, [(8,Y,)(8,Y,)) — (8, ¥, )(8, Y, )] (18)
!
aD'! .\ g aD!, . \o
preri(2)E (P
£ ! dz /oa da /oz (25)

f[(azYL,)(a1 Y,) — (8,Y,.)(3,Y.)]d2 =0, (19)

where d() = dz d¢/4=. Since we can express the product of
three Y ’s as a linear combination of Y ’s, it now follows that if
we integrate both sides of (18) over the two-sphere then the
left-hand side must vanish. The resulting equation is then
compared with Eq. (16) to obtain the desired central ele-
ments. We thus arrive at

drr =41, =f Y,.D. Y, dQ, (20)
where
aYIm) ad (5Yzm)a
D, =D, = — | —= . 21)
L= ( dz /3¢ 36 1oz (

The independent central extensions are labeled by L and as
before z = cos 6. In writing the above equations, we reverted
back to a more conventional notation. It is instructive to note
the central terms for / = 1; these are

(22)

dr .o =(— I)MImlam;+mz-06/n1:’
drr,en =(— 1)m'\/l|(11 +1)—m(m 1)

X8, 1 my 10001, (23)

Let us now solve Eq. (16) for the case of the three-sphere
algebra, i.¢., when the coefficient function C(L,,L,;L) is giv-
en by Eq. (4). The derivation of the central terms proceeds
much the same way as in the previous case and it, therefore,
seems quite pointless to keep on writing the messy algebraic
expressions that arise in this exercise. The essential point is
this. There are now three variables a, 3, and y in contrast to
two of the earlier case. Correspondingly, we can write three
distinct relations analogous to Eq. (18), by taking the pair-
ings (@, 2), (2,7),and (3, @); herez = cos 8. Consequently,
we shall obtain a triply infinite set of solutions to Eq. (16).
These are found to be

2.,L:(L) = Dill.m] (a,B,Y)D ’LD is,:mé(asﬁﬂl)dﬂ’
(24)

where d€) is the Haar measure on S * and

aD! . ap! .
D},EDIImm'=( - )i“‘(——)j—’
dy /dz dz Jay
D! . oD’ .
D =D2  — (ﬂ)_a_ _ (&)i ,
da /3y dy /da
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Here z = cos f and independent central terms are labeled by
i(=123)and L = (I,m,m’). We should note that the cen-
tral elements given by Egs. (20) and (24) satisfy Eq. (13),
which is necessary for consistency.

IV. CURRENT ALGEBRAS

Let us construct “currents” via

Ta(01¢) =z TaL YL(0’¢) (26)
L

The above is for the two-sphere; for the three-sphere replace
the spherical harmonics by the rotation matrix element
D!, (apB,y). The commutation relation Eq. (1) gets con-
verted into the current algebra commutation relations for
the currents 7'? (6,4) or T (a.B3,y), whereas the central
extension terms [ Eq. (5) ] become anomalies. Thus the basic
commutator relations have the structure

[T(x),T*(x)] =f8(x — x')T°(x’) + anomaly.
(27)
What is the anomaly corresponding to the central terms that
we found in the preceeding section? Let us investigate this
question for the two cases separately; first, for the two-

sphere. For this case let us write the anomaly in Eq. (27) in
the following form:

5[ £1(6,)8(z —2)8 (6 — &)
+/(0,4)6'(z—2)5(4 — ¢') ], (28)
where, f] and £, are two functions on S2,z = cos 8 and the
delta prime &’ is the derivative of the Dirac delta function 6.
Indeed, the Jacobi identity, as applied to Eqs. (27) and (28),
is easily shown to lead to the condition
,% + % = O_
dp Oz

The solution of the above, on .52, is

(29)

a (9
6,6) == h(6,4), 6,4) = — -2 h(6,4),
f1(6,6) 9z (6.¢), f(6,4) a h(6,¢), (30)

where 4(6,4) is an arbitrary function on § 2. Using Eqgs. (26)
and (27) if we now compute the central term d, ,_arising
out of the expressions in Eq. (30), by expanding A(6,¢) into
spherical harmonics we then find for d, , exactly the
expression in Eqgs. (20) and (21). The infinite number of
central elements thus correspond to the infinite number of

S. K. Bose and S. A. Bruce 2348



components of the function #2(6,¢) on the Y,,, (6,4) basis.

The foregoing discussion is extended to the three-sphere
algebra as follows. The anomaly term in this case is written
in the following form:

8 fi6(z—2)8(y—7) (a—a')+ 1,8 (z—12)
X8(y—v)b(a—a') + f36(z—2)
X&(y—v)é(a—a)], (31)

where f,, f5, and f; are certain functions on .S'>. The Jacobi

relation now leads to the condition

Jd d d
—_—fi+—=—f+—f,=0. 32

The solution of Eq. (32), on S3, is given by a set of three
functions 4,, h,, and 4, as follows

d a
=Zh -2 h,
A P
E E
9y %, 33
£ pliiae il (33)
d d
=2 n,—Zh,.
S w5

In the above, z = cos S and &, 3, y are the Euler angles. If we
now, using the above, construct the central terms, we find
precisely the expression given in Egs. (24) and (25).

At this stage we should compare our results with that of
Bars.! He wrote down an expression for the anomaly that
corresponds to the choice f,(6,4) =a and f,(6,¢) =bin
expression (28); here a and b are two constants. The term
f1(6,¢) = a corresponds to our Eq. (22) and to this extent
our results agree. However, the other term f,(6,4) =b
should not be there, since this term, despite its appearance to
the contrary, is not properly antisymmetric and » must be set
equal to zero. To see this, let us calculate the central element
corresponding to the term f,(6,4) = b. We obtain

4 b [ (I, =m)'( —m) ]2

LoL, =
2 L (L +m)id, + m)y)!
XL+ 1)L+ 1126, 4 mo

1
xf dz PT(z) ip,";-(z) (34)
-1 : dz

where P7 is the associated Legendre polynomial. Consider
now the special case m, = 0 and the integral in Eq. (34) is
not necessarily antisymmetric with respect to the exchange
l, <1, , since

! d ' d
P —P dz P —P
J_ 1 dz P, (2) dz " +f_1 2, (@) dz " @)

=1—(-1""" (35)
and antisymmetry fails to be true if /, + /, = odd. The point
is this: The delta prime (generalized) function is really the
derivative operator. The representation of this operator fails
to be properly antisymmetric since it acts on functions P,
that do not  necessarily enjoy the property
P(+1)=P(-1).
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V. REMARKS

Consider the question of inclusions; if the three-sphere
algebra, Eqs. (1) and (4), contains the two-sphere algebra,
Eqgs. (1) and (2), and if the latter contains the loop algebra
(the Kac-Moody algebra modulo its center)? From inspec-
tion of Egs. (2) and (4), it is immediate that the answer to
the first question is in the affirmative. Indeed, generators T'¢
with L of the form L = (/,m,0) and L = (/,0,m’) separately
span two isomorphic copies of the two-sphere algebra. As
regards the second question, we note that operators 7% with
L = (1,]) lead to the commutation relation

[T5.T4] =F™T5 s
T§=[4a/(21 + 1)N)"AITS, (36)

as is easy to verify from Eqgs. (1) and (2). The above is only
one-half the loop algebra, since / here is restricted to a non-
negative spectrum, />0. Note also, that 7§ with
L = (I, — I) generate an isomorphic copy of Eq. (36) but
these two isomorphic subalgebras do not commute with each
other.

Do the foregoing conclusions continue to be true for the
corresponding centrally extended algebras? The answer to
this question turns out to be in the negative. The central
elements in the commutators for the set T'¢, with
L = (I,m,0), of operators, computed from Eq. (25), is found
not to coincide with the desired central elements [Eq. (20)]
for the extended two-sphere algebra. To settle the remaining
issue, we compute using Eqs. (20) and (21), the central
elements d, , ,, with L, = (/,,/;), L, = (1,,1,) and find
that these vanish for each L. Thus the commutator of opera-
tors T =T, continues to be given by Eq. (36).

Another question that should be entertained concerns
the existence of grading operators. While these for the in-
dicesmandm’in T}, and T'§,,, .. can obviously be construct-
ed, none exists for the index /. It is essentially for this reason
that it is not possible to give a description of these algebras in
terms of a finite-dimensional root vector space. This is a
point of significant distinction between these algebras and
the Kac-Moody algebra.

The final point of enquiry is based on an analogy. In the
case of mapping of a circle, one has two structures: the Kac—
Moody and the Virasoro algebra. It is further known that
these two can be combined into a larger Lie algebra with the
structure of a semidirect sum in which the Kac-Moody alge-
bra appears as an ideal. Is a similar construction possible in
the present instance? Now, for the spheres S* and S 3, the
analog of the Virasoro algebra are,®'° respectively, diff ($2)
and diff (S *)—the algebras of the group of diffeomorphisms
of S?and S*. Let us consider the case S 2 in some detail. The
algebra diff (S?) is generated by

ay, ay,
LLEleZ( ’"‘)i_( [’")i, (37)
dz / d¢ ap / 9z
that satisfy
[LL, ’LLZ] =f£,.LzLL‘ (38)

In the above, z = cos 8 and expressions for the structure con-
stants /7, have been given by Hoppe.'' For our purpose it
is useful to take note of the relation
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{YL,’YL2}=fII:,,L2YL’ (39)
where the left-hand side of the above denotes a Poisson
bracket (with respect to zand ¢). Using Eqgs. (37) and (39)
and the “defining representation” 7' =T°Y, =T"Y,,, we
obtain the commutator

[L.,.T%] =f50Ts (40)

which clearly shows the semidirect sum structure. The only
question that now remains is the one of consistency, i.e., if all
the relevant Jacobi identities are satisfied. It is obvious from
Egs. (38) and (40) that the Jacobi relation for the triple
(L,,T7,,L;,) is indeed fulfilled. What about the triple
(L.,,T%,,T7,)? Using Egs. (5) and (40), plus the condi-
tion

[K A,LL ] =0,
we compute
[[Le T8 ] T+ I[T5,T4 ] Le]

+I[T8Le,].T2]

= feX(L,L,L,L")TS.

+68°Y(L,L,L,L")K",

(41)

(42)
where
X(L,L,L,L") =f£,,L2 C(L,Ly;L") — f;,L C(L,,L;;L)

+ /i, C(L,LiL") (43)
and
Y(L\L,L,L"y =f% ; di oy + ST, e, (44)

Applying the operator L, tothe product ¥, ¥, and using
Eq. (3), it is easily shown that

X(L,L,L,L") =0. (45)

On the other hand, Y(L,L,L,L) is, in general, nonvanish-
ing. We can easily convince ourselves of this by computing
one particular case; say L, = (1,1). L, ; is'? (up to an ines-
sential constant) the conventional angular momentum rais-
ing operator L , and the expression for the structure con-
stant in Eq. (40) is now very simple. We can now
immediately see that the corresponding Y is nonzero. Thus
the conclusion is that there does not exist a larger algebra
containing diff (S'2) and the centrally extended two-sphere
algebra. However, such a structure does exist for diff (S'?)
and the noncentrally extended two-sphere algebra. This con-
clusion can be extended to the case where the three-sphere
algebra (or its central extension) is combined with the alge-
bra diff (S*) whose structure has been elucidated in Ref. 10.
The proof runs parallel to that of the foregoing example and
will, therefore, be omitted. Our last conclusion, it should be
noted, is stable with respect to any possible central extension
of diff (S'*) [diff (S?) is known not to admit any central ex-
tension'? ]. Because of the semidirect sum structure, Eq.
(40), any possible central element in the commutator of two
L operators never enters the Jacobi identity.

It has been brought to our attention by the Referee that a
general result concerning the classification of central exten-
sions of the algebra g™ of the group of maps has been given by
Pressley and Segal.'* Let M be a compact manifold with
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dim (M) > 1, let Gbe a compact, simple Lie group and g* the
Lie algebra of the group of smooth maps: M — G. The result

of Pressley and Segal is this: central extensions correspond to
4]

1
the elements of the space ©/dQ of one-forms on M modulo

exact one-forms. To understand how our results relate to
this general theorem, we proceed as follows. First, we note
that a general one-form on M can be, by the Hodge decom-
position theorem, written uniquely as a sum of an exact, a
coexact, and a harmonic one-form. There are no harmonic
one-forms on a sphere S” (n > 1), and thus for these cases
the decomposition reduces to a sum of an exact and a coexact
piece. It follows that each equivalence class of one-forms
modulo exact one-forms contains a unique coexact represen-
tative. Thus the result of Pressley and Segal may be para-
phrased to read that central extensions are labeled by coexact
one-forms on M in the case where M is a sphere. The connec-
tion of this result with our work is most transparent if we
look at the expressions for the anomaly in our current alge-
bra. The functions f; that appear in Egs. (28) and (31) can
be identified with the components, in a local system of co-
ordinates, of a one-form f. Equations (30) and (33) corre-
spond to the statement that fis coexact. For instance, Eq.
(30) may be written as f=6f  where
f=H0=2)d¢+f(1 —2)"'dz and B=hdpAdz.
Note also that Egs. (29) and (32) mean that f'is coclosed,
&f =0, which is true. Thus our result is in complete agree-
ment with that stated by Pressley and Segal. We may develop
this theme further in order to gain additional insight. Thus
our anomaly is the Lie derivative of the delta function with
respect to the vector field

a
=25

here x’ are local coordinates such as ¢ and zon S ? or @, zand
y on §°. The corresponding expression for the Kac-Moody
current algebra is d /dt, where t denotes the coordinate on a
circle. The vector field X can always be interpreted as the
pushforward of d /dt by a certain smooth map ®:S'-M
given by 1—x’, with dx'/dt = f,.
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Perturbative techniques are used to derive a renormalization group equation for a free scalar
field in a domain with rough boundaries and mixed boundary conditions. It is found that to
second order in the surface height the boundary conditions scale not only as the perturbed
area, but also with a nonlinear term that arises from matching orders of surface height in the

perturbation series for the field amplitude.

I. INTRODUCTION

Of late, many papers have been published on the subject
of fractal-like surfaces. Experimental evidence for fractal-
like surfaces such as sandstone, other geological and biologi-
cal objects has been observed by use of absorption,' x-ray,’
and NMR’ techniques. But the more general question of
how the introduction of a rough (fractal-like) surface affects
a scalar field, has not been fully addressed.

Our approach is to solve Laplace’s and Helmholtz’s
equation in the presence of a rough surface. The scalar field
is assumed to obey mixed boundary conditions

[n-V¢+fo<s>¢]s—[—+fo¢]s=go(s>. (1.1)

The cases g, (S) = 0 and f, (S) =f;,, independent of S is
used for the bulk of this work. The process can be thought of
as absorption, reflection, or any process described sufficient-
ly by a scalar field. In this case, .S will be the real physical
surface and will be modeled in Sec. II as a “cutoff fractal.”
But it is also assumed that in the vicinity of .S, there exists
another surface S, such that S;eC “ and as S-S, the prob-
lem is completely solvable.

We start here at S, the unperturbed boundary and by
the methods outlined in Secs. II and III, we let S, —S. A
redefinition of f, is obtained, i.e., f; —f(S), where f(S) is
some undetermined surface parameter. An average over all
possible samples gives a new boundary condition of the en-
semble averaged field so that

[M +f<¢)LO

1.2a
o, ( )

In essence, we solve the boundary value problem at S, with
the constraint

3¢

1/,] (1.2b)

A differential equation for the transformation f,—f is
found. This renormalization group equation (RGE) and its
solution in terms of averaged surface parameters is the focus
of this and subsequent papers.

A priori one expects three scenarios, as the surface
changes from a smooth (C =) surface to a fractal (C°) one.
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Scenario 1: f~0. The boundary conditions become von
Neumann at S, and the average behavior of the field can be
solved as such.

Scenario 2: f— . In this case the averaged fields obey
Dirichlet conditions.

Scenario 3: The renormalization proceeds to some value
of f,, possibly indeterminate, and the boundary conditions
remain mixed if a fixed point is found. In the case of an
indeterminate value for f; the problem under consideration
may, in fact, be ill-posed. This very point will be the topic of
future papers and is probably the most interesting possibil-
ity, for this would imply that no solution could be found for a
true fractal boundary value problem as the cut-off is re-
moved.

In Sec. II we introduce the concept of a cutoff fractal,
the average or covariance and how they relate to the Haus-
dorf dimension. Section III describes in detail the perturba-
tion techniques used to find the RGE. Sections IV and V are
calculations of the solutions to second order in € in both
semiinfinite and the closed systems. These calculations pro-
vide some evidence that the basic form of the RGE may, in
fact, be universal. Section VI provides a rough guess of the
scale of the renormalization for the case of hydrodynamic
diffusion in sandstone, along with discussion of future goals.

Il. SURFACES AND STATISTICS

In many physical problems one encounters the concept
of boundary conditions. In general, the actual shape of the
boundary is idealized to be some regular geometrical object,
usually taken to be a plane, cylinder, sphere, or some combi-
nation of the three. The operative word here is, ‘‘idealized,”
since in most physical applications real surfaces are rough.
Our aim is to determine the behavior of systems when the
boundary shape is not idealic.

Suppose the surfaces S, S, CX ¥ (X ¥ some embedding
space) are defined as follows [xII =(X,X3,0.0Xv_1) ]

Definition 1I—Boundaries S, and S:

Sy = {xeX ¥ |x = (x, XXy (XX Xy ))
such that eh(x;) = const},
S = {XEXN Ix = (x] 1x2 y--"xNM 1 9h(xl ’x2""xN— 1 ))}'

For concreteness, the definitions of self-similar scale trans-
formation (SSST) and scale-invariant surface (SIS) are the
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following definitions.*
Definition 2—Self-similar scale transformation (SSST):
An SSST is a mapping of 7.5 — 7S, such that if x€S, then

rx—rx, reR,bytherule rx= (rx,...,rxy).

Definition 3—Scale-invariance: A surface is SIS if V
continuous 4 C.S 3reR such that 74 =S.

Intuitively, Definition 3 states that one cannot distin-
guish between being on A4 or S, because with finite resolution
both 4 and S exhibit the same characteristics. And by the
same token this is what makes the surface non-Riemannian,
because given any point XS there will be some scale, possi-
bly infinite, at which the tangent space at x(7S,) is not
uniquely defined. Stated more simply, it would be impossible
to smooth out all wiggles, bumps, overhangs, and depres-
sions. In this sense a true fractal is infinitely rough. The sim-
ple act of limiting the scales of invariance will allow us to
limit these points to a set of measure zero, i.e., given
xeBCS /3TS, ,thenyu(B) = 0.Thush(x, ) isC ' forxeS /B
one can define the tangent plane to § at point
(X150 Xy_ 15A(Xy5.-Xy 1)) in a natural way, as just the
projection map @:

p:S-TS, =R""!, @(x) =x.

Obviously this would be absurd to have a scale-invariant
surface as a boundary, since one does not observe this sort of
behavior at scales smaller than say a few A, nor larger than
the system under consideration. It is then reasonable to con-
sider the system “‘cutoff”” from these scales, and coin the
term cutoff-fractal to describe this sort of surface.

Considering only those functions h(x” )} in Definition 1,
such that, A(x)e.Z 2 we proceed by defining the Fourier
transform of 4(x ):

h(x) =JdN‘ ‘e "h(a)),

il(q”) =__.1—_1.JdN—lxueiqll'xllh(x”). (2'1)

@m”

Easily stated, we expect that 4#(x; ), and hence S can be ade-
quately described by a two-point correlation function, or the
covariance. The 4 ’s are assumed to be governed by Gaussian
statistics, with zero mean height. Lastly, demanding transla-
tional invariance requires the covariance to be only a func-
tion of distance and not direction, while at the same time,
maintaining the constant volume. These restrictions require

(h(xn )) =0 and <h(x|| Yh(y, )) =§(|xn i s
(2.2)

where &, the “correlation function,” is some function of the
absolute value of the difference of position vectors x; and y,.
This has an important effect on the type of systems we may
consider by requiring &, the corresponding Fourier trans-
formed averages, the power spectrum, to be an even function
in q space. The transformed averages are then given by

(h(q))) =0, and (h(q,)h(q))) =58(qy +q}) % (q)),
(2.3)

where to cut off the scales of the surface & is assumed to
have the form
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0’ |Q|| | > qmax’
y (q|| ) = Cq_ﬁ’ qmax>|q|l |>qmin’ (24)
0, Gmin > |Gy |-

Under the assumptions X V=R, the system scale is un-
bounded and & has the form, ¥ (q) = const X |q;| -8,
Pfeiffer’ has shown that the Hausdorf dimension of the sur-
face is given by

D,,:max[2,5(7—ﬁ) ] (2.5)
This is important because it provides the connection between
the work presented in this paper and the popular fractal con-
cept. It must be stressed here that this dimension is the Haus-
dorf dimension and not the Euclidian dimension. The two
only coincide when D,; € Z, otherwise it does not have a very
good physical interpretation as a physical dimension. The
only real meaning that can be attached to the Hausdorf di-
mension is that the surface is self-similar and scales as
(const)?.

lil. PERTURBATIVE TECHNIQUES

There is a great difference between perturbing the shape
of the surface upon which a boundary condition is made, and
perturbing the potential of the Hamiltonian. Of course, one
can always express the boundary conditions in such a way
that they add to the potential in some natural way. For the
case of a boundary between two different media this would
be done by the addition of terms proportional to
6(z — h(x)), to the potential. This requirement will produce
a mathematical nightmare when one actually tries to calcu-
late interesting quantities, since any mathematical treatment
of the theta function will contain singularities in its deriva-
tives. This constraint forces one to work with perturbations
that are well behaved.

After adding these terms to the potential, the procedure
continues with finding the Green’s function and ends with
the method of successive approximation. But, the Green’s
function must satisfy the boundary conditions on the per-
turbed surface, as well as the Hamiltonian equation. For a
rough surface there is no hope of finding a Green’s function
that satisfies the boundary conditions exactly. Thus, one
must use the method of successive approximation on the
Green’s function as well. It is here that one runs into diffi-
culty, because solving the necessary integral equation pro-
duces a logarithmically divergent series.® The Green’s func-
tion method tacitly assumes that the integral over the
boundary is well defined when, in fact, the power law behav-
ior assumed for rough surface covariance, produces singular
solutions as the boundary conditions approach Dirichlet
boundary conditions. Abandoning this approach will re-
quire a direct construction of the the perturbed solution. It is
unclear as to whether this approach can be extended to all
systems of PDEs with “rough” boundaries, but it is expected
that in principle one could carry out this procedure on any
separable system.

Let the system under consideration be

HY = E¥, Y(x) some field, and xeX?, (3.1a)
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and satisfy the boundary conditions

[%\!’- +fo\ll] =g,(S), § asgiven from Definition 1,
n on S

(3.1b)
with normal derivative
ad oh o a
— = —eg" ——+ (1 + €3 hd*h) " —.
on e axt dx” (+e9, ) ax,
(3.1¢c)

Further suppose ¥ and E can be represented as a power
series in €, where € is given as some small parameter deter-
mining the surface height in Definition 1:

V=3 eV, =¥ +e¥, +Y, + (),

n=0

E= 3 €E,=E, +¢E +€E + (), (32)
n=0

where ¥, is known to satisfy

v,
HY, = Eg¥, and ==+ £,¥, =g, (S,).
on Sy

X,
(3.3)

Then (3.1b) is expanded about x, = 0in a Taylor series, and
equating powers of € produces perturbed boundary condi-
tions. The solutions ¥,, ¥,, E|, and E, define a new bound-
ary condition defined as

() +rs2 |

34
Ing 34)

=g(5).
on S,

Where the averages are to be performed as outlined in Sec.
II.

For the semiinfinite case with g(S) = 01in (3.1b) fwill
be given by the ratio,

—("“’ %)(<W|on&)>>—‘sf<so>.

- 3.5
on (3.5)

Under our averaging procedure, all first-order dependency
vanishes. So,
((VY,/x,)(S,)) _

fzﬁ’_ez( Wy (So) fo

(‘l’z(So)>)

Yo (So)
(3.6)

The solutions (3.4) are valid anywhere inside X *, and
not just inside the perturbed surface .S, which we consider
the physical surface. If one views (3.1b) as a constraint
equation, then (3.4) will satisfy some other set of boundary
conditions on S,. Here, fas calculated in (3.6) is that £, such
that the average fields obey (3.1b) at S. It should be valid to
assume the rhs of (3.6) should contain powers of €A(x, ),
since the perturbed solutions are constrained by S. In this
dependence ¥ (qy) occurs naturaly, and thus (3.6) will
have dependency upon the interval (¢, Gmax )- The behav-
ior of funder the transformation of g— ¢,,;, + 8¢, iSthena
renormalization of £, and its flow governed by the renormal-
ization group equation (RGE) found by differentiating
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(3.6) with respect to g,,,. Physically this says, that given
some strength for f at the microscopic level
(£ nicro (@ = @max )), We may find a macroscopic strength by
following the one-parameter family of solutions created by
the ODE, for £, to the limit ¢ = ¢,,;,, Which is our infrared
cutoff of the Fourier transformed surface. It shouid not be
surprising that f« f, (4'/4) + £(S) where 4’ is the area of
the perturbed surface. It turns out that there is also a nonlin-
ear term &, in the RGE.

Technically (3.6) could be used to obtain the RGE for a
set of closed systems. But, it will not prove easy or sometimes
possible to find a second-order eigenfunction with good con-
vergence properties. Again, this is exemplified for Dirichlet
boundary conditions (f, — « ), as is discussed at length in
Ref. 6. On the other hand, one can find a second-order ex-
pansion for the eigenvalue that converges absolutely.

It will prove beneficial to rewrite Ein (3.2) in terms of a
new variable k2. This will allow us to cast the system of
equations (3.1) into wave equation format, and develop a
variational principle. Let

ki= S ekPmki+ek P+ kP + (), (37
n=20

or using the binomial expansion we identify &, with the coef-
ficient of €”, and so on,

After finding the perturbed eigenvalue %, let k, -k in ¥,
and use

[ av,
ax,

=g(S,)
on .S,

+f \I'o] (3.92)
to define the renormalized value of /. Here, (3.9a) will pro-
duce an eigenvalue equation that will in general be transcen-
dental. If H is 3%, for example, in the case of X ¥ being an N-
dimensional box

ktan(kL') =f (3.9b)

Orin the case of X ¥ =S (the N-dimensional sphere of radi-
us a),
 (ka)
AL iy (3.10)
Ju.(ka) k
where the j,’s are spherical bessel functions.
Now we expand (3.9b) or (3.10) in a power series in €
and equate terms with the € expansion of £, this will define a
change in f and thus the RGE can be defined in the same
manner as above. For (3.9b) this will be

Jo =k, tan(k, L"),

Si = ki 7k ) fo + L' (f3 + k3)), (3.11)
Lo =k )W fo + L' (f5 + k3))
+ (kDL + k(1 + 1)),
and for (3.9b)
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Jo = (1/a) — k, cot(kya)

fi = (ki ko a(f2 + k2) —£)

fo = (ky/k N a(f5 + k3) — 15)
+j0‘2(koa)fo(k%/k(2))1

where averages may now be taken to find the average values
of both f, and f,. The averaging procedure will then relate
the surface structure to some new value of f, and a RGE
similar to (3.6) is then derived.

(3.12)

IV. THE SEMIINFINITE SPACE

An interesting problem of moderate difficulty is a wave
impinging upon a random surface in a semiinfinite medium.
An example would be that of an electromagnetic wave re-
flecting from a rough dielectric. To simplify the problem and
determine where an analysis of this problem might lead, a
linear approximation is first calculated. Close to the surface
there is no reason to believe that it would fail. In fact, the
linear approximation turns out to have the same characteris-
tics as more complicated situations, in the sense that the
main goal is to find an effective theory with renormalized
parameters.

Consider the N-dimensional Laplace’s equation with an

arbitrary metric g**,
%y
v =3%Y=0
g ax* Ix” v

[i.e, H=07%in (3.1a)], and boundary conditions (3.1b)
with g, (S) = 0. For the diffusion equation our boundary
conditions, with D the diffusion constant of the fluid, and p
some surface interaction, would modify (3.1b) to

D(n, 3*P)|on s + P¥lon s = O(Ref. 3), (4.2)

where n,, are just the components of the unit normal point-
ing out of the semiinfinite volume that our solution exists.
We still use the more compact notation of (3.1b) with
2(8)=0.

Under the linear approximation it is most easy to write
down the form of the expected solutions, and the boundary
conditions to & (€?):

4.1

'/Jo(x) =a+yx,,

¥y (x) =f"”“kle"’""""*"ibl (k,), (4.3)

¥ (x) = f dN ke NG, (K, ).

Where k, = |k, |, kK, = |k, |, and integration over k, has
been carried out with the requirement that the perturbed
solutions be finite at infinity. The boundary conditions are

awo]
7 (e° = . =0
(e )[axl = Uitela
a2 o d
ml):[ s ¢1] [Ml o ¢0] |
xl axl x, =0 xl x, =0
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Y, %y, dh I,
a(e): h—
( )[c?xl + Ox,? R ax* dx¥
d*had h o a
A a’”"] ~ [t 1 o]
xl x =0 xL x =0
4.4)

Omitting the tedious algebra, the solutions to (4.3) and
(4.4) are

# (k) = — fovh(k, )/ (k, +5) (4.5a)
and

k) =L fd”-'klﬁ(k.)iz(kz—kl)

0

X[gﬁvkly(klv_klv)

2
_./‘OgﬁvklkaV _ fgkl ] (4 5b)
Jo+ Kk Jo+k,

The average process in Sec. I is applied to find the aver-
age field (¢, ) =0, so

(W) =t + €(¢)

=a+yx, — ezajd’v“k[ ffo
O

] 9 (k).

(4.6)

It would be tempting to use f = (dy¥/dn) /¢ as the definition
of f so that the average would be given by
() = ((3¢/3n)/¢). As pointed out in Sec. III though,
there is no reason a priori not to select this renormalization
scheme. But, Secs. IIT and V, show that there is only one
allowable scheme for the closed system. The closed systems
under investigation can be continuously enlarged to the limit
of the semiinfinite case. Thus, under these conditions, choice
of the scheme that produces the correct limiting behavior is
forced upon us. This choice does not include the squares of
the first-order term nor any of its derivatives, implying that
the correct choice is f = (d/dn)/{(¥), (3.6), which yields,

fo] ]

Y (k).

7 (k)
(4.7)

f~—[1+€2fd"'“k[ +
Using (2.4) and explicitly writing out each step
f=f{1+ 487" 'C
k? ok
k2 S5 “ .
2 fotk

Here, A4SV~ is the surface area of a unit N — 1 sphere,

Fmax
X dkkN—z—B[

9min

(4.8)

27

T(N/2) '

Absorb the 45 V¥ ~ ' into the definition of ¢ and £, differentiate
(4.8) with respect to g,,;,, drop the (min) subscript, and
substitute in f to & (€*) for ﬁ, Then, the RGE is given by
]
dq f+q
A more complicated situation is that of a plane-wave

ASN' =

(4.9)
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incident on a boundary constructed as before, but without a
linear approximation. Here, terms occur in the RGE for f
that are proportional to the new area and terms that are
nonlinear in nature, including some that depend on the sur-
face structure through gradients and scalar products. Thus
the particular renormalization is not unique and will depend
on the spatial characteristics of the incoming wave. No long-
er a static problem, the Helmholtz equation is solved

A+ k*y=0. (4.10)
The solutions are expected to take the form

¢O (x) — e—ik-x + %oe+ik’~x,

h(x)= f d ke Y, k),

¥, (x) =dek2e““2"‘{pz (k,). (4.11)

To second order we not only have to worry about derivatives
of higher order but the concept of a new area enters the
problem. Our boundary conditions are, to second order

]
o] = Uthaco

ﬁ(éo):[

J

a
ﬂ(e‘>:[~ id 40|
axl x, =0
39, dh Y, Y
= [n EH g o P 4.
[ xS g dx, L=0’ (412
d
ﬁ(é);[— 2 +ﬁ,¢2]
axl x, =0
M on %Y, Y,
=| - (& —h h
[ (” ax* Ix” Ox,? o 8xl)
2 n
_(g;“ulhﬁ a ¢0 a,uha h a¢0
ax* dx¥ Ix, 2 Ix,
h? 3%, +ﬂ)h2 321//0)]
2 ox,° 2 9x2 /)]s -0

The & (€°) boundary conditions require %, to be given by
'@o= _%+ikl)/%_ikl): (4.13)

while continuity at the boundary implies k, = — k| and
k, =k,’, which is contained within the familiar Snell’s law
of specular reflection. Once again we omit the edifying alge-
bra, and obtain

17’1 (kl )= 5((k2 - |k1|| 12)1/2 + ku )(il(k,” - k|| )/(iku +ﬁ)))((k|\| - k” )‘k” (1+ -%70)

+ foik, (1 = Ry) — k(1 + Ay),

- 1 - -
(k) = ﬁfd[v_ IQ{ h(kzu —q )¢, (q”, —(k*— |‘I|; IZ)VZ)((kz” —q )'qH —k?+ Iq” |2
0

—%(kz_ IQ|||2)V2)+ (—5(1”'(k2” —qy —k”)(ikl)(%o ~1) - (iki/z)(%o —1)

+aky k) (Ro — 1) + (Hk1/2) (R + 1)) h(q))h(ky —q — k) ).

(4.14)

We are guided by the previous exercise in applying the averaging procedure of Sec. II to these solutions. As in (4.6)

(¥) =4, + € (3¢, ), but from a physical standpoint (¢, ) should propagate in the k’ direction, because the boundary has a
random structure and the average is over all possible random surfaces. This produces a spherically symmetric probability
distribution of reflection directions, centered at k'. Here, (1, ) should then only modify %, to (%) and have the correct sign
such that (%) <%, signifying that much of the reflected wave is scattered over other directions. So,

(¢> ='/’o +€2<’/’2>
—e kx4 (%)eik’-x

2, ik, €

. Iql||2
=e-ik-x+efk-x .@ + J\dNAl [
[ T ik )? 1=

(—k*+fok?(ig, — fo) +ig.f3) + (qpk))?
N Sok*(ig, .fo 9./0) + (q;°k @l (4.15)
Soligy +15)

Whereq, = — (k> — |q,|*)*sothatfork < |q;|,¢, = — i|q, | and the fact that & (q) is an even function of g has been used
to eliminate terms linear in q- Invoking (3.6) as before

d d 2 g fy (—k*+fok2Ug ~£) + (gk))?

if =&, JdN'lq[lqlll +- q.f5 n Jo "Il Jo q K 9 (q). (4.16)
dqmin dqmin 2 lql +.f£) f;)(lql +f2))

i

The first and second terms on the rhs are exactly what comes V. THE CLOSED SYSTEM

from the linear approximation, and the last term is what is
required by the plane wave, and approaches 0 as k-0 (the
linear approximation limit).
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Applying the same procedure worked out in Secs. 111
and IV to that of a closed system is an important exercise,
since the ideas of a particle in a box described by a scalar field
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are prevalent throughout much of the literature. One of the
difficulties that will arise is that control over k, is lost. In-
stead of k, remaining constant, a new mode is created, that is
a function of all modes of the unperturbed problem, the sur-
face shape, and hence the Fourier components of the surface.

In terms of energy, one expects the first-order shift to be
proportional to A,,, the constant Fourier component of the
surface, with sign such that an increase in volume produces a
decrease in energy. On the other hand, the second-order shift
is expected to behave as some multiple of the new area. But
as Sec. I'V has shown, one should also expect nonlinear terms
to appear as well.

As pointed out in Sec. III, one ought to be careful with
the process of renormalizing f;,. It should be obvious that if

fo were to be treated as some continuous parameter,
Jfo€[0, ), then the limit — 0 is the von Neumann boundary
condition limit, and f; — « is the Dirichlet boundary limit.
In terms of the energy spectrum, the ground state is E, =0
for f, =0 and E, = wfic/2L at f = . The point is that
Jfo = Oisidentical to a soft boundary that absorbs all incident
waves, so that it is not surprising that £, = 0.

For the first calculation, let X ¥ be the N-dimensional
hypercube with volume L ¥ ~'L’, where the length L ' is tak-
en in the perpendicular direction. The second calculation
will use the sphere S*, with radius a. To make the proper
connection with the work in Sec. IV, let the transverse scales
become very large compared to the perpendicular direction,
then let the perpendicular direction become large as well.

We return to Helmholtz’s equation:

Y+ k*=0,
with
nﬂa”'ﬁlon S +f(')¢lon S =g(S)

(fi points out of the boundary) while the normal derivative is
zero on the transverse boundaries,

.....

_2 L\N-'(L’ 1 . N b,
Coiny = (—2—) (—2— + W, sm(2k,,N)) ’l;[l 2
(5.2b)
and the boundary conditions yield
tan(k, L) = fo/k,,, (5.3a)
k, =nm/L, i#N, (5.3b)
k*=ki +--+ k2. (5.3¢)

To simplify the calculations as far as possible, let N = 3,
change the notation to n, =n, n, =1, n, =m with
I=n =0 and m = 1. Since we will be working in a finite
domain, the Fourier integrals of Sec IV will become Fourier
series. Lastly, the results of Appendix A may be used, and
thus only the first-order corrections need be constructed di-
rectly. The rest being given by a variational principle (AS5).
So,

o«
h(x)= % e h,, (54)
nl= — «
and
e K, ;X
hx)= Y e, (x), (5.5)
nl= — »
with
k,, = (nm/L)x + (In/L)§.
Equations (3.1a)-(3.1c) to & (€) are
32('/’0 +€,) + ktz)'ﬁo + Gk%'ﬁo + Ek(2,¢| =0,
(5.6a)
[ L +ea +ht+epd] =0 Gob)
on So+ 8

The notation |5, , 5 means to evaluate on the perturbed sur-
face to first order, using our formula for 3 /dn and expanding

Y
S (x, =0,L,...xy_, =0,L) =0 (5-1)  about x, in powers of A(x):
a d oh d
—_— —eglv — . 5.6c
and on = ax, B G ow (>:60)
—(-Bl(x,v=0)=0, Solving i . .
In olving for ¥, with the assumption
x, will be represented as x, . Labeling a particular solution 3 Yo = C, cos(kyx,),
as ¥, . a typical solution of the system of equations i1
(3.1a)-(3.1c) for the unperturbed problem will have the ,
form , 3 3 , 2 kg
Yo (L'Yy =C5cos*(koL') = —
L? f +L'(k3 +13)
¢n| ..... ny = Cn, ..... ny COS(k,,lx] )Cos(knzxz) ° ° (05 7)
“+-cos(k,,  xy_,)cos(k, x ), (52a)  wefind
|
k 2
—C, —x, sin(kyx,), n=1I1=0;
Ps (x,) 2o
nl xl = ’
. Coh, (k3 +f3)cos(koL") 5 2 112 .
_[k(zj_kZI]I/zsin([kg_kzl]l/zL,)_f(.)cos([k(z)_k2’]l/2L;)COS([ko—kn,I] xl), otherwise
(5.8a)
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and
2k3(f5 + k) hoo

k= — - - (5.8b)
Jo+ koL +fokoL
Now, before invoking the variational principle worked out in Appendix A,
a
(k) = k3 + k3 = k3 [ Qo + [ dS oo+ )W + 90, (5:9)

we note two facts that simplify our calculation. Fact 1: (3 /dn + f;) (¥, + ¥, ) is a second-order term by difinition. Fact 2: All
terms with one or two 4, in them will average to zero by (2.3). So, any term with &, averages to zero. Thus Facts 1 and 2,
(2.3), (3.8), and (3.11) give
kicos([kd —Kk2,12L") +f[kd —Kk2,]*sin([k2 —Kk2,1V2L") k2
%) - T e TA LI RV RSC E
(1Y (0,0) [ko—k,,‘,] Slﬂ([ko— ,,,1] L’) —f, COS([ko _kn,l L") 2
(5.10)

There is an obvious resemblance between this and the case of reflection from a rough surface in a semiinfinite medium, worked
out in Sec. IV. Letting k = kZ, and k €f; € k,,; implies

fok:, fik,
)= {" ! el 1., (5.11)
(mD'Z(0,0) 2 Jo+ k.,
which is in exact agreement with (4.9), showing that the linear approximation is reasonable.
For the case of the sphere, the unperturbed wave function is taken as
Yo = Cyjo (ko) = C, (sin kyr/kyr), (5.12a)
C, = (2/a*)V%y ‘(koa)[ko/(ko /)]s ‘ (5.12b)

where j( k, r) is the spherical Bessel function of the first kind. And the boundary conditions are (3.1c), with explicit represen-
tation of d /dn being given by

O (1 Lopom)d Lo 1 oo .
on 2 dr a* 38 38 a*sin® 0 dp ¢

Applying the same procedure as above with the boundary now expressed in terms of spherical harmonics
h(x) =zh,‘,,,Y;"(9,¢), (5.14)
Im

we find:

¥, = C, 4 cos(kyr) + ; Ciim YT'(6,0),,(kor). (5.15)

Here, Y '(0,¢) is the spherical harmonic, with phase convention from Arfkin.” It is then straightforward to calculate the
perturbed eigenvalue to & (¢€) and the constants C,, and C| ;.

g2 g2 G0 _ 2kohog f5+ k5 — (2fy/a) (5.16a)
'R0, a  fii+ki—(fla)' ‘
c _ _ Cohoo fo+kd—Qfy/a) (5.16b)
a fi+ki-(fisa)’
2 4+ k2 —2f,/a)Coh
Cl'l‘m - (fO + [+] f;)/a) 0 m — C;_lh[,m-
[F koarr6a +Soii ] (Ko@) (5.16¢)

Following the same procedure that led to (5.10) leads to

Ca kD —f {[L
=T

(Brxi-L) s @t nga|
) .

da

ol - )3 [(6 25253
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, f(‘) Oa) [( 2f£))(a./l
g (e ki Fo
477-a 1 () ()(2 jo(koa) fo+ a da

m= —1
+ 1 ayrayrm)”
sin’ 6 ¢ I '

It is much more difficult to get at the meaning of (5.17)
due to the complex nature of the distribution function
%'(l). But the same term involving the new area of the per-
turbed surface is present. As well, the second summation is
expected to yield the term f3, since it is exactly this term in
the variational equation (A5) that leads to this term in
(5.10). The interesting point that needs to be made about
(5.17) is that it appears possible to have a fixed point in the
renormalization of £ Namely, there seems to be no reason
why (f,) = 0 is not a possibility, unlike (4.9) and (5.11).
The implication is that under the right circumstances
Jo —f» the fixed point, regardless of the extent to which the
surface is fractal-like, and thus the cutoff can be removed
from the theory. Unfortunately, this is all that can be said
about (5.17), because a fully detailed analysis is still forth-
coming, and will be the subject of the next paper.

VI. CONCLUSION

Under a vast set of conditions, (4.9) seems to be a good
approximation of the RGE for f. It should be emphasized
that what we have done is to solve the unperturbed problem
with boundary conditions (1.2) and the constraint (1.3).
The true (/) in (1.2) isin fact the measurable quantity much
the same as m,,,, and not m, (the bare mass) is the physical-

ly measurable mass of the electron for quantum field theo-

ry.®

To see the power of the philosophy of the renormaliza-
tion theory, consider the problem of NMR spectroscopy on
pores in sandstone as in Ref. 3. In this example, the size of a
typical pore is on the order of 10~ ° m, and no scales are
probed with size <10~ ' m. Under the assumption that the
diffusion time scale is large compared to f, (ie., k, €f;),
then the area term in (4.9) dominates at all scales except
close to the lower cutoff frequency of the surface spectrum,
or ~10°m ~'. The renormalization scale factor of some f; is
then approximated by

(f/f6)|/3= s ~ek:“"/f/z(4_5) _ .elols‘ 6.1)

For any realistic f;, fis considered to be effectively infinite,
and the boundary conditions well approximated by Dirich-
let conditions.

Another application of this idea is light reflecting from a
mirror. Since any mirror surface can be considered rough at
some scale, any field reflecting from the surface can have
drastically renormalized boundary conditions if the surface
roughness occurs at a high enough frequency in the power
spectrum of the surface. This naturally leads to the concept

of the two-scale model of wave reflection from a rough sur-
face.” The two-scale model divides up the surface power

spectrum into two distinct regions and tries to find suitable
physical interpretation for the effect these two regions im-

2359 J. Math. Phys., Vol. 31, No. 10, October 1990

YT Y
k a0
o “)) DJ (ao 30

(5.17)

1
pose upon the scattering cross section. The analysis seems to
explain the high-frequency region of the surface as a redefin-
ition of the system boundary conditions.

Further investigation into the region of validity of (4.9)
will require accurate numerical calculations. As of yet only
preliminary efforts in this direction have been made. Al-
though they are preliminary, these numerical calculations
seem to give a smaller renormalization factor than that cal-
culated in (6.1), but it can still be large and has not been
observed to be less than 10*°. Subjects that may also prove
interesting are the range of validity and the conditions for
(5.17) to have a fixed point. As well, the question of where
the solution to (4.9) does not exist and what the physical
characteristics of the surface are which produce this indeter-
minate solution need investigation.
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APPENDIX A: DERIVATION OF EQ. (5.9)

To derive a variational principle equation for the eigen-
value in a finite volume we consider the equation we want to
solve. For example, (4.10) with boundary conditions
(3.1b). We start by defining a functional equation for the
eigenvalue and follow the notation of Ref. 6:

[kz]f‘”"/’z= —J-dVle//Jrfds,p%,

where we have assumed that ¥ € R and the boundary condi-
tions have not been specified. If we vary (A1), we find

8Lk?] J-dVl/Jz-l—Z[kz]J-dVlﬁ(szﬁ

(A1)

- —2J-dV6¢82¢+fd55://% (A2)

So we would like to find something to add to the rhs of (A1),
such that under variation, and inclusion of the exact answer
8[k?] = 0. Obviously, we add £, § dS ¢*:

=k = [aveary+ [asuffp+ L)

x(dew)f'.

Using the exact normalized wave function, the surface inte-
gral vanishes and

(A3)
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(k2] = —dezpazap.

The next step is to expand #, as in (3.2), to & (¢€). Inclusion
of this first-order solution into (A3) should produce the cor-
rect eigenvalue to the next highest order, or & (€?). Explici-

ly,
(k2] = —dewo + )0 + €

+JdS(¢o + €y, )(fo +§n—) (Yo + €y)

-1
X(J-dV(% +€1/f1)2) . (A4)

Because ¢, + €, satisfies the boundary conditions to first
order, and ¥, is normalized, (A4) can be rewritten as

[k2) = k2 + ek? — k2 dewo

d
+[asu( 24 h) ot es)  a)
It should be pointed out that the integrations are carried out
only over the unperturbed volume, since integration over the
perturbed volume brings in only higher orders of €. Thus
(5.9) has been proved.

APPENDIX B: JUSTIFYING EQ. (3.5)

We will now need to justify our particular choice of re-
normalization scheme. We are left with an ambiguity in the
definition of our renormalized f, in the semiinfinite sce-
nario. We can choose f to satisfy either:

f(s')E<a_\W_a_n_|_"_"i> (B1)
\ylon s’
or

f(s')E%_s'_). (B2)

<\P|on S'>
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There is no reason a priori to choose (B1) over (B2). But as
we have seen, the choice of (B2) leads naturally to the same
RGE as the case of the finite system. The question is: Should
there be some reason why the finite system picks out a partic-

ular renormalization scheme over all other choices?
Of the two schemes we easily denote the difference as

whether or not a term such as

9 g
on '
is present in the RGE. This is equivalent to whether or not

terms like

de:pf or JdV:/qubo

appear in the pertubative series for k2. And the answer to
this is, No.

From the procedure we have used to construct the per-
turbed eigenvalue, one may add to the definition of ¥, any
constant multiple of #,. So, we are able to make a transfor-
mation to a new solution:

b - + Ciy (B3)
and with a judicious choice of the constant C, we can make

(akfjdv¢,¢o>=o.

Thus all of the contribution to the perturbed eigenvalue can
be made to come from only the surface integral in (AS).

(B4)
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Hearing the shape of a general doubly connected domain in A?

with impedance boundary conditions
E.M.E. Zayed®
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The basic problem in this paper is that of determining the geometry of a general doubly
connected domain in R * together with an impedance condition on its inner bounding surface
and another impedance condition on its outer bounding surface, from the complete knowledge

of the eigenvalues {4,};2 ,

for the three-dimensional Laplacian using the asymptotic expansion

of the spectral function 8(¢) = 22 | exp( — t4;) for small positive z.

I. INTRODUCTION

The underlying problem is to deduce the precise shape
of a membrane from the complete knowledge of the eigenval-
ues A; for the Laplace operator

3 a 2
V=73 ()

in the x"x*x> space.

Let Q C R ®be asimply connected bounded domain with
a smooth bounding surface S. Consider the impedance prob-
lem

(V’+AD)u=0inQ, (Ea’;—+y)u=00nS, (1.1)

where d /dn denotes differentiation along the inward point-
ing normal to S and y is a positive constant. Denote its eigen-
values, counted according to multiplicity, by

(L2)

The problem of determining the geometry of {2 and the im-
pedance ¥ has been discussed recently in Refs. 1 and 2 from
the asymptotic behavior of the spectral function

0<A <A, <A< <A< > 0 a8 j—> 0.

0(2) =trlexp( — V)] = i exp( —t4;) ast-0.
i=1
(1.3)

Problem (1.1) has been investigated in Refs. 3, 1, 4, and 5 in
the following special cases.
Case 1 [y =0 (Neumann problem)]:

V S 1
o = (4m1)*? + 16wt 12777212
XJ;HdS+a0+0(tV2) as r-0. (1.4)
Case 2 [y— o (Dirichlet problem) ).
o = (47:)3/2 - I:m 127:;%"2
XLHdS-}- a,+ 0% ast-0. (1.5)

In these formulas, ¥ and S are, respectively, the volume

) Present address: Mathematics Department, University of Emirates, Fa-
culty of Science, P. O. Box 15551, Al-Ain, United Arab Emirates.
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and the surface area of Q while H = }(1/R, + 1/R,) is the
mean curvature of S, where R, R, are the principal radii of
curvature. Furthermore, it has been shown that the constant
term a, in (1.4) and (1.5) has the following form:

2
r_i. (L — L) dS, inthe case of
5127 Js\ R, R,

2
_l_f(L _ L) ds,
5127 Js\R, R,

\
In terms of the mean curvature H and Gaussian curvature
N =1/R R, ,then

Neumann problem
(see Ref. 1),

in the case of

Dirichiet problem
(see Ref. 5).

,
7 J (H? — N)ds, in the case of
1287 Js
Neumann problem,
a, =14 ) (1.6)
f (H? — N)ds, in the case of
1287 Js
L Dirichlet problem.

The object of this paper is to discuss the following in-
verse problem: Let () be a general doubly connected domain
in R 3 surrounding internally by a simply connected bounded
domain , with a smooth bounding surface S, and external-
ly by a simply connected bounded domain €2, with a smooth
bounding surface S,. Suppose that the eigenvalues (1.2) are
given for the impedance problem

(V+A)u=0 inQ, (L)
(—(—9—+y,)u=0 onS,, (1.8)
on,

and
ad
—47)Ju=0 ons, (1.9)
an,

where d /dn, and d /dn, denote differentiations along the in-
ward pointing normals to S, and §,, respectively, while ¥,
and y, are positive constants. Determine the geometry of 2
as well as the impedances ¥, and ¥, from the asymptotic
behavior of §(r) for small positive z.

Note that problem (1.7)-(1.9) has been investigated
recently by Zayed® in the special case where
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Q = {(r0,¢):a<r<b, 0<0< T, 0<g<2m}

is a spherical shell.

Il. STATEMENT OF RESULTS

Suppose that the outer bounding surface S, of the region
Q is given locally by infinitely differentiable functions
x' = y(0,), i = 1,2,3, of the parameters o;,03. If these pa-
rameters are chosen so that ¢ = const, @ = 1,2 are lines of
curvature, the first and second fundamental forms of S, can
be written in the form:

,(0,,A0,) = 8,,(0,) (A0})? + g2,(0,) (A03)?
and
I, (0y,A0,) = d, (0;) (AU; )? + dy(0,) (Aozz )2

In terms of the coefficients g,,, 8,5, d;;, d», the principal radii
of curvature for S, and R, =g,,/d,, and R,, = g,,/d,,.
Consequently, the mean curvature H, and Gaussian curva-
ture NV, of the outer bounding surface §, are

Similarly, suppose that the inner bounding surface S, of
the region ) is given locally by infinitely differentiable func-
tions x' = y'(a,), i = 1,2,3 of the parameters o} 0. If these
parameters are chosen so that of = const, @ = 1,2 are lines
of curvature, the first and second fundamental forms of S,
are

¥ (0,A0)) = a,,(0,)(A0})? + a5,(01) (A0} )?

and

[1$(0,40) = b”(ax)(AU} )2+ bzz(al)(AU% )2
In terms of the coefficients a,;, a,,, b, ,, b,, the principal radii
of curvature are r,, =a,/b,; and r,, = a,,/b,,. Conse-

quently, the mean curvature H, and Gaussian curvature N,
of the inner bounding surface .S, are

1
rurx
Let S, and 5, be the surface areas of the inner and outer

bounding surfaces S, and S,, respectively, then the results of
problem (1.7)-(1.8) can be summarized in the following

H =L (—1~ + L) and N, = ——_ cases.
Ry, Ry R\\R;, Case I (O<y, €1, y,> 1)
|
(47rt)3/? 167t s, 1277212 Us, s,
26
gz 7], | —3ror = (v = B 2 as,
+J [H3 — (N, — 16y ‘Hz)]dsz] +0(t"?) ast-0. 2.1
s
Case 2 (7,>1,0<y,<1):
In this case the asymptotic expansion of 6(¢) follows directly from (2.1) with the interchanges S,<>S,, ¥;<¥,.
Case 3 (y,72>1):
vV 1 - _
o = (4r1)*?  16mt [(S' - IL, # ds') + (Sz — IL H2 dsz)}
1 1 _
HETYEZRT Us HiaSi+ L . dsz} T 1287 U [H — (N — 16y H)) ]S
+f [H} — (N, — 16y;" lHz)]dsz} +0('?) ast-0. (2.2)
S,
Case 4 (0 <y, <€)
TR i +, |
6(1) = 1 122 H, -~ 3y,)ds, + H, — 3y,)dS.
W=7 1617t 12173/% 7 s, ¢ 7as, (H = 372)
+e U [(H. - 3r)%~ (N -—2—6~%H1 +—— )]dSl
1287 s,
2 26 47 172
+ (H, —3y,) (N, ~ ——y2H2 +— P dS,} + 0(t'?) ast-0. 2.3)
S,

With reference to formulas (1.4)—(1.6) the asymptotic
expansions (2.1)-(2.3) may be interpreted as follows.

(i) Q is a general doubly connected domain in R * and
we have the impedance boundary conditions (1.8), (1.9)
with small/large impedances ¥, ¥, as indicated in the speci-
fications of the four respective cases.

2362 Jd. Math. Phys., Vol. 31, No. 10, October 1990

r

(ii) For the first four terms, €} is a general doubly con-
nected domain in R * of volume V.

In case 1, a part of its surface has area .S, mean curva-
ture (H; — 37,) and Gaussian curvature

26 47
(% -2+ 2 n)
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together with Neumann boundary conditions, while the oth-
er part has area

(Sz -2y, IJ. H, dSz)’
S,

mean curvature H, and Gaussian curvature
(N, — 16y, 'H,) together with Dirichlet boundary condi-
tions.

In case 3, a part of its surface has area

(Sl -2y : J H, dSl)’
S

mean curvature H, and Gaussian curvature
(N, — 16y, 'H,) together with Dirichlet boundary condi-
tions, while the other part has area

(S2 —2y;! J H, dSz),
S

mean curvature H, and Gaussian curvature
(N, — 16y; 'H,) together with Dirichlet boundary condi-
tions.

In case 4, its surface has area S|, + S,. A part of this
surface has mean curvature (H, — 3y,) and Gaussian cur-
vature

26 47
(=5 it + 1)
together with Neumann boundary conditions, while the oth-
er part has mean curvature (H, — 3y,) and Gaussian curva-
ture

26 47
(e 3 et T2)

together with Neumann boundary conditions.

Il. FORMULATION OF THE MATHEMATICAL PROBLEM

In analogy with the two-dimensional membrane prob-
lem,’ it is easy to show that 6(z) associated with problem
(1.7)-(1.9) 1s given by

a(r) =Jf fG(x,x;t)dx,
0

where G(x,,X,;¢) is Green’s function for the heat equation
V2u = du/3t subject to the impedance boundary conditions
(1.8), (1.9) and the initial condition G(x,,X,;t)
—-8(x, — x,) as t-0, where §(x, — Xx,) is the Dirac delta
function located at the source point X,.

Let us write

3.1

1

exp( — 7y x

d

G(x,X551) = Go(x,x55¢8) + Y (X,x50), (3.2)

where

Go(x,,x55t) = (4m1) ~%exp{ — |x, — x,|*/4t}, (3.3)

is the “fundamental solution™ of the heat equation, while
y(x,;,x,;t) is the “regular solution” chosen so that
G(x,,x,;t) satisfies the impedance boundary conditions
(1.8) and (1.9).

On setting x, = X, = x we find that

6(t) =V/(4mt)?* + K(1), 3.4)
where ¥V is the volume of (} and
K1) =JJ fx(x,x;t)dx. (3.5)
Q

In what follows, we shall use Laplace transforms with re-
spect to *“s,” and use “‘s”” as the Laplace transform param-
eter; thus we define

+ oo

G(x,,Xy5%) = J e 'G(x,xxt)dl. (3.6)

0
Consequently, we deduce that E(X,,xz;sz) satisfies the mem-
brane equation

(V2 =) G(x,Xp5%) = — 8(X, — X,) in Q, (3.7)

together with the impedance conditions (1.8) and (1.9).

The asymptotic expansion of K(¢) as t—0 may then be
deduced directly from the asymptotic expansion of K(s?) as
s— oo, Where

K(s?) = ff J)‘((x,x;sz)dx.
(4]

IV. CONSTRUCTION OF GREEN’S FUNCTION

It is well known® that the membrane equation (3.7) has
the fundamental solution

(3.8)

exp( —s7, ..)

Gy (X, Xy;87) = =~ where r,, =[x, — X,

477'"x.x:
is the distance between the points x, = (x},x3,x}) and
X, = (x3,x3,x3) of the domain €. The existence of this solu-
tion enables us to construct integral equations for
G(x,,X,;5%) satisfying the impedance boundary conditions
(1.8) and (1.9) for small/large impedances ¥, %,. There-
fore, Green’s theorem gives the following cases.

Case 1 (0<y,<1, > 1):

G(x,,X;8%) =

) 1 —
2 .sz
+ 27 .L, SRE )[6

4arr,

XX

1 J —=
~ G s ;2
+ 27 L: on,, (Xpy:s ){

Case2 (,>1,0<y,<1):

¥x.

n,

exp( —sry,.)

RN LS S
Yy

exp( —sr,,.) exp( — sry,,.)
=] o,
yx.

¥X,

(4.1)

ryx:

dn,

In this case G(X,,X,;s°) has the same form (4.1) with the interchanges S,<>S,, 7,<>¥», and n,<>n,.

Case 3 (7/,,7/_2> 1IN

In this case G(x,,X,;5%) has the same form (4.1) except its second term which is different from the second term of (4.1).
In case 3, the second term of G(x,,x,;5”) is equal to the negative of the third term of (4.1) with the interchanges S,<>S,,

1Y and n;-n,.
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Case 4 (0<7’|, 7/7<1)

In this case G(x 1 X238 2) has the same form (4.1) except its third term which is different from the third term of (4.1). In
case 4, the third term of G(x,,X,;s?) is equal to the negative of the second term of (4.1) with the interchanges

S8, ¥1<>72 and n<>n,.

On applying the iteration method (see Ref. 2) to the integral equation (4.1), we obtain the Green’s function G(x,,X,;5?)

which has the regular part:

_ 5 1 exp( —sr,y) [ J [exp( — Sryy,) ] exp( — sry,.) ] 1 J [exp( Ty ) ]
Xy87) = dy + —
X(XiXais™) = 87 Ty on,, Py, 7 Fox. + 87 Js. dny,
exp( — 7y, exp( — s7y,.) exp( ) ,
><[ P - 3[ AR ” pr——-——-M(y,y)
dn,, Ty, 87 Js,
exp( — $ryy.) exp( — $ry,) exp( —
x[ [ P ]+7, P }d dy’ +—ff [ LA ]Mz(YY)
anly ¥'x ¥'X, S, JS. anZy r
exp( — 57y, ., @ [exp(—s )” 1 U‘ J [exp(—srxy)] , ]
X dydy +— ! M,(y,y')d
[ g on,,. Py, yey + 87 Js, |Js, dn,, Ty 3(9:)dy
exp( — sr,. exp( — sry.) € — §F, ,
X{ [ Pt )] by SR o ]d +-L U P T vy )dy]
on,, Pys, Py, 872 Js Py
><[eXp( ~Sye) o 9 [exp( —sry'x:)”dy,’ (4.2)
dn,, Fyx,
where
M (yy) = z K"y, i=1-—4 (4.3)
v=0
— 7. exp( —sr,,.
Kl(yl’y) :_1-[ a [exp( SrYy ) ] + xp( Yy ) ]’ (4‘4)
27 dny, Fyy vy
, 1 d [exp(—sr,) ] ., 87 [ exp( — s7,y) ”
K, (y,y) =— , 4.5
(YY) 277_{ o, [ . + 72 Oy, Oy oy (4.5)
K,(y'y) :__1__[ exp( _sryy') 2A1 d [ exp( — s7yy-) “, (4.6)
27 Tyy dn,, Pyy
and
1 32 exp( — s,y ) ] a [ exp( — s7,y) ”
K,(y,y) = — : 4.7
oy 21T[c9nIy dn,, [ Ty n onyy, Pyy @D

Similarly, we can find ¥(x,,x,;5%) for the other three cases.

On the basis of (4.2) the function y(x,,X,;s*) will be
estimated for large values of s together with small y, and
large 7,. The case when x, and x, lie in the neighborhood of
the inner bounding surface .S, or in the neighborhood of the
outer bounding surface S, is particularly interesting. To this
end we shall use coordinates similar to those obtained in Sec.
3 of Ref. 2 as will be shown in the following section.

V. DIFFERENTIAL GEOMETRY OF THE BOUNDARY

Let n,,n, be the minimum distances from a point
x = (x',x%,x*) of the domain Q to the bounding surfaces
S,,5,, respectively. Lettersn, (0,), n, (0, ) denote the inward
drawn unit normals to S,S,, respectively. We note that the
coordinates in the neighborhood of S, are in the same form
as in Sec. 3 of Ref. 2 with the interchanges

0’2<—>0’§, n<>n,, h<—>h2,
C()C(l,), &*~b,.

0’l<-—>0';,

I,

2364 J. Math. Phys., Vol. 31, No. 10, October 1990

Thus we have the same formulas (3.1)-(3.4) of Sec. 3 in
Ref. 2 with the interchanges n(o)«sn,(0,), n<>n,, H—H,,
and K< N,. Similarly, the coordinates in the neighborhood
of S, are similar to those obtained in Sec. 3 of Ref. 2 with the
interchanges

o'oal, o, heh,,

I-1,, C)-CW,), 6*-6,.
The only remark here is that the two unit normal vectors on
S, and S, are in the opposite direction. Therefore, we have

the same formulas (3.1)—(3.4) of Sec. 3 in Ref. 2 with the
following interchanges:

n<n,,

n{(o)<n,(0,), nen, HeH,

KoN,, i<Il}, Lo,
the plus sign of the second term of (3.1) by the minus sign,
the minus sign of the second term of (3.2) by the plus sign,
and the minus sign of the second term of (3.4) by the plus
sign.
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V1. SOME LOCAL EXPANSIONS

It now follows that the local expansions of the functions

exp( — 57,y ) J [exp( —srxy)]

ki

Ty on,,

a [eXp(—s )]

an,,

(6.1)

when the distance between x and y is small are very similar to
those obtained in Secs. 4 and 5 of Ref. 2. Consequently, for
small 7, and large ¥, the local behavior of the following ker-
nels

Kl(y’5y)’ K4(Y’,Y), (6.2)
K (y\y), Ki(y.y), (6.3)

when the distance between y and y’ is small, follows directly
from the knowledge of the local expansions of the functions
(6.1). This follows from the definition of ¢* functions in
small domains C(/,) and C(I,). Thus using methods similar
to those obtained in Secs. 6-10 of Ref. 2, we can show that
the functions (6.1) are e¢* functions with degrees
A= —1,—2,— 2, respectively. Consequently, for small
impedance ¥, the functions (6.2) are ¢* functions with de-
grees A = 0, — 1 while for large impedance ¥, the functions
(6.3) are ¢* functions with degrees A = 0,1.

Definition: If x,X, are points in a large domain 2 + .5,
or 1 + §,, then we define
if yes|,

;'12 =

min (7, + 7y )5
y

or

?{,2 =min (r,, +7,y), ifyeS,.
y

An E*(x,,x,;5) function is defined and infinitely differ-
entiable with respect to x, and x, when these points belong to
alarge domain 2 4+ S, or Q + S, except when x, = x,€S5, or
S,. Thus the E* function has a similar local expansion of the
¢* function (see Ref. 2).

By the help of Secs. 8 and 9 in Ref. 2 it is easily seen that
formula (4.2) isan E ~ % (x,,X,;s) function and consequently

G(x,,x,;5%) = O{?; %exp( — As?5)}
+O{R 22exp(—BsR,,)}, (6.4)
which is valid for s » o and for small 7, and large 7,, where
4 and B are positive constants. Formula (6.4) shows that
G(x,,X,;5%) is exponentially small for s— 0. Similar state-
ments are true in the other three cases.

With reference to Sec. 10 in Ref. 2, if the ¢* expansions
of the functions (6.1)—(6.3) are introduced into (4.2) and if
we use formulas similar to (6.3) and (6.8) of Sec. 6 in Ref. 2,
we obtain the following local behavior of y(x;,x,;s %) when
F,, Or R 1» 18 small which is valid for s— s and for small y,
and large 7,:

I’(xhxz;sz) =?| (Xl,XZ;SZ) + /?Z(xl’xﬁsz)) (65)
where, if x,,x, belong to a sufficiently small domain C(Z,),
then
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I’l (xnxz;sz)

() | e
= —=— 11" 3 =
87 98 P2

+ ofnt= )
P2

while, if x,,x, belong to a sufficiently small domain C(/,),
then

(6.6)

I’z(xnxz;sz)

_ {1 i } exp( — $p1,)
8 9 P2

o {exp( = Bsf:.z)]_
Pz

When #,>8, > 0or Ry,>8,> 0 the function ¥ (x,,X,;5")

is of order O(e™ “) as s—ow, ¢>0. Ihus since

lim ?,,/p,, = lorlim R ,,/p,, = 1 when #,, or R, tends to

zero, then we have the asymptotic formulas (6.6) and (6.7)

with |, in the small domains cases being replaced by 7, or

R, inthelarge domain £} + S, or §} + 5, respectively. Sim-

ilar formulas for the other three cases can be found.

(6.7)

Vil. CONSTRUCTION OF OUR RESULTS

Sincefor&3>h, > 0or £ *>h, > 0thefunction ¥, (x,x;57)
is of order O(e ™ **") while the function y,(x,x;s?) is of
order O(e ~ 2#*:), the integral over the region  of the func-
tion y(x,x;s*) can be approximated in the following way
[see (3.8)]:

K(s?)

h
— [ mexxsdi1—268, + ¢ N3dgas,
S, JEt=0

hy
"ff Xi(xxs) [1 - 26°H,
S, JE'=0
+ (£7)°N,1dE3 dS, + O(e 24
+ O(e ™ 25) (7.1)

If the ¢! expansions of ¥,(x,x;s*) and ¥,(x,x;s°) are intro-
duced into (7.1) and by the help of formula (11.2) of Sec. 11
in Ref. 2 we deduce, after inverting Laplace transforms and
using (3.4), that our results (2.1)-(2.3) have been con-
structed.
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Anomalies from geometric quantization of fermionic field theories
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Geometric quantization on (infinite-dimensional) graded symplectic manifolds is elaborated
for a restricted class of phase spaces. The formalism includes the treatment of Fermionic field
theories. The chiral anomaly [U(1)-anomaly] as well as the non-Abelian (covariant)
anomaly of D-dimensional non-Abelian gauge theories is calculated in this framework.

1. INTRODUCTION

Using symplectic geometry on the classical phase
space, geometric quantization' provides a coordinate-
independent quantization scheme avoiding the ambiguity
of operator ordering. In Ref. 2 it has been suggested to
consider field theoretic anomalies in the context of this
scheme. However, it is not clear in the literature,’ to what
extent geometric quantization is applicable to field theo-
ries. In Ref. 3 it was claimed (without proof) to yield the
correct quantum field theory for linear systems and semi-
classical approximations in general.

In previous work,* the authors have contributed to this
discussion: Considering the nonconservation of the quan-
tized chiral charge in time, they have shown how to cal-
culate the chiral U(1) anomaly of a non-Abelian gauge
theory in four dimensions within the geometric quantiza-
tion scheme. As the chiral anomaly is a well-established
feature of gauge theories, one can regard its determination
to be a significant test for the application of geometric
quantization to field theories.

In Ref. 3 the space 7~ of solutions of the Dirac equa-
tion in a gauge background has been taken as the classical
phase space for the Dirac system. In Ref. 4 a slightly dif-
ferent approach has been chosen: As in Ref. 3 the solutions
V&7 have been represented by their initial values
W (x,t) | ;mo="19y(x). However, in accordance to the usual
treatment of Fermionic field theories, the 1,.(x) have been
regarded as anticommuting coordinates on a graded sym-
plectic manifold.

Although graded manifolds are extensively used in the
physics literature,>® the subject of geometric quantization
on such manifolds has been investigated systematically (to
our knowledge) only in Ref. 7 and only up to the prequan-
tum level. Hence, it suggests itself to deal with the formal-
ism of geometric quantization on phase spaces with the
structure of the one used in Ref. 4. This will be done in Sec.
IT of the present paper. More strictly speaking we will
consider the quantization of a graded symplectic manifold
(X, &, ) (in the notion of Ref. 7), where X is pointlike
and 7 is the exterior algebra over the dual of a vector
space. Results of Ref. 7 will be revisited as far as necessary
to keep the paper self-contained. However, the consider-
ation of a complex structure and the induced polarization

as well as the construction of a quantum Hilbert space
exceeds the material presented in Ref. 7.

In Sec. III of the present paper the geometric quanti-
zation formalism developed in Sec. II is applied to Dirac
theory in even dimensions D. An appropriate polarization
for a Dirac theory with gauge background is presented and
the Fock space structure of the quantum Hilbert space is
outlined.

A shortcoming of Ref. 4 was the restriction to the
chiral anomaly in four space-time dimensions. In Sec. IV
the chiral U(1) anomaly in arbitrary even D dimensions as
well as the (covariant) non-Abelian anomaly are calcu-
lated. Generalizing Ref. 4 the results are in full agreement
with the standard ones.® The calculation shows that the

‘half-form contribution, corresponding to the transforma-

tion property of the measure in the Hilbert space, plays a
crucial role in determining field theoretical anomalies. In
the Appendix we will point out technical details of the
calculations done in Sec. IV.

Il. GRADED MANIFOLDS AND GEOMETRIC
QUANTIZATION

Geometric quantization on the one hand and the the-
ory of graded manifolds on the other hand are well estab-
lished in the physics as well as in the mathematics litera-
ture. Already in 1975 Kostant showed in a remarkable
work’ that the notion of graded symplectic manifolds in-
duces a natural connection between these two fields. How-
ever, with few exceptions (cf. Ref. 9) this connection has
not received much attention in the literature. Hence, to the
extent that we will need it later, we will start this section by
repeating the main ideas of Ref. 7 in short. For more de-
tails on graded manifolds (supermanifolds) in finite and
also in infinite dimensions we refer to Refs. 5 and 6.

Let 4 be an algebra decomposed into A=A4,® A such
that 4, 4;C4,, ; i,jEZ,. We call g,£4, homogeneous ele-
ment of 4 with degree gr(a;) =, A is a graded (commu-
tative) algebra over Z,, if the product of each two homo-
geneous elements a, bEA is graded commuting, i.e.,

ab=(—1)@r®p.q (2.1)

In this sense Ay and A, are referred to, respectively, as the
even and the odd part of the algebra A.

*Present address: Lehrstuhl fiir Mathematik I, Universitdt, Mannheim, Schloss, D-6800 Mannheim, Federal Republic of Germany.
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Let X be a smooth manifold and {U,} the set of all
open subsets of X. Let 4 be a graded algebra, equipped
with an appropriate topology and consider smooth func-
tions f:U;—»A. The set of these functions also forms a
graded algebra under pointwise operations, denoted by
o/ (U;). For a pair U;C U, the (natural) restriction

pg;:.sa/(U,-)—»d(Uj),
v 2.2)
PU;(fi) =fil U,

is an algebra homomorphism and the tupel

(X, (U; ),pvl) is a special example of a sheaf. (For our
purpose it is sufficient to consider a sheaf as an object of
this type, for the exact definition we refer to Ref. 10.) If for
an atlas {U,} of X any function f,E%/(U,) can be writ-
ten as

fa(x)—f (x) + z 2 (ga(x))jl A 11 'Gjm
n>0 jio iy
(2.3)

the sheaf (X, (U, ,-),pg" together with this deomposition
defines a graded manifold denoted by (X,2). In (2.3) x
€U, is a point, Fo (B a) i .j» respectively, are usual
C*(U,) functions and 0 "0; are the generators of 4.
Note that 4 =R also ﬁts into the definition of a graded
algebra (with trivial odd part), hence each usual manifold
X can also be considered as a graded manifold (X, C*). If
in contrast A = Gr is a Grassmann algebra the correspond-
ing (X, & ~) is also called a supermanifold.

For the application we have in mind let ¥ be a vector
space and V* its dual. In the case of infinite dimensional V'
let the dual be defined with respect to some pairing (e.g., in
the sense of Ref. 11). The exterior algebra o ,A"(V*) over
this dual space is a Z, graded algebra, with respect to the A
product. If we consider w
: = @ ,A"(V*) as a (trivial) sheaf over the pointlike man-
ifold X = {p}, this defines a graded manifold

My:=({p},W). (2.4)
Here, the splitting (2.3) holds trivially, considering the
elements of ¥ = A/(V*) as odd generators of W. As
shown by Batchelor® the fact that ¥ may be infinite dimen-
sional does not spoil the construction. [In the same way as
constructed above @ 7" (¥*), the symmetric tensor alge-
bra of V* defines a graded manifold ({p}, @ ,”"(V*))
with trivial odd part. This example should be of interest in
geometric quantization of Bosonic field theories, however
it will be considered elsewhere.'?]

For graded manifolds the notion of a tangent space is
not so natural as for a usual manifold. Nevertheless it is
possible to do differential geometry and proceed with geo-
metric quantization by considering the space of all super-
derivations instead of 7'(X). This space of superderiva-
tions Der (') CEnd(.2') over the algebra of functions .«
is defined as the space of all linear maps 6:.« — &/ obeying
a graded Leibnitz rule:

2367 J. Math. Phys., Vol. 31, No. 10, October 1990

Der(#) = {6=56y + 6,EEnd( ) |6,(f-8) =6,(f) g

+ (_I)Sr(f)sf(ﬁk)f.ak(g)’ kezz}’ (2.5)

where 8 = §, + 8, is understood with respect to the natu-
rally induced (Z,) grading of End(.«/'). Der(.«/) does not
define the tangent space of the graded manifold (X,«),
but generalizes the (algebraic) definition of 7(X) as the
space of all derivations on C*(X). In coordinates (x0))
on (X,«) we have

8= Za, + 2 g = 2 adx+ 2 bds,  (2.6)
Ox; 39 7 i ; f

with coefficients a,-,bjE.Q/ . For 8, 5€Der(«) the commu-

tator between (homogeneous) superderivations naturally

generalizes the commutator between vector fields

[6,61.:=88 + (— (2.7)

In the example (2.4), superderivations & of M are com-
pletely determined by their action on a base of V* via
linearity and Leibnitz rule. Thus Der( W) may be identi-
fied with W e ¥V where the elements of ¥V act on W as
superderivations of homogeneous grading 1.

To generalize the definition of differential forms to
graded manifolds (cf. Ref. 7) we consider (for all open
U;CX) the tensor algebra T'(U;) of Der(./ (U;)) with co-
efficients in o/ (U;) and denote by T™(U,;) the space of all
m-tensors. Then the space of differential m-forms
Q™U,« (U,)) is given as the set of all .o/ (U,)-valued lin-
ear forms on T (U,) obeying a graded symmetry, specified
below. Using the sheaf structure of (X, .27') we get globally
Q"(X, /) as the space of all m-linear maps on Der (&)
with values in .7, characterized by the additional graded
symmetry condition on aEQ" (X, )

a(gl,...,§ﬁ§j+ 1,...,§m)

= ( -1 )(gr(é'j) + l)((gr(§j+ 0+ l)a(gl:---’§j+ l’gj""’gm),
(2.8)

with £,EDer (') homogeneous. (Note that our sign con-
ventions coincide with Ref. 5 but not with Ref. 7.) For
My all elements in ¥V are of homogenous degree 1, so
Q™(My) simplifies to the space of symmetric m-forms
over V with values in W. Hence, denoting by " ( V*) the
space of symmetric m-tensors over V*

l)gr(é)sr(TS Y413 s,

Q™M) =F"(V*) & W. (2.9)

This may become more apparent in a coordinate de-
scription: Assume a basis set {e;} is given on V, so each
vEV may be written as

v= 2. 0i(v)e; (2.10)
t

The set of coordinates {6;} may be identified with the cor-

responding dual basis on V*, i.e, 8(e;) = §; Regarding

6; as Grassmann numbers (anticommuting variables) ele-

ments of W become polynomials in 8;. In these coordinates

Der(W) is spanned by {dy} with
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A ChEL (2.11)
Note that {dg} also determines a base of ¥ that is anti-
commuting in contrast to {e;}. For the construction of
Q™(M ) we denote the basis elements of .7 Y(v*) by d6;
with

dej(ag’) =39i _J d01=5,1. (2. 12)
This notation becomes consistent if we take d6; to be com-
muting, in contrast to the 6, Then the symbol d coincides
with the exterior derivative on W, in coordinates

d=d9,-®69', (2.13)
that acts as a derivative of grading 1 and is nilpotent
(*=0).0na graded manifold we also have the notion of
an interior derivative i with degree gr(ig) = gr(§) +1
defined as on a usual manifold by

iga(glr"’gm——l) =§ 4 a(gl’"wgm—l) =a(§’§1""»€m—l)'
(2.14)

Now let Ac = A ® C be the complexification of the al-
gebra A and let {U,} be an open covering of X. Then a
(complex) line bundle sheaf L over the graded maniold
(X, &) is locally determined as

L(U) = c(Uy) ® 7, (2.15)

Here, 7, are even generators of A¢ with invertible transi-
tion functions c*®*€ & (U,NU 8) givenby 7, = c"‘BT Using
the sheaf structure of (X,o/) this can be globallzed The
space of sections of a line bundle L over a graded manifold
is defined as in the usual case and will be denoted by
I'(L) =L(X). For geometric quantization L has to carry a
Hermitian sturcture, i.e., a bilinear, Hermitian operation

(", )LXL- g, (2.16)

mapping pairs of sections .% (x), Z(x)EL(L) smoothly
to a section (.%,.7)(x) of the trivial line bundle /¢ over
(X,o). As for usual manifolds a connection V on a line
bundle sheaf L can be written as a map VgL — L, locally

given by
Ve =£5 + (ig8)S  forany §€Der(.:f),( .
2.17

where $€Q! () has degree gr(9d) = 1. The curvature of
the connection then is curvV = d¥ [with d given by (2.13)]
and a Hermitian structure on a line bundle sheaf is said to
be compatible with the connection, if

E(FP,FP)=(Ve . 7) + (P V: ).

For more details we refer to Ref. 7.

Symplectic mechanics on a graded manifold proceeds
as for usual manifolds: wEQ%(X,7) is called a graded
symplectic form, if it is even with respect to the grading of
&, closed (dw=0) and (weakly) nondegnerated on
Der(.2/) [i.e., if w(V,W) =0 for all VEDer(.) then
W =0, cf. Ref. 11]. Then due to the graded Darboux the-
orem there exist local coordinates with

(2.18)

2368 J. Math. Phys,, Vol. 31, No. 10, October 1990

w=12 f’fdx,.dxj+12g"fde,-de,, (2.19)
2% 2%

where the matrices /¥ (antisymmetric) and g/ (symmet-
ric) are constant and of grading 0. Also there is a graded
Poincaré lemma that (locally) guarantees the existence of
® with w =d®. For M} the Darboux theorem and the
Poincaré lemma hold globally and the ¥ in (2.19) vanish.
To generalize the Poisson algebra from C*(X) to & one
assigns via

£rd o + dF=0, (2.20)

a Hamiltonian vector field £EDer(%/) to each obserable
Fe /. Then the Poisson algebra over .« is given by

{F.G}=(—1)¥PgiG=(—1)FPlgp I Eclo,  (221)
with £-G = £7JddG. In Darboux coordinates this is
aF 3G
iy —1___
(F6)= 2 U5 5
OF 3G (2:22)
gr(F) if
-1 2 O 36,

This includes the usual P01sson bracket and also gives an
anticommutator on the level of classical mechanics.

The first aim of geometric quantization is to associate
to each observable FE.«/ an operator & p, acting on sec-
tions of a complex line bundle sheaf L over the graded
symplectic manifold (X,.«,») such that a representation
of the Poisson algebra is provided and the unit element
1€« is represented as the unit operator:

[OrOcle=—it0 )
ﬂl = 1.

Such a representation is called prequantization. If we con-
sider a usual symplectic manifold with [w] integral, Weil’s
theorem guarantees that there exists a Hermitian line bun-
dle L over X with a connection V such that V is compatible
with the Hermitian structure on L and induces the sym-
plectic form by w =curv (V). For a graded manifold
(X,=) such a Hermitian line bundle sheaf has been shown
in Ref. 7 (cf. Sec. 6.3) to exist if X has trivial cohomology.
This is the case for our application (2.4); moreover, the
line bundle over My, can be chosen trivial, i.e.,
Ly = W & C. The prequantum operator on such a line bun-
dle sheaf is then given by

dpl'(L)->T(L),
ﬁp= —iﬁVé—F-f- F,

(2.23)

(2.24)

where the covariant derivative V; may be written as
Ve=£—(i/A)§1 0. (2.25)

However, full quantization demands an irreducible
representation of the Heisenberg subalgebra (cf. Ref. 1),
not given by (2.24). On a usual manifold X this problem is
solved by choosing a polarization (Lagrangian subspace)
PCTY(X) of the complexified tangent space. An appro-
priate polarization for geometric quantization is provided
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by a Kéhler structure'® on Y. We use the notion of Ref, 3
and define an (almost) Kahler structure on X as a linear
involution J:T(X) - T'(X) with

olJ(§)J(m)=w(gm).

If one can choose on X local coordinates {z;,z; } solving
over TC(X) the eigenvalue problem

a L d d {9 297
_+1(62k), _l(az,f)’ (2.27)

aZk aZ,:— -
This defines a Kahler polarization P spanned by the eigen-
vectors d/dz; = : .+ This description of a Kahler struc-
ture easily generalizes to graded manifolds given by an
automorphism J:Der(%/) —»Der(.«/) obeying (2.26). A
Kihler polarization on a graded manifold is then deter-
mined by

Jr=—1, (2.26)

J

P=Span({azk+ })CDer(«) with J[a,k+ ]

=—z’(62k+). (2.28)
To fulfill the irreducibility condition we have to represent
classical observables as operators on the space of polarized
sections

M’(L)={¥€r(L)|V; #=0 for all £EP}. (2.29)

For a Kihler polarization this means that the wave func-
tions ¥ €I'’(L) have to be holomorphic sections, i.e., co-
variantly constant under V.

On a usual (2m-dimensional) manifold X the symplec-
tic form @ induces a natural volume element (w)™. Using
this for integration over X the Hermitian structure (2.16)
on L extends to an inner product on I'(L) by

(- Y T(LYXT(L) =G,
(2.30)
Em = f Em (@)™

Such is not the case on a graded manifold, where integra-
tion over forms is not defined directly. Due to Berezin®
integration over anticommuting variables is identified with
differentiation. A naive identification would yield a coor-
dinate dependent integral. However, considering the sym-
plectic graded manifold M and a complex structure J
defined on it Berezin’s idea can be used to determine a
coordinate independent integration: On M the symplectic
form w determines a map 7 between superderivations and
one-forms by

r:Der(My) - QY (My),
7€) =£(do.

On the other hand the symplectic form and the complex
structure yield an antisymmetric tensor field g on
Der (M) by

g(&m) =aw(J(§)m), §nEDer(My). (2.32)

We note that wEQz(MV) and hence geW ® A%(V*), so
we can define an antisymmetric form 0’'€EW ® AX(V)

(2.31)
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o' (a,B)=g(r™'a,77'B), a.BEQN(M)). (2.33)

For 2m-dimensional ¥V, the m-fold tensor product
(@' )"EW & AP (V) provides a natural volume element
for the integration of functions over M, i.e., integration of
sections FEI'(Ly) in the following way. We have

F-(0')"EW e A¥™(V) (2.34)

and the integration is carried out applying the A*"(¥’) part
as product of superderivations to W. This yields a coordi-
nate independent map

f (@)™ T'(Ly)-C, (2.35)
that gives in coordinates the Berezin integral with
Vdet g;; used as integration measure. We note that this
generalizes to infinite dimensions (cf. Chap. 1.3 of Ref.
14).

In contrast to I'(L) on the space of polarized sections
I'’(L) the natural volume element (@)™ [respectively,
(®')™] does, in general, not induce a pairing by integration.
Therefore, it is necessary to introduce the notion of half-
forms.! Essentially a half-form on a usual manifold X is a
function on the bundle of frames .#7(X) spanning the
polarization P:

wFEX)-C, (2.36)

which transforms under right group actions g on P accord-
ing to

vog=(detpg) ~ /v (2.37)

Roughly speaking v reflects the transformation property of
the measure in the Hilbert space build from the space of
polarized sections I'?(L). For infinite-dimensional mani-
folds one furthermore has to choose a proper regulariza-
tion to make the determinant well defined. The notion of
half-forms can also be applied to our graded manifold
My({p},W):

vTFE(W)-W, (2.38)

where .7 is the frame bundle of the polarization
PCDer(W) and v transforms under group actions accord-
ing to (2.37).

Quantum states are now taken as products of a (nor-
malized) polarized section #E€T'*(L) and a half-form v
corresponding to the polarization P. The quantum opera-
tor F of a classical observable FE.o/ then becomes the
sum of the prequantum action &y on % and the Lie de-
rivative of v with respect to the Hamiltonian vector field

Er:
F(FN=OrF v+i¥ L. (2.39)

Note that this gives the right quantum operator only if F
respects the polarization in the sense that

[EnP]CP. (2.40)

In the case of a Kihler polarization, a holomorphic pro-
jection'® is needed to obtain the correct quantum operator
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for observables not respecting the polarization. However,
this will not be crucial for our following considerations.

lll. GEOMETRIC QUANTIZATION OF DIRAC THEORY

To elaborate geometric quantization for a Dirac field
we consider (according to Ref. 3) the space of solutions of
the (massless) Dirac equation

P9, + A, (x,0))¥ (x,1) =0, (3.1)

in D space-time dimensions in a non-Abelian background.
The elements ¥ of this space are complex D-spinors and
the field 4(x,#) is regarded as an external gauge connection
A(x,t) = A,(x,t) T* with T generating the gauge group.
Our conventions are similar as in Ref. 4 and can be found
in the Appendix, Eq. (Al). A solution of (3.1) is uniquely
determined by its value 1,.(x) at a fixed time T via

W (x,0) | = r=2:1,(x),

what respects the linear structure of the solution space. An
inner product between solutions of (3.1) is given by

(3.2)

\P@\Tf:=f P (x) ¥ (x)d”'x, (3.3)
E‘I'

where Z, denotes the ¢t = r hypersurface. This fixes the
space under consideration:

7":={W solution of (3.1)|¥OY < w}. (3.4)

As explained above (2.4), this yields a graded manifold
with the dual 7"* determined by (3.3):

My =((p},® A"(77*)).
n

The (D — 1) dimensional 8-functions span (formally) 7™*
assigning to each YE7  its value ¢,(x) at some space
point x. As explained in (2.10) and (2.11) we use ¥,(x) as
anticommuting coordinates on M. [Note that our nota-
tion does not distinguish between ¢, (x) as elements of 7™
and as functions on 2.!] With the symplectic form

(3.5)

,,,:if ayt (x)dy(x)d?~!x (3.6)
2‘l'

on M- the Poisson bracket, (2.22) yields the well-known
equal time anticommutator:

{9, ¢, ()} 4 ==&y ¥, (X)= +ib(x—x").
(3.7)

Here, 7" is per construction a complex vector space,
but the Kihler polarization with respect to the natural
complex structure is not acceptable from the physical point
of view: It would lead to an energy spectrum that is un-
bounded from below. For the free theory (4 = 0) an ap-
propriate polarization is given in Ref. 1. There the operator

Bo=7"Vid; (3.8)
is used to split the space of solutions of the free Dirac

equation 7" into a positive and a negative frequency part in
order to define a complex structure by
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Ji (Y] =isign(A)y,; for eigenstates Bpif;(x)=Ay,(x).
(3.9)

A natural generalization of (3.8) for a theory in a back-
ground field is

B,=7"/id; + 4,(x,1)). (3.10)

We proceed in analogy to the free case and decompose at
t = 7 the function ¥, into a formal sum of eignfunctions
@5, of the Hermitian operator B,

¥,= D chp,  with B@h(x)=A;@5(x). (3.11)

n

In contrast to the free case, A}, determines the time evolu-
tion of ¢}, only up to first order, nevertheless {g;} provides
a basis of 7. Considering (3.11) one should note that the
deomposition is not discrete, so the sum over ¢, is only
formal and has to be understood as an integration.

In the corresponding coordinate system {c;] we now
can define the complex structure J™ by

7 d  sion (A7 d
[ac;}_+181gn( n)

a_c;,
(3.12)

dc* et

}-—:—isign(/l;)

This complex structure explicitly depends on 7. As 7 can be
chosen arbitrarily it defines a time-dependent complex
structure J(¢) by J(#)|,—: = J". To describe this in a
small neighborhood of 7, i.e., for t =74 &t, we use the
(unitary) transformation matrix B,(,,T,',') between the eigen-
states of B, and B,

=2 Bl (3.13)

Then we have in {c}} coordinates the complex structure

9 ) d
J(r+60) | = | =i 2 B sign(AD Bim) '
acn Im acm

+ o(88), (3.14)

with a similar expression for ¢} *. The complex structure is
also a functional of the gauge background [J(¢) =J(¢)[A]]
and transforms covariantly with respect to local (fixed
time) gauge transformations a(x) = a,(x)T*

eia(x)J(t)[A]e—ia(x)=J(t)[paA]. (3.15)

The Kihler polarization P’, determined by J(¢) | ,—, is then
given as

T T 4
dc, de,

and naturally induces holomorphic (anticommuting) co-
ordinates

P’=span< Ar<Ot® A,>0 (3.16)

cp Ap>0,

n*

e’ An<O,

¢, Ap<0,
agt Ar>o0.

T_.
z,=

r

() * = (3.17)

In order to simplify our notation we will suppress the index
7 in the sequel whenever this is possible.
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We proceed in the coordinates {z,,z,;" ] on the graded
manifold M, where the symplectic form (3.6) is

w=iY, dz;} dz, (3.18)
and ® can be chosen as
=%( S 2t dz, + Edz;z,,). (3.19)

According to (2.29) polarized sections ¥ EI'*(Ly-) have
to obey

V5.5 (zz1t)=0. (3.20)
Z

Hence with (2.25) and ® given in (3.19) (see also Ref. 1)

we obtain

1
Y(z,z+)=a(2)exr>(—§22n2n+), (3.21)
n
where the o(z) are holomorphic functions. On the (trivial)

line bundle Ly~ over My the Hermitian structure defined
by

(L, Py=5"*-2, £, FET(Ly) (3.22)

is compatible with the covariant derivative (2.25) on Ly
(cf. Ref. 1, respectively, Ref. 7). It extends (formally) to
the inner product on the space I of sections of Ly

(P(227), P22+ )= lim f(w)mu” P)(z2").
e (3.23)

To make this formal definition meaningful we can approx-
imate 7" as a sequence of finite-dimensional vector spaces
V, as proposed in Refs. 14 and 3. However, as a pairing
between sections FETP(L) (3.23) is well defined if it is
understood in terms of the Fock space structure given be-
low.

Geometric quantization of the Dirac equation means
to determine the quantum operators (2.39) of any observ-
able and apply it to polarized sections “€TI'*(L;-). For
the coordinate functions z,,z;" as classical observables the
half-form contribution . £V in (2.39) vanishes for an ap-
propriate normalization of the half-form v [cf. (3.33)] and
we obtain

1
28 F (22t )v=(a,ka(z))exp( —5 22 )v,

. (3.24)
25 (22 )v=(zk'a(z))exp( -3 Y zzt )v.

This coincides with the well-known holomorphic represen-
tation of Fermionic field theory (cf. Refs. 16 and 14). We
define the vacuum state |0)El"P (Ly) by

|0>=( l;[z,.)exp(—%gzmz,: )v=( I;Iz,,)v, (3.25)

where Iz, means the formal product over all coordinates
z,,. This yields formally

0]0) =1, (3.26)
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what may be regarded either as a definition or as the result
of a limiting procedure defining (3.23) and (3.25) prop-
erly. Then (3.24) gives the interpretation of Z; and
Z 1» respectively, as creation and annhilation operators

Z 4|0)=0,

2 10y=2]k), (3:27)

for they fulfill the (usuwal) anticommutation relations

[?:,?1]4_:5,(1. (328)

Together with (3.26) this yields the orthonormality rela-
tion

(k|D =6 (3.29)
The construction of the Fock space given above corre-
sponds to the polarization P only at z=17. To extend this to

a time t=7 4+ &t we use (3.14) to define holomorphic co-
ordinates by

Buis >0,
(B(‘r,t) -1 :‘n+’ ﬂ.;<0

(3.30)
eI BLh, /1'<0
(z:,) (B(‘r,t) -1 1-+ At

what in some sense corresponds to the interaction picture
of quantum mechanics. The dynamics of the system then is
determined by the (time-dependent) Hamiltonian

H= f W+ (x,) Y0, + A;(x, ) )W (x,)d’x
z,

= ALl * 2, (3.31)

where we choose the 4, =0 gauge for sake of simplicity.
At t=r the corresponding Hamiltonian vector field of H, is
given by

ad a
En =+ i% | A7 ((z;) +a(z;) — —z;-a—-z;), (3.32)

preserving the Kihler polarization J'. To quantize H, we
have to consider further the half-form contributions.
Choosing a reference half-form v on P’ (3.16) normed by
vo(azﬁ,...,a,;,...) = 1 quantum states are determined as

1
|2)=Y(z,z+)v0=exp(—522n+z,,)a(z)vo. (3.33)

Then we obtain for the quantum operator H ,
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~ a
H,|2)=—e‘1/22’n+’n( > |/l;|z;-—,a(zf))v0
k 9zy

T 2, )1 %
Szt T a T T
= 4 e 11223, Zn( 2 |Ak|-a—fzko'(z ) Ivo
k Zk

1
—5 2 1451 2. (3.34)
2%
This confirms the interpretation (3.27) of Z ;7 =< 3/9z; as
creation operator of a one-particle state in Fock space with

energy A, > 0. The vacuum contribution

A 1
(O H,]0),=—5 2 |4;] (3.35)

of the Hamiltonian may be compensated by a redefinition
of the classical Hamiltonian due to

1
H-H.+53 |4,
n
that does not affect the dynamics of the system.

IV. THE CHIRAL ANOMALY
A. U(1) anomaly in four dimensions
The chiral transformation on a Dirac field ¥
¥ (x,t) = —ay’¥(x,t) (4.1)

is a symmetry of the equation of motion (3.1). Noether’s
theorem yields for the ¥° current

PY ety =¥ T (x,0) "V (lay’) ¥ (x,1), (4.2)
the conservation law
3, (P)#(x,1)=0. (4.3)

To obtain the anomaly of (4.3) we consider the noncon-
servation of the chiral charge, defined by

F= J' (P)O(x,0)d*x
z, (4.4)

= s (@) T (0)iay @' (x)dxcht ¢t
mn "
This is precisely the momentum map'’ of the chiral sym-
metry (4.1) with respect to the symplectic form w, (3.6).
To express (4.4) in the holomorphic coordinates (3.17) we
note that ¥° and B, commute, so they have a common
eigenbase {@}}. With the notion
o L (@) * (ar’el(x)dx, (4.5)
t
we see that these matrix elements ®%,, vanish if A}, #A}
and obtain

F= E (z;) +z‘m[ (q):nn)/lil>0°‘ (q):xm)/l;<0]- (4.6)
This yields the Hamiltonian vector field
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Eps=+1 2 [(Pr) 50— (Prm)at <o)

X (Zt)+—-a—-—2t£— (4.7)

o)t Tmaz ) )
As the chiral transformation (4.1) is a symmetry of the
theory, the chiral charge (4.4) is conserved under the
(classical) Hamiltonian dynamics (3.32):

d

d
dt FS=§H7F5+6_t

t=7

F=0.

t=r1

(4.8)

Note that the term 8/t F° occurs due to a possible explicit
time dependence via the external field. Quantizing (4.8),
i.e., considering the corresponding quantum relation
d
dt

A A A a
F’=[H, F31+ =

FS, (4.9)
t+T at

t=r

with (3.19) we obtain for the prequantum operators

(2.24)

Furthermore, £zs preserves the Kihler polarization pro-
vided by J(#) (3.14). So we obtain at t=7 for a state |3)
given by (3.33)

P33y = —i(£p S vo— 2 [ Trp( L) 1% (411)

Fixing 7 = 0 for the sequel and using (4.7) we have

(0] F3|0)o=(0| —i&s|OYo

i
=2 | @T®
2 n 2y
Xsign(/lg)ays¢2(x)d3x. (4.12)
Then the anomaly is determined by
d ~
o =—| (0| F3|0), (4.13)
ar| _,

To compute (0| FS |0), at 0 we have to use the coordi-
nates provided by (3.30) because of the time-dependent
polarization P'. By the classical conservation law it is clear
that the prequantum operators commute ({&Z g, & )
= () so we obtain !

o ==

d i
2(—f (@) *+ (x)
ot t=0 7 2 b}

X (BYD) ~sign (A1) ar BLgl(x) + 0(51)2)

d

i
=5 23| @D (OBB) T are(x).

=0 " P

(4.14)

Here, = refers to replacing the eigenvalue expression
sign (A%) = A" (A") ~1? by the corresponding formal series
in the operator B, This is an identity in (4.14). However,
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the infinite potentially divergent series demands a regular-
ization. Thus we start the summation over the @2 from
small energy eigenvalues A2, i.e., we choose a regulator

e (4 By
o—-eXP(—Wz—) =exp(——A—lg), (4.15)
and take the limit M — o after the summation:
o=l lim X f d3x(rp * (x)
0|, oMo m 2 2
XiB,(B}) " ay’ B op(x). (4.16)

This expression is well defined and we can proceed in anal-
ogy to Ref. 18, changing the basis set to plane waves. We
let Tr refer to both the trace over gauge group tr, and the
y indices tr, and define

FHxt)i= llm Tr - JTZ_)5e+IhB (BZ)—I/Z ,ys

B\
Xexp( —A—l";)e-"‘z, (4.17)

to obtain

3
ol =

3. 94
Y d’x I (x,1).

t=0" 2o

(4.18)

1
F(x,t) = — 2ietr ( f—; |k|e™ aF,k(x 0)4,(x,0) — J—; |k|

&k 1
J._i 'kl jk(x9t)a~A (x,0) —
1 &k K

_ — Ry .
*t2) @y |k|Se Az(x,t)F,k(x,t)a),

The last two terms are logarithmic divergent but can be
properly regulated using (A14). With a cyclic g permuta-
tion and the integration (A1l1) for the convergent terms
we have

ik
HHxn)= — allz—ﬂ; trg(24,(x,0) F(x,0)

—24,(x,1) Fj(x,0) + 4;(x,0) F(x,2)

—A(x,0)Fp(x,t)), (4.23)
what determines the integrated anomaly to be
iOk
——72- try s d*xa A {(%,0) Fir(x,0)
0
et 3
=167 tr, J;_o d’xaF, F,,. (4.24)
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To calculate % *(x,t) we define the operator

9; A
: % t)), (4.19)

B,(kx): —y"r’(k +ar+af

substitute k—kM, eliminate the plane wave from the &
integral and obtain

F4(x,t)= lim TrM
M-

X exp(— B3(k,x)).

(2—)51-’?:(k,Jr)(Bz(/*’r,x))‘1’2 ay’
(4.20)

Here, B%(k,x) contains the gauge curvature F(x,r)

» , 2 1
< (kx)= (k + A_l(kA(x’t) + ko) + e (2iA(x,t)0

+ idA + A%+ az)—%; ij(x,t)). (4.21)

Expanding % *(x,t) in (1/M) and using results of Eq.
(A6), we see that only terms proportional to e%4F "k will

contribute in the limit M — «. Then with (A10) the Tay-
lor expansion yields

d’k e
A(x,t)aF(x,0)
&k 1 y e
a_)smje i(x9t) jk(xyt)a
(4.22)
-

From the computations it is clear that (0| F®|0),_o
= 0. Furthermore we can repeat the above calculations for
the other components of the 3> current:

f P, dx
%

=2 . (@L) *+ () P°YrGiay®) !, (x)dxe,} ¢,
' (4.25)

Using (A2) one can show
<ol f (7 k0 dx o) —o0.
Z t=0

All the calculations hold even if the transformation param-
eter a in (4.4) is taken to be local, i.e., @ = a(x). Choos-
ing a(x)=68(x — p) this allows to quantize also the local

(4.26)
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relation (4.3) and derive the nonintegrated form of the
anomaly, what coincides with the celebrate result (cf. Ref.
8):

3,01 (P)*(x,) |0) o= (i/ 167 tr@"P°F, F .. (4.27)

B. The chiral U(1) anomaly in D dimensions

To determine the chiral anomaly in D dimensions (D
even) we replace 1> by (— ()P *!) and all above con-
siderations naturally generalize from the four-dimensional
case. However, to compute

XBt(Bf)—l/Z(i)D/ZaYD-{- 1
X exp( — B/ M?*) e,

explicitly is a more tedious job. Again we make use of
(A6) to argue that in the limit M — o only terms propor-
tional to

€hip- 1ArF“ .
V2

will contribute. With the Taylor coefficients of (1 — x)~
given by

(4.28)

(4.29)

JD-;JD 1
172

N . b,=(2n)!/ (n!)*4" (4.30)
=— i +i
FP(x,t)= —-;lianff mP-1¢ the expansion of (4.28) yields
|
D — 1k —k2 N N-—
(x,0)\" 1 F(x,0)
D —
FP(x,t)= — (2P Etrgfu—)bff &] (ZA(xt)b( YD )a(N—n)!( > )
Bpint 1) F(x,t)\" F(x,0)\"~
B Eo D-1 (x”)( 2k )“(N—n)!( 2 )
N o (Fx)\" 2AIN—n+1) Kk [F(x0)\""
_,.=ob"( 2 )“(N—n+1)u>—1 2 ) e O)) (@30

Here we suppressed the indices, set N : = D/2 — 1, and used (A7). The n=N terms of the first and second sum in (4.31)
are infrared divergent and have to be integrated with (A14). The rest is a usual Gauss integral (A1l) and yields

+\ D72
b _ i (D/2 - 1)!
K (x,t)——e(ﬂ_) trg———(D—l)!
"' (D—4—2n\b,(D—1)
+ ( 2 )'(N—n)!

D—4—2n\2(n+ )b,
3
1

MT IMT

(ZbNA(x 1) (F(x,0)Ya + 2b(F(x,8)) ad(x,0)
A(x,1)(F(x,1))'a(F(x,0))Y "

a(x,)(F(x,0)) oA F(x,0))¥ "

Do222m) 25 ranyYalF(x0))Y A (%0 4.32
=" ( 2 )'(N—n)!‘ (x,))'eF(x0))" ~"4(x0) . (4.32)
r
After a cyclic g permutation this determines the anomaly i\P?
in D dimensions by Kp=2 D(4—n-) oo (4.35)

j d
Le FP(x,1)

231,

= —ikpet D1 trg(a/i #{(x,0)

L (X0) F; o (x,0)), (4.33)
where the coefficient x; computes from (4.32) to
.\ D/2 N—1
i (D/2—1)! )
(7)o onr Za)f

This induces a recursion formula for «xp that will be
solved by
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Hence the integrated anomaly in D dimensions is deter-
mined by

(i)D/Z + 19“0"'I‘D—l
(D/2)V(4m)P7?

1D— l .
szod I‘d‘l FI‘D-:!‘D-]'

o =—2

(4.36)

C. Non-Abelian anomaly

Also the non-Abelian anomaly® can be discussed in
this framework. Introducing the pair of orthogonal projec-
tion operators
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M =3(1—iy’), Me=3(1+ i), (4.37)

the space of solutions of the Dirac equation is split into the
direct sum 7= 7 ;@7 i of left- and right-handed
spinors. Now we consider 77; to be the space of left-
handed solutions only. As II; commutes with B, (because
7’ does so) we can choose the base {@,} in (3.12) to be
given by eigenstates of I1;. Thus a base of 77 is provided
by the eigenstates to the eigenvalue 1, denoted by {¢Z%}.
The gauge transformation

Y (x,t)= —ia,T°V(x,t), (4.38)
yields for the Noether current

Fn= —¥* (07 (a,T) ¥ (x1) (4.39)
on classical level a covariant conservation law

D P (x1) =0, (4.40)

On the quantum level we may obtain the (integrated) non-
Abelian anomaly from

w:f<a0<0|?°|0>,+<0|[?1,?°1|0>,

+ [A47(x,),(0| 7¢]0) )dx.

The last two terms on the rhs can be shown to vanish at
t = 0. Thus for a theory with left-handed Fermions only we
have

(4.41)

(0| F|0),
t=0

E)
A=

7 (4.42)

where, similar to (4.4),

FB= 2 p ( f (@t (x)aaT“yS¢?,,(x)d3x)c,:c,,.
PwPaEY P
(4.43)

For I1; eliminates # "y we can rewrite the summation over
7"; as a sum over all of 7~ and obtain

FE— mzn( Ry ((p?,)+(x)aaT“IIL¢?n(x)d3x)c,Ic,,.
AT (4.44)

The technical calculation of the anomaly now proceeds
in the same way as above. However, the matrix elements
®,., (4.5) have to be replaced by

1—7
P, f or (x)a,,T"(Tf)q),,(x)d%. (4.45)
%
Thus we have to compute instead of (4.17)
dk ikx 2y —1/2
F&(x,t)= lim Tr J. ——get"™B(B;)"
Moo (2m)
1-iy’ —B) _ ikx
Xa,,T“(T)exp(F)e .

With B? from (4.21) and the properties (A2) on the
gamma trace we see that only the part containing y; will
contribute. After a cyclic g permutation we obtain

(4.46)
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iewo
M{:Wtrg leo d3xaaT"F,wFpo. (4.47)

On the other hand the non-Abelian chiral transforma-
tion,
8V (x,t) = —a, TV (x,1), (4.48)

can be discussed similarly. For the matrix elements ®,,, we
have instead of (4.45)

1—iy
Dpn— fz (P,: (x)i'}’saaTa( ) )q’n(x)d3x’ (4.49)
0
and we obtain for the left-handed Fermions
s e 3
ML= Wtfg J;odxaaFF“vaa. (4.50)

The same considerations made for a theory with right-
handed Fermions only yield

ie# o
3
M%: _W tr, J-zo d XaaTanvaa,

— 3 (4.51)
dR:W tl'g J-zo d XaaTaF#vaa.

In a theory with different gauge connections 4; and A4y for
the left-handed and right-handed Fermions we thus obtain
the (covariant) gauge anomaly and the chiral anomaly,
respectively, as
g L 3 L L
4 =57 1 d'xa, T(F,,[47]F,,[4"]

_va[AR]Fpo[AR] )s
(4.52)
5 e 3 L L
o =W s dxaaT“(Fm,[A ]Fpa[A ]
0

+ Fu [ARF o[ 4R]).

For the calculation of the consistent anomaly one
notes, that the current (4.39) is defined by the gauge trans-
formation (4.38) only up to a constant (in the phase
space). Thus the anomaly is determined in our framework
only up to the covariant derivative of a (local) polynomial
in the gauge field. As shown in Ref. 8 the difference be-
tween covariant and consistent anomaly is an expression of
this type.
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APPENDIX: TRACES

(1) For the calculations involving ¥ matrices in D
(even) dimensions we use the conventions

[’V#’yv] + =27I'W=2 diag( + ,_s---y—),

() * =71, (A1)

PP+ o gPplee D=l (y D1y + o (D2 1y D+ 1,
From this one derives the trace formulas

tr, (Y2 T 1Pyt ) = (2)2)/26,',,...@_1, ::g: ::

tr, (Y2 T 191Ky = 0, for O&{ ji,-.-ii)s (A2)

tr, (YO 4) =0, for 0&{ jy,wuik}-

(2) In computing the integral % 2(x,z) one has not to
take care on ultraviolet divergences because of the Gauss-
ian regulator. However, infrared divergences may appear
from

Y k;+ D;
M k|

2k:D;
'(1+k2’AD4'+

B,(Bf)_lﬂ:

Y*V'Fu(x,t) + DD~
KM* ) ’

(A3)
with D; = 4;(x,t) + id;. Each term of order (1/M)" in the
expansion of (A3) wxll contribute with factors (1/k)"~!
and (1/k)". Hence, for the resulting D — 1 dimensional
integral

MP-! f kP2 gk Polynom( (A4)

)
no IR divergences appear in order M/ for j > 0. In order M°
there are logarithms divergent contribution and for nega-
tive powers of M rational divergences appear, what will be
discussed below.

(3) From (A2) it can be seen that in the 1/M expan-
sion of % P(x,t) only terms will contribute under the
y-trace containing at least (D — 2)/2 factors

(1/ M) PVFy (AS5)

On the other hand no more than (D — 1)/2 such factors
can contribute in the limes M — . So performing the
y-trace and suppressing the indices all terms in the expan-
sion will have the form

lim tr,MP—12P/2¢
Moo
Pk e 2 D21
f(z yP-T |k|mk)(‘27f) w (A9

where 7 (k?) is a Laurent polynom in k%, determined by
the M expansion of ¥ ?(x,t). Note that one has to take
care on the order of terms in (A6), what will be considered
below. For computing the polynom & explicitly we have
to replace terms of the form k;(kA) under the surface
integral:
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J-dD Yk (kA) = dP- kKA, (A7)
(4) Determining .@(kz) in (A6) one gets from the

expansion of %2 terms of the form

&rhF (1) F; (DaF;  (0)--F;_(0)

k-1

X [id), + 4; (0)1F;,  (0)-+-F; _; (0). (A8)

Then we can eliminate the spatial derivative d; from the
expression by using

€ [i0F 3 (8) 1 =€ [F () Ax(8) —ALDFp ()], (A9)

and shift at /=0 the field 4(0) to the right. So we get for
(A8)

e 'I"FN () 11 2/ 1(t)
XaF;, ;. (0 F; ., (0)4;(0). (A10a)

After integration by parts d;, acts to the left, so we can use
the same argument to show

&rinFy (8- Fy (D) [i0;+ 4(1)]

XF;,, (8):--F;(t)aF;,  (0):F, (0)

=¢iing; (OFj () F; (0

X aF; _,(0)4; (0).

Ji+vig2

0):-F; _,; (A10b)

(5) The Gaussian integrals in D — 1 dimensions yield

ki (] YD1 (D=3 + n)
|k|"e™ = (_) 2(D—2)!( 2 )

(A11)

for D — 2 + n positive and odd.
Furthermore, one has to consider the IR divergent in-

tegrals
e FrP-2gk 1\¥
- [ |»(z)
2(kk) N+1
~by (N + D57 (;5)

| k|
with N=D/2 — 1 [cf. (4.22) and (4.31)]. To regulate the

, (A12)

logarithimic divergence we substitute |k|— VA®> +e—e
and expand the denominator around k% : = k> + e. This

yields

1 \N+i+12
) dk

AN —i2y D2 2N +1_j
52 ;Nfe kP iy d(m

2b N+1
N+l;( + )zf klkpc2N+3

1 N+j+372
) dk, (A13)

xa(ﬂ—k —
with ¥+ ! the Taylor coefficients of (VI—€)***!. More
rigorously we would have to substitute
k*—k* + M?e — M%e in (4.21) before the expansion of
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B; % in M. By this IR contributions are avoided not only
for M° but in any order. However, this also yields (A13).
Expressing c2¥ "3 by ¢?¥*1 and by, | by by we receive
after an integration by parts of the second term of (A13):

02N+l ) 1 N+j+122
jzszfe_ﬁkDZ é_lé(m) dk
J
bN &2 1 bN
— ZD—jfe kDp—_“f dk_ﬁ (Al4)
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On identically closed forms locally constructed from a field
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Let M be an n-dimensional manifold with derivative operator V,, and let B(M) be an arbitrary
vector bundle over M, equipped with a connection. A cross section of B defines a field ¢ on M.
Let o be a p-form on M (with p < #) which is locally constructed from ¢ and finitely many of

its derivatives (as well as, possibly, some “background fields” ¢ and their derivatives) such
that da = O for all cross sections ¢. Suppose further that o = O for the zero cross section,

¢ = 0. It is proven here that there exists a (p — 1)-form f that also is a local function of ¢,
and finitely many of their derivatives, such that a = d 8. A number of applications of this
result are described. In particular, gauge invariance is established for the charges and the total
fluxes derived from gauge-dependent conserved currents, and severe limitations are established
on the the possibilities for gravitational analogs of magnetic charges.

I. INTRODUCTION

In a number of diverse contexts, there arise situations in
which one obtains (or seeks to find) a differential p-form «
that is locally constructed from a field ¢ and additional, fixed
“background fields™ ¢ such that a is “identically closed,” in
the sense that do = Ofor all ¢. (Here, by “fields” ¢ and ¢, we
mean sections of a vector bundle. In Sec. II, we will give a
precise definition of what we mean by a being “locally con-
structed” from ¢ and ¢.) By taking the difference between a
and its value when ¢ = 0, we may assume, in addition, that
o = Owhen ¢ = 0. In such situations, it is often important to
know whether a can be expressed in the form a = d 3, with 8
a (p — 1)-form which is similarly locally constructed from ¢
and . The main purpose of this paper is to prove that this is
always the case. In this section, we give three examples that
illustrate some of the contexts in which the presence of an
identically closed form « arises and we explain the relevance
of the issue of whether a is of the form d B, with B locally
constructed from ¢ and 3.

For the first example, we remind the reader that in an
arbitrary Lagrangian field theory for a field £ on an n-dimen-
sional space-time, a symplectic current density' w*—or
equivalently a symplectic (n — 1)-form* w—can be con-
structed in a local manner from a background solution and
two “linearized perturbations,” 8, £, 8, £. This form o satis-
fies dw = O whenever §,& and 8,& satisfy the linearized
field equations. However, in theories with local symmetries,
such as the Yang-Mills theory and general relativity, o fails,
in general, to be gauge invariant. One wishes to know
whether or not the “charge” Q= (; ® obtained by integrat-
ing @ over a Cauchy hypersurface Z is gauge invariant.
(This is of interest since this charge plays the role of a sym-
plectic form on phase space.*!?) To investigate this ques-
tion, we define a = w(£,6,£,6,& + 88) — (£,6,£,6,6)
where 8¢ denotes the field variation resulting from an arbi-
trary gauge transformation. We now view &, §,£, 6,£ as
“background fields,” ¢, and take ¢ to be the (arbitrary) field
appearing in the formula for the infinitesimal gauge transfor-
mation for 6£. Since 8¢ satisfies the linearized field equa-
tions' for all ¢, it follows that a is an identically closed form
(for all ¢), which is locally constructed from ¢ and 3. If we
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knew that o = d 3, it would follow immediately that Q is
gauge invariant whenever ¥ is compact (without bound-
ary). Furthermore, if we knew that f is locally constructed
from ¢ and ¢, considerable additional information about the
gauge invariance of Q in the noncompact case would be ob-
tained. In the specific cases of the Yang—Mills theory and
general relativity, it has been shown® by direct, rather labori-
ous calculation, that, indeed, a = d 8 with B locally con-
structed from ¢ and 3. Our results proven below show that
this property holds quite generally, thus establishing the
gauge invariance of Q in a wide variety of contexts without
the need for any detailed calculations. Note that similar
questions also arise whenever one has a conserved current
that is gauge dependent. For example, in the study of vacu-
um perturbations of a vacuum space-time with Killing field
& “, the quantity j, = G®,, £ ®is a conserved, gauge depen-
dent current where G ‘¥, denotes the second-order Ein-
stein tensor constructed from the perturbation.* The results
of this paper can be used to establish gauge invariance of the
total “gravitational energy flux” defined by j, when suitable
asymptotic conditions are imposed upon the perturbations.
In Sec. III we will comment further on the use of our results
to prove the gauge invariance of charges and fluxes obtained
from gauge dependent conserved currents. As we shall dis-
cuss further there, the gauge invariance of Q in the compact
case also can be established by alternative arguments; in the
noncompact case, however, our theorem yields further use-
ful information.

As a second example of a context in which our basic
question arises, we consider the issue of constructing a gravi-
tational analog of “magnetic charge.”* Here, one seeks a p-
form o, on an n-dimensional manifold M (with l<p<n — 1)
which is locally constructed from a metric g, and finitely
many of its derivatives, and is such that do = 0 for all met-
rics g,,. The integral of @ over a p-dimensional compact
surface which is not homologous to zero would then define a
conserved charge. The issue of whether any such nontrivial
gravitational charges exist is easily seen to be equivalent to
the issue of whether all such identically closed forms & must
be exact. Some partial results on the nonexistence of gravita-
tional charges were previously obtained by direct calculation
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of candidate terms.® We shall see in Sec. I1I that our results
can be adapted to prove the following: For Riemannian met-
rics, any charge obtained from an identically closed form o
must be metric independent (i.e., it must be a topological
invariant of M); for Lorentz metrics, any such charge can
depend only on the homotopy class (see Finkelstein and
Misner® ) of the metric. Note that our theorem also yields
immediate generalizations to cases where additional “‘back-
ground fields” are permitted in the construction of the gravi-
tational charges.

A third illustrative example arose in an investigation’ of
the possible couplings of a spin-two field 7, to a scalar field
¢ in flat space-time (R*,7,,). It provides a good illustration
of the relevance of the issue of whether a is of the form d 8
with B locally constructed from the fields, as opposed to
merely whether a is exact. A possible interaction Lagran-
gian for y,, and ¢is L, = 7,, V', where ¥ “*is an identical-
ly conserved (i.e., d, ¥V =0) tensor locally constructed
from ¢ and 77, . One wishes to know all of the possible candi-
dates for ¥ ?°. From the fact that all closed forms are exact
(since the topology here is R*) it is not difficult to show (see
problem 5 of Chap. 4 of Ref. 8) that ¥ “®is expressible in the
form Vab — ac ad Vade, where Vacbd — V[ac][bd] — Vbdac.
However, it is not clear that ¥ can be expressed in this
manner using a tensor ¥ “*? which itself is locally construct-
ed from ¢ and 77,,, . It is of interest to know if this always is the
case: If so, then L, can be reexpressed as a local coupling of
the field ¢ to the linearized Riemann tensor of y,,; if not,
then additional possible couplings could arise. It is not diffi-
cult to show that this question is equivalent to the question of
whether every locally constructed, identically closed form o
on R*can be expressed as @ = d B with B locally constructed
from ¢ and 7,,. Thus the results of this paper eliminate the
possibility of any couplings of the above type apart from
local couplings of ¢ to the linearized Riemann tensor.

In the next section we shall state and prove our lemmas
and theorem. The main task involved in the formulation of
these results is to give a precise definition of the notion that
the form a is “locally constructed from the fields ¢ and ¢ and
finitely many of their derivatives.” The proof of our results
divides into two steps: First, in Lemma 1 a direct proof that
o = d B with B locally constructed from ¢ and 1 is given for
the special case where a depends linearly on ¢ and its deriva-
tives. Then, using this linear result, we give a simple proof for
the general case. Some further remarks on the applications
of this result are given in Sec. IIL

Il. FORMULATION AND PROOF OF OUR LEMMAS AND
THEOREM

In this section, we shall prove that on an n-dimensional
manifold M, any p-form a (with p < n) which is locally con-
structed from fields ¢ and ¢ and finitely many of their de-
rivatives and which is closed for all ¢ must be expressible in
the form d B, where the (p — 1)-form B is similarly locally
constructed from ¢ and . As already indicated above, our
first main task is to give precise meaning to the notion that
the forms « and B are “locally constructed from fields and
their derivatives.”

To begin we must define what we mean by “fields.” Nor-
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mally, by a field on M one means simply a (smooth) cross
section of a fiber bundle, B(M), over M, i.e., a smooth map-
ping taking each xeM to the fiber in B(M) over x. However,
for our purposes here, it will be convenient to assume that
B(M) has the structure of a vector bundle, so here a “field”
will mean a cross section of a vector bundle. As discussed at
the end of this section, this restriction on B(M) could be
eliminated for our main results, but only at the expense of
using a more cumbersome notion of derivatives of fields and
introducing some further assumptions about B(M). We
note that it is not difficult to adapt our arguments and results
to typical cases where the fields of interest do not have a
natural vector bundle structure. For example, as described
in Sec. III, we may treat metrics by viewing them as a sub-
bundle of the vector bundle of tensors of type (0,2), then
taking into account the fact that a need be defined only on
this sub-bundle. As a second example, we may treat the
Yang-Mills fields (i.e., connections on a principal fiber bun-
dle) by fixing a connection on the principal bundle and
working with the difference between this connection and an
arbitrary connection. (This difference has natural vector
bundle structure.)

We shall use lower case Greek indices to denote vector
space indices for the fibers of B(M), whereas lower case
Latin indices will refer to the tangent space of M. Thus a field
on M will be denoted as y*. As above, we shall use boldface
letters to denote differential forms, and, in general, we will
suppress the space-time indices on forms.

In order to define derivatives of fields, we shall assume
further that B(M) is equipped with a linear connection. In
many cases—e.g., if B(M) is a bundle of tensor fields over M
and M is equipped with a fixed, background metric—a natu-
ral linear connection will be available. If no such connection
is available or specified, we simply introduce a fixed linear
connection on B(M) in an arbitrary manner. (We may then
wish to impose as an additional restriction that the construc-
tion of the p-form o be independent of this choice of connec-
tion. However, our general framework permits a to depend
upon this choice.) Similarly, we also assume that the mani-
fold M is equipped with a fixed affine connection.

In the usual manner, the connection on B(M) allows us
to define the derivative of the field ¥, which may be repre-
sented as a tensor field on M with index structure V_ y*. It
satisfies the standard properties of additivity in y® and the
Leibnitz rule with respect to multiplication of y* by a func-
tion f= M- R. Note that at each xeM, V_, y* arises naturally
as a linear map from the tangent space V, of x in M to the
tangent space to the fiber at y (x). However, on account of
the vector bundle structure assumed for B(M), we may
identify the tangent space to the fiber at y(x) with the fiber
over x, thus allowing us to view V_ y* at xeM as a linear map
from V, to the fiber over x. This tensor field V,, y* provides
the notion we seek of the first derivative of y*.

For the purpose of defining second and higher deriva-
tives of y°, itis convenient to view V_, y as a cross section of a
new vector bundle B’ (M), whose fiber over each xeM is the
tensor product of the fiber of B(M) over x with the cotan-
gent space, V., *, of x in M. The linear connection on B(M)
together with the affine connection on M naturally give rise
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to a linear connection on this new bundle B '(M). Hence, we
may define the second derivative of y“—denoted V,V, y*—
as the first derivative of the cross section V,y* of B'(M).
[ Note that both the linear connection on B(M) and the af-
fine connection on M are needed to define the second deriva-
tive of y®, whereas only the linear connection on B(M) was
used to define the first derivative.] Continuing in this man-
ner, we obtain the notion of the & th derivative of y as a
tensor field with the index structure V, -V, y®. This yields
the desired notion of “a field and its derivatives™ which we
shall use below.

In fact, we wish to allow the p-form « to be considered
below to be a function of two types of fields. There will be a
“dynamical field” (or fields), denoted ¢#, such that do =0
for every cross section ¢, but we also wish to allow for the
possibility that ¢ depends upon an additional “background
field” (or fields), denoted ¢*, and da = 0 (for all ¢*) only
for a given, fixed, cross section ¥”. (A good example of such
a field ¢ is a fixed, background metric g, on space-time.)
Thus, we shall assume that the vector bundle B(M) can be
expressed as the direct sum of two vector sub-bundles
B, (M) and B, (M). In order not to introduce any ¢* de-
pendence when we take derivatives of ¢, we shall assume
further that the linear connection on B(M) of the previous
paragraph arises from linear connections defined separately
on B, (M) and B, (M). Thus a cross section y“ of B(M)
corresponds to the pair of cross sections (¢",¢*) of B, (M)
and B, (M) respectively, and the derivatives of these cross
sections separately—i.e., ~V,¢"andV, -V, ¢—are
well defined.

Note that if we antisymmetrize V, ---V, y® over any
pair of cotangent space indices a;, a;, the result can be ex-
pressed in terms of lower derivatives of y* as well as the
curvature of both the linear connection on B(M) and the
affine connection on M. The curvature of these connections
can be treated as a “‘background field”” and incorporated into
the field ¥". Thus only the totally symmetric parts
Via Ve, ¢, of the derivatives of the dynamical field ¢
should be viewed as independent quantities, i.e., all other
components of the derivatives of ¢* are determined by the
totally symmetrized derivatives together with background
fields. Note also that for any point xeM, we can choose a
Cross section ¢* such that the tensors ¢*,

V8.,V -+ V,,, ¢ take on arbitrary prescribed values at
X.

We are now ready to define the notion that a p-form a
{or other type of tensor field on M) is “locally constructed”
from the field y* and its first k& derivatives. The main aspect
of this notion is simply that at each xeM, there is defined a
smooth map which takes the tensors Yy*,

Vox% Ve, ,,A,)(“ at x to a p-form a at x. We write this
map as a(y*V,xy%....V, "V, ¥*). [As discussed above,
we take a to be a functlon of only the totally symmetrized
derivatives, since only these are independent. } In addition,
however, we wish to impose the restriction that a be con-
structed solely out of the quantities of which it is explicitly a
function [together with any additional structure specified in
the vector bundle B(M)], and that for all x,y €M, « is “the
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same function” of its variables at y as it is of its correspond-
ing variables at x. These further restrictions may be formu-
lated as follows. Given x,p eM, let L,:¥, -V, be a vector
space isomorphism between the tangent space ¥, to M at x
and the tangent space ¥, to M at y. Similarly, let L:F, -~ F,
be a vector space isomorphism between the fiber F, over x
and the fiber F, over y. We require further that L, and L
preserve any additional structure specified in the fiber bun-
dle. (For example, if the fiber space is given as the direct sum
of two subspaces as above, then we require L, to preserve
this direct sum structure. If the fiber at x consists of tensors
over V, we require L, and L to be such as to preserve this
relationship between the fiber space and tangent space.) The
maps L, and L, induce vector space isomorphisms of arbi-
trary tensor products of F, and ¥, and their dual spaces F, *
and V_* with the corresponding tensor product spaces at y.
We denote these induced isomorphisms by L *. Thus L *
maps any tensor at x (with arbitrary Greek and Latin index
structure) to a tensor with the same index structure at y. We
require that for all allowed L and L, we have for all cross
sections y°,

L*a(y*V,x%.
=a(L *y*

(0| . 'VGA)Xa)
,L *vaXa9 L v(a] o a,\)X ) (1)

where evaluation of this equation at point y is understood.
When x = y, this equation expresses the notion that a is
constructed solely out of the quantities of which it is explicit-
ly expressed as a function [together with any additional
structure specified for B(M) ], since it is invariant under any
isomorphism of F, and ¥, which preserves the fiber bundle
structure and leaves these quantities invariant. When x#y,
this equation expresses the notion that « is the same function
of its variables at y as it is of its corresponding variables at x.

A differential form o satisfying the properties of the pre-
ceding paragraph will be said to be locally constructed out of
the field y* and its first k derivatives. We emphasize that this
phrase carries the implication that Eq. (1) is satisfied.

We wish to study p-forms a that are locally constructed
out of a field y* = (¢",¢*) and finitely many of its deriva-
tives in the sense defined above, and which have the property
that for a given cross section ¥* and all cross sections ¢*, we
have da = 0. To begin we consider the case where « is linear
in ¢* and its derivatives. More precisely, we consider a of the
general linear form:

ul b
— i) [
=349, .,

i=0

a

bl
aa Vo, Ve 0. (2)
In this equation we have restored the space-time indices for

a and, as discussed above, we include only the totally sym-
metrized derivatives of ¢*. Each tensor field 4 7, ., *"™*

occurring in the sum is locally constructed from thé back-
ground field ¢ and its derivatives alone, i.e., it is indepen-
dent of ¢*. Note, in addition, that we have,

A@ by-b; =40 (by-b)) (3)

airdp © [av--ap] w

P

i

where square brackets denote antisymmetrization and, as
above, round brackets denote symmetrization.

The following lemma establishes that if such an « is
closed for all ¢#, then a = d B, where 8 is locally constructed
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out of ¥” and ¢*. As we shall see, the proof of the correspond-
ing result for the general case (where a is no longer assumed
to be linear in ¢* and its derivatives) relies heavily on this
lemma.

Lemma 1:Let M be an n-dimensional manifold and let a
be a p-form (with p<n) of the form (2). Suppose that
da = 0 for all cross sections ¢*. Then there existsa (p — 1)
form P that is locally constructed out of ¢* and the “back-
ground field” ¥*—and, indeed, B is of the same general form
as Eq. (2) except that the upper limit of the sum is k — 1—
such that a = d 8.

Proof: We take the derivative of Eq. (2),

k
vcaa|"'aﬂ - z VC{A (i)al"'apbl.”bil‘v(bl . .vbi) ¢”} (4)
i=0

By hypothesis, the left side of this equation vanishes when
totally antisymmetrized over the indices c,a,,...,a,. The
right side of this equation can be reexpressed as a sum of
terms multiplying the totally symmetrized derivatives of ¢*
up to order (k + 1). Since at each xeM each of the totally
symmetrized derivatives of ¢* may be specified independent-
ly, each of these terms must vanish separately when antisym-
metrized over a,,...,a,,c. We focus attention on the highest
derivative term:

— (k)
§01-~~apc =4 ay---a,
Then, we have,

”"“”*#V(ch,"'ka)W. (5)

Clarae) =0 (6)
We may write Eq. (6) in the form,
A (k)[a.~~~apb""bk|p|5dc]v(dvb. .. 'ka) ¢ =0, (7)

where 6. denotes the identity map. However, since, at any
xeM,V ,V, -V, ,#" can be chosen to be an arbitrary total-
ly symmetric tensor, Eq. (7) will hold for all cross sections
¢* if and only if we have,

A, B g0, (8)

We now contract Eq. (8) over the indicies ¢ and d.
When all of the terms resulting from the symmetrization and
antisymmetrization are written out, the index d will appear
on the tensor 8%, a fraction 1/(k + 1) of the time, and the
index ¢ will appear on &%, a fraction 1(p + 1) of the time.
Taking this into account, we obtain,

-a,

n k P
+ —
(k+D(p+1D k+DE+1D (k+Dp+D
- kp A(k)
(k+ D+

(k) byoby

ay-ay, I

clby by ob,)
” &,

e[y a =0 (9)
where the symmetries of 4 (k)ar~~aﬂb"”b‘# [see Eq. (3)] have
been used. Thus we have shown that if a is identically closed,
the coefficient 4 0, . .apb"“b‘#, of the highest derivative
term in the expression (2) for a must satisfy,

(k) by by
A — 1 A#

kp
_ (k) c(b. by by)
=——4 clay--a ’ ki/-ll(s ' a ]

(10)
n—p+k e
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We now prove our result by induction on the highest
number of derivatives, k, of ¢* appearing in Eq. (2). For the
case k = 0, Eq. (10) simply reduces to,

@ =
A, 0, =0,

a

(11)

i.e., there are no nontrivial, identically closed, locally con-
structed p-forms that depend linearly only upon ¢* and not
upon its derivatives. Choosing # = 0, we see that our lemma
holds for the case &k = 0.

Now, let £k = m>1 and assume that the lemma holds for
all k < m. Define the (p — 1) form r by,

m m cby by,
Tay-a, =mA ( )Cﬂz"~ap by b #Vbz...vbmqy‘.
(12)

Then 7 is manifestly locally constructed from ", ¢*, and
their derivatives, and, indeed, it is linear in the (m — 1)st
derivative of ¢*. Most importantly, it follows directly from
Eq. (10) that a and d have precisely the same coefficient of
the mth symmetrized derivative of ¢*. Now, let

o =ao—dr. (13)

Then, o’ is locally constructed from #* and ¢, is linear in ¢,
is closed for all ¢*, but o’ depends only on derivatives of ¢*
only up to order (m — 1). Hence, by the inductive hypothe-
sis, we have a’ = dp for some p locally constructed from ¢~
and ¢*, and their derivatives. Furthermore, p is of the gen-
eral form (2), with the upper limit of the sum now extending
to m — 2. Thus setting

B=7+p, (14)

we obtain the desired result. O

Note that this lemma not only establishes existence of
the (p — 1)-form B but it also gives an explicit constructive
procedure for finding B: One simply writes « in the form (2)
and defines the first contribution = to g by Eq. (12). Then
one subtracts dr from o and repeats this procedure until a is
reduced to zero. As already noted in the lemma, the B con-
structed by this means is linear in ¢* and its derivatives and
depends upon derivatives of ¢* only up to order & — 1
{where & is the number of derivatives of ¢* appearing in the
original expression (2) for a]. However, it should be noted
that if o depends upon derivatives of ¥* up to order s, then B
may depend upon derivatives of #* as high as order
s + k — 1, since each subtraction of a term of the form “dr”
in the procedure may introduce an additional derivative of
48

Unfortunately, the direct proof given in the lemma does
not appear to have an easy generalization even to the next
simplest case where a is a quadratic (rather than linear)
function of ¢* and its derivatives. Remarkably, however, a
simple proof for the general case can be obtained directly
from the following lemma, which is essentially a corollary to
the proceeding lemma. As we shall see in an application giv-
en at the end of Sec. III, this lemma is quite useful in its own
right.

Lemma 2: Let M be an n-dimensional manifold and let a
be a p-form (with p < n) which is locally constructed out of
the fields ¥*, ¢, and their derivatives in the sense explained
above, so that
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a = a('pvyva ¢v9---’v(al t ‘va_‘, ¢v,

¢#’Va¢#’.“’v(a‘ ”.Va,\)¢u)‘ (15)

Suppose further that da = 0 for all cross sections ¢*. Let
¢*(A) denote an arbitrary, smooth one-parameter family of
cross sections and write
da
aoa=—.
dA
Then thereexistsa (p — 1) formy that is locally constructed
from the fields ¥”, ¢*, and ¢* =d¢*/dA and their derivatives,
ie.,

Y= VGV, Y
NV o Vo, B
&l‘!Vaéw""’v(fh .-.vak—l)é}‘)’ (a7n

such that for the given 3 and for every one-parameter fam-
ily ¢#(4) we have at each 4,

d:d'y.

(16)

(18)

Proof: We calculate & using the chain rule. Since ¢ is A
independent we obtain contributions only from the depen-
dence of a on ¢* and its derivatives, so the resulting expres-
sion is linear in ¢* and its derivatives up to order k. We now
view @ as a p form that is locally constructed from ¢, ¢*, #,
and their derivatives, where we view these three fields as
independent. Since a is defined for all cross sections ¢* and
hence all one-parameter families ¢**(A1), it follows that ¢ is
defined for all ¢* and ¢*. Furthermore, since differentiation

1

d(¢v’va ¢v"“’v(a‘ .o .vax) .¢,V; /1¢#,Z,Va¢“,...,/lv(al ...V,,k) ¢F)

=dy (Vs Vo, Vo, VAG AV, B, AV oV 85V Ve Ve ),

with respect to A commutes with exterior differentiation, we
have,

da =0, (19)

for all 45“ (as well as for all ¢*). Thus & satisfies all the
hypotheses oflemma 1, with the role of ¥* in that lemma now
being played by ¢ and ¢*, and the role of ¢* now being
played by ¢*. The desired conclusion now follows immedi-
ately from that lemma. O

Note that if o« depends upon derivatives of ¢* up to order
k, then by Lemma 1, ¥ may depend upon derivatives of ¢“ up
to at most order k — 1, as already indicated in Eq. (17).
However, by the remark below Lemma 1, ¥ may depend
upon derivatives of ¢* as high as order r = 2k — 1.

We now state and prove our principal result.

Theorem: Let M be an n-dimensional manifold and let «
be a p-form (with p < n) which is locally constructed out of
the fields ¢, ¢, and their derivatives and is such that da = 0
for all cross sections ¢*. Suppose further that a = 0 for the
zero cross section ¢* =0, Then there exists a (p — 1)-form B
which is locally constructed from 3”, ¢* and their derivatives
such that o = d .

Proof By Lemma 2, we know that there exists a
(p — 1)-form v of the form (17) such that Eq. (18) holds
for all one-parameter families ¢*(1). We apply this result to
the family

#(A) = Ad",

where ¢* is an arbitrary cross section. We thereby obtain,

(20)

(21

where we have substituted the values ¢*(1) = A¢*and ¢* = ¢*in Eqgs. (17) and (18). Now we simply integrate Eq. (21) over
A from O to 1. Using the fact that & = 0 when ¢*=0, we find that the left side yields a evaluated for the fields ¢", ¢*. To express
the right side in the desired form, we define the (p — 1)-form 8 by

B¢V, 1//V9---sv(a, " -vav) ¢v;¢#’va¢'u’m’v(a. o 'Va,) #)

1
- f DAYV 0, Vo WAPAT AV oy FH VoV, V8
(]

Then B is locally constructed out of the fields #*, ¢* and their
derivatives. Since exterior differentiation commutes with in-
tegration with respect to 4, we obtain,

a=dB (23)
as we desired to show. O

Note that the proof of our theorem also gives a construc-
tive procedure for obtaining B in the general case. We simply
linearize o about an arbitrary field configuration ¢ and ap-
ply the constructive procedure of Lemma 1 to & to obtain y.
Then we obtain B by performing the integral (22). Note that
by the remark below lemma 2, 8 may depend upon deriva-
tives of ¢* up to order r = 2k — 1, even though a depends
upon the derivatives of ¢* only up to order k.

Finally, we comment upon the extent to which vector
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(22)

r

bundle structure for the fields ¥, ¢* is needed for our results.
There are three main places above where we made use of
vector bundle structure. First, we used a linear connection
(defined only for vector bundles) to define the notion of
derivatives of fields used in the formulation of our lemmas
and theorem. However, as indicated at the beginning s§; this
section, this use of vector bundle structure is not es ential,
i.e., one could formulate a suitable notion of derivatives of
fields in the absence of vector space structure for the fibers.
Second, Lemma 1 is formulated for the case where a is linear
in ¢* and its derivatives, a notion that makes sense only when
vector bundle structure is present. Thus vector bundle struc-
ture clearly is essential for Lemma 1. However, the applica-
tion of Lemma 1 to the proof of Lemma 2 uses this vector
bundle structure in an essential way only with respect to the
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“linearized field” ¢*. Such a linear structure for ¢* is always
naturally present (even if the field ¢* fails to have vector
bundle structure), so the assumption of vector bundle struc-
ture for ¢ and ¢ is not essential for the formulation and
proof of Lemma 2. Finally, vector bundle structure for ¢*
was used to define the general prescription (20) for the one-
parameter family used in the proof of the theorem. This fam-
ily satisfies two key properties: (i) It provides a homotopy of
any cross section ¢* to a given, fixed cross section (in this
case, the zero cross section). (ii) It is entirely “local” in
character in that ¢*(A) and its derivatives at point xeM de-
pend only upon the corresponding value and derivatives of
the original cross section ¢* at x. Both of these properties
play an essential role in the proof of the theorem. [If proper-
ty (ii) did not hold, we would be unable to write down a
formula like Eq. (22) that defines B as a local function of ¢*
and its derivatives. ] Thus for our theorem, in order to elimi-
nate the assumption of vector bundle structure for the field
¢*, it would be necessary to introduce additional assump-
tions that would ensure existence of a one-parameter family
satisfying these two properties.

lil. SOME APPLICATIONS

Several representative applications of the theorem of the
previous section were already mentioned in Sec. I. In this
section, we will discuss some further aspects of the first two
of these applications.

Recall that the first application was to the proof of the
gauge invariance of a charge Q associated with a gauge de-
pendent but identically closed (i.e., closed in all gauges) p-
form . Here, it is assumed that the gauge transformations
are generated by an arbitrary cross section, ¢*, of a vector
bundle. In the case where the charge is obtained by integrat-
ing over a compact boundaryless surface = the theorem of
the previous section directly implies

0(#1 - Q[0]
- [ i1 -oto = [a=[ap=0 @b

thus giving a very simple proof of the gauge invariance of Q.

It is worth noting, however, that when = is compact the
gauge invariance of Q also can be proven (at least in certain
cases) in the following manner.” Consider, first, the case
where X can be deformed in M to a disjoint surface =’ such
that U2’ comprises the boundary of a compact region. We
wish to show that for any ¢*, we have Q[¢*] = Q[0],
where Q= f; ®. To do so, we define the charge Q'=(; @
associated with the “deformed surface” X’ and choose an
“interpolating field” ¢* so that ¢* = ¢* in a neighborhood of
3 but ¢* = 0in a neighborhood of 3. Since [ #*] is closed,
we have

0'1#1 = ol#) = [ ol =017

However, since @ is locally constructed from the fields upon
which it depends, we clearly have

Q'[¢*] =’[0] and Q[¢*] =Q[¢"].

Finally, since o[0] also is closed, we have

(25)

(26)
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Q'[0] =Q[0]. (27)
Equations (25)-(27) prove the desired result,
Ql¢]=gl0], (28)

for the case we have been considering, namely, where X and
3’ are disjoint and SUZ' comprises the boundary of a com-
pact region. In some cases, however, it may be impossible to
deform X to a surface 3' that does not intersect . Neverthe-
less, it still should be possible to prove the gauge invariance
of Q by applying the above type of argument to successive
deformations of 2, where the intersection points are varied
in the successive deformations.

Although the above argument succeeds in proving the
gauge invariance of Q for compact 3 (at least whena X’ can
be chosen disjoint from X) without appealing to our
theorem, for the case of noncompact X the analysis of the
gauge invariance of Q using our theorem can have a definite
advantage over the corresponding analysis using the above
type of argument. Namely, to treat the noncompact case by
means of our theorem, we let 3% bound a compact region of
2, and then take the limit as 33 “goes to infinity.” If
S35 B—01n this limit for all allowed ¢*, then it follows from
Eq. (24) that Q will be gauge invariant; if not, Q will be
gauge dependent. Even if one does not employ the construc-
tive procedure described in the previous section to obtain an
explicit formula for B, it often will be possible to prove gauge
invariance (for the given asymptotic conditions on the
fields) by using the fact that B islocally constructed from the
fields and their derivatives together with some knowledge of
the kinds of terms that can appear in B. By contrast, if the
alternative argument is used, one must analyze the asympto-
tic behavior of a for an “interpolating field” ¢* over a sur-
face joining d% to d%’, and it is likely to be more difficult to
obtain as sharp a criterion for the gauge invariance of Q.

We turn now to the second application discussed in Sec.
I, namely, to the issue of obtaining an analog of magnetic
charge for metrics, i.e., an identically closed (but not always
exact) p-form o (with p < n) which is defined for all metrics
(of a given signature) and is locally constructed from the
metric and its derivatives. We discuss that application
further here since it provides a good illustration of how the
results of Sec. II can be applied in a case where the fields
under consideration do not possess a natural vector bundle
structure.

The metrics of a given signature on a manifold M are, of
course, a sub-bundle of the vector bundle of tensor fields of
type (0,2). However, the fibers of this sub-bundle do not
have a natural vector space structure, and o is defined only
for cross sections of this sub-bundle. In particular, the zero
cross section does not define a metric, so o will not be defined
for the one-parameter family, Eq. (20), used in the proof of
the theorem. However, this difficulty is easily remedied for
the case of Riemannian metrics, since the Riemannian met-
rics at any point xeM comprise a convex subset of the tensors
of type (0,2) at x. Hence, we can simply fix an (arbitrarily
chosen) Riemannian metric g‘®’,, and instead consider the
one-parameter family g, (1) =Ag,, + (1 —4)g'¥,, for
A€[0,1]. Each member of this family is a Riemannian met-
ric. When applied to this family, the proof of the theorem of
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the previous section now yields the result that
0[8.] — 0[8Pa] is of the form d B, where B is locally
constructed from g,, and g'®_, and their derivatives. In par-
ticular, this implies that the “charge” Q obtained by inte-
grating ¢ over a p-dimensional compact surface must be
metric independent, ie., for all g, we have,
Q [gab] =Q [g(O)ab]‘

The situation is somewhat more interesting for the case
of Lorentzian metrics, which do not comprise a convex set.
We can obtain some (fairly weak) results by applying the
argument of the previous paragraph to certain convex sub-
sets of Lorentz metrics, e.g., those which possess a fixed
timelike covector w, in common. However, for the issue at
hand, a much stronger result can be obtained by appealing to
Lemma 2 rather than the theorem of the previous section.
(As mentioned at the end of Sec. II, vector bundle structure
is not needed for Lemma 2.) Consider two Lorentz metrics,
g?,., and g’ ,, which in a neighborhood of = can be joined
by a smooth homotopy of Lorentz metrics g,, (1). Let Q(4)
be the charge of o[ g,, (1) ] for the compact surface 2, i.e.,
Q(A) = f50[8.(A)]. Then, according to Lemma 2, we
have,

d—Q=f¢=de=o,
dA b b

which immediately implies that Q [g”,,] =Q[g" . ]
that is, @ can depend only upon the homotopy class of the
metric. Note that while this argument also implies that
o8V, ] —o[g?,, ] is exact, it does not imply that it can
be expressed in the form d 8, with B8 locally constructed from
8" .5s 8% by and their derivatives.

The fact that any gravitational analog of magnetic
charge must be metric independent in the case of Rieman-
nian metrics and must depend only upon the homotopy class
in the Lorentzian case puts strong restrictions upon any can-
didate expression for ¢. For example, from merely the invar-
iance of Q under a constant scale transformation of the met-

(29)
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ric, g, — kg, it follows that any identically closed p-form o
which is a polynomial in g,,, g%, the curvature of g, and
the covariant derivatives of the curvature must have degree®
N = pifitis to have a possibility of yielding a nonidentically
vanishing charge. (Here, N is defined as 2r + ¢, where r is
the total number of curvature tensors and g is the total num-
ber of covariant derivatives in each term. ) Since Unruh’® has
explicitly ruled out all candidate polynomials with N<5 for
Lorentz metrics in four dimensions and only the case p<3 is
relevant in that case, it follows that no polynomial expres-
sion for a gravitational charge exists for 4-dimensional
space-times. The k th Pontrijagin class (see, e.g., Ref. 10)
provides an identically closed 4k-form that is polynomial in
the curvature, thus providing nontrivial gravitational
charges in dimensions greater than four. It seems possible
that the Pontrijagin classes provide the only nontrivial ex-
amples of gravitational charges, but an analysis of whether
this is the case is left for future investigations.
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For a large system of independent diffusing particles, each of which is killed at a certain space-
time dependent rate, the conditional distribution of surviving trajectories in a bounded time
interval is computed, given the approximate form of the initial and final empirical distribution
of surviving particles. This generalizes a result for the Brownian case without killing, which
was first obtained by Schrodinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math. K1. 1931,

144].

I. INTRODUCTION

Let p(s,x;t,y) be the fundamental solution of the heat
equation (d/ds+ 1A +c)p=0, where c=c(sx) is a
bounded, continuous scalar field satisfying a Holder condi-
tion with respect to x on [0,7' ] X R (these conditions actu-
ally guarantee the existence of p on [0,T], cf. Friedman,' p.
23). Consider a probability measure Q* on path space
O = C([0,T],RY), whose finite-dimensional distributions
are of the form [where (X,) denotes, here and throughout,
the canonical process on €]

o* [Xo €dx,X, €dy,,....X, €dy, ,XTedz]
=p(0.x;,.1) Pt yn; 1200 (dx)dy, - - -dy, iy (dz)

for some measures y,, 4 on R It turns out that Q* is
Markovian; in fact, as proved by Jamison,” it is the only
Markovian among all “reciprocal” (i.e., two-sided Markov)
distributions Q with two-sided transition density

[1/p(s,x;u,z) 1p(s,x;t,- ) p(t, ;u,z)
and with the same initial and final distribution as Q *.

In the case ¢ = 0, Schrédinger® showed that Q * yields
the most likely ‘“intermediate” (one-time) distributions for
a large number of independent and identically distributed
(i.i.d.) particles with given (or measured) initial and final
empirical distributions. Féllmer* gives a modern and rigor-
ous proof of this result in terms of large deviations. Consis-
tent with Jamison® and Follmer® and following Nagasawa®
we will call Q * a Schrodinger process or Schrodinger bridge
also in case of nonvanishing c.

Wakolbinger’ showed that among all not necessarily
Markovian diffusion processes with drift (3,), diffusion
constant one, and prescribed initial and final distributions,
Schrodinger’s process minimizes the action functional

E [LT(%Bf — c(t,X,))a’t].

Related variational characterizations have been obtained by
Nagasawa,® Zambrini,” Cruzeiro and Zambrini,'® Blan-
chard et al.,'* Kime and Blaquiere,'? Dai Pra and Pavon;"?
see also the references given there. In the present paper we
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give an extension of the Schrédinger-Follmer result to the
case of nonvanishing c.

Consider a large number of i.i.d diffusing particles, each
being killed independently with rate M — ¢(s,x), where the
constant M is some upper bound of ¢. Then Schrodinger’s
process yields the most likely distribution of surviving trajec-
tories, given the initial and final distribution of surviving
particles. (The case ¢ =0, M =0 corresponds to Schro-
dinger’s result.)

Il. SCHRODINGER BRIDGES

The basic object will be a strictly positive transition den-
sity p(s,x;t,y) obeying the Chapman-Kolmogorov equa-
tions

fp(s,x;t,y)p(t,y;u,z)dy = p(s,x;U,2)

for all x,zeR*0<s<t<u<T, (N

but not necessarily obeying

fp(s,x;t,y)dy =1 (2)
Equation (1) implies that for all x,zeR%:
[1/p(0,x;T,2) 1p(0,x;8,,p, )p(2,,9133592)
o p(tyasT2)dy, -~ +dy, (3)

defines a consistent system of probability measures. We will
assume that for all x,zeR there exists a probability distribu-
tion P2 on Q: = C([0,T J;R?) having (3) as its finite-di-
mensional distributions and obeying Pi[X, =x,X,
=z]=1.
Definition 1: Any probability measure P on () which is of
the form

P= J- P:y(dx,dz)

for some probability measure v on R? X R? will be called a p
bridge.

[In the terminology of Jamison® (resp. Zambrini’),
(X,,P) is a reciprocal (resp. Bernstein) process with recipro-
cal (resp. Bernstein) transition density [1/p(s,x;u,2) 1p(s,
x;t,)p(t,5u,2).]
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Proposition 1 (Jamison,” Theorem 3.1, Zambrini,® -
Theorem 3.3): A pbridge Qis Markovian if and only if it is of
the form

Q=fP:uo (dx0)p (0,5 T2 (dz) )

for some measures u,, 4, on R%

Definition 2: A Markovian p bridge Q with marginals
Q[Xoe' ] =vo, Q[Xr€'] =v, will be called a Schro-
dinger process (or Schridinger bridge) specified by p, v,,
and v;.

Remark: Projection of (4) to times 0 and T, respective-
ly, yields the so-called Schrédinger system:

vo (dx) = p, (dx) fﬂr(dZ)p(O,X;T,Z),
(5)
vy(dz) = pr(dz) fﬂo (dx)p(0.,x;T,z2),

where v,, v, are the initial and final distributions of the
Markovian p bridge Q. Hence, for any given v, v, obvious-
ly the following assertions are equivalent: (i) There exists a
unique Schrodinger bridge specified by p, v,, and v;. (ii)
There exists a solution y,, & ;- of the Schrodinger system (5),
and all its solutions are of the form cu,, (1/¢)i+, ¢>0.
Jamison® shows that, for any choice of v,, v, (ii) holds
under the assumption that p(0,;7,) is continuous.

Il. SCHRODINGER BRIDGES AND MINIMAL ENTROPY

Let o be a fixed probability measure on R% assume that
k: ﬁja(dx)p(O,x;T)Z)dZ< 0. (6)

Put u(dx,dz): = o(dx)p(0,x;T,z)dz and P:.= §Piu(dx,
dz); note that assumption (6) implies that Pis a finite mea-
sure on () with total mass P(Q) = u(R? X R“) = k. We put
P: = [1/P(Q)]P, and recall that, for any two probability
distributions Q,, @, on (1, the relative entropy of @, with
respect to Q, is defined by

do,
H(Q1’Q2)1=J(]n dg )dQI

[where H(Q,,0;): = « if @, is not absolutely continuous
with respect to Q, ].

Proposition 2: Let v, v, be given probability measures
on R?.

The following are equivalent. There exists some proba-
bility measure v on R? X R? with marginals v,, v, and

J(ln—dl)dv< 0. (7
du

There exists some probability measure Q on £ with mar-
ginals _
Q[Xoe'] =, Q[Xre'] =V, and H(Q,P) < .
: (8)
In this case [i.e., if (7) and (8) hold], the minimization
problem H(Q,P) = minimum over the probability measures
Q on ) with marginals

QXoe ] =, QX7 ] =vr

has a unique solution Q *, and Q * is a Schridinger bridge
specified by p, v, and v
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Proof: (1) Let vbe asin (7), and put

Q= J P2 v(dx,dz).
Since

PZu(dx,dz),

d—g X)) = k%v— (Xy,X7) Q— as., which shows that

Q obeys (8). :

(2) Conversely, let @ be as in (8), put
v(dx,dz): = Q [ X,edx,X edz], and denote the disintegra-
tion of Q with respect to (X,,X7) by (Q2). Since

H(QP) = f (ln dZ;k)dv+ f (ln Zg")inv(a’x,dz),
9

and since by assumption H(Q,P) < «, and, moreover, the
relative entropy is always non-negative, we infer that

lnk+f(lnﬂ) dv< w;
dp

hence v obeys the requirements of (7).
(3) With Qle same notation as in step 2, it follows from
(9) that H(Q,P) will attain a minimum if and only if

J (ln dv )dv
du/k

attains a minimum agnd QZ = P2 for v almost all (x,z)
[since only in this case the second summand in (9) attains its
minimum, namely zero]. Now assume that (7) holds. Then
according to Follmer* (Sec. I1.1.3) there exists, among all
probability measures v on R X R? with marginals v,, v, 2
unique probability measure v* which minimizes

f (m dv ) dv,

du/k
and it is of the form

v¥(dx,dz) = f(x)g(2) (1/k)u(dx,dz).
Thus it follows that among all probability measures Q on
with marginals Q [X,€'] =v,, Q [Xr€'] = v there is a
unique one which minimizes H(Q,P), and it is of the form

z
X

o* =fP§v"‘(dx,dz)

= f Pif(x)g(z) —]l;- o(dx)p(0,x;T,z)dz.

Hence, by Proposition 1, @ * is a Schrédinger bridge speci-
fied by p, v, and v ]

IV. THE FEYNMAN-KAC CASE: SCHRODINGER
BRIDGES AND LARGE DEVIATIONS

In an important class of examples, P and hence also the
Schrdodinger bridge occurring in Proposition 2 admit a natu-
ral probabilistic interpretation.

Let ((X,)ocsc 7Py ) be the canonical model of an R? val-
ued Markov process with continuous paths, generator G,
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and strictly positive transition densities. Let ¢ = ¢(s,x) be a
given bounded measurable scalar field, put

T
P = exp[f c(s,X, )ds]-PX
0

and write p = p(s,x;t,y) for the transition densities of P
which remain to be strictly positive but do not obey (2)
unless ¢ = 0. Using the notation of Secs. II and III we have

(10)

P= J P2o(dx)p(0,x;T.2)dz,

where o denotes the distribution of X, under P,. Note that
(6) is valid due to boundedness of c.

By the Feynman-Kac formula the semigroup belonging
to p has generator G, + ¢(s,- )1, and under suitable smooth-
ness assumptions on G, and c¢(s,x), p is the fundamental
solution of

2 Gtep
—+G =0
(8s+ e

(cf. the remark at the beginning of the Introduction); this,
]

(1n

however, will not be needed to derive Theorem 2 below.

Let M be an arbitrary fixed upper bound of ¢, and let W
be the process obtained by killing (X,P,) with rate
M — c(s,X,;) between times 0 and 7. We recall that
W = (W) ocs<s» Where § is the time until which W survives,
is constructed on the probability space (X X R +P), where
P. = P, X and 7is a unit parameter exponential distribu-
tion, by putting

X)) = inf[r>0: fr (M — c(s,X,))ds = t] AT
o

W:=X, 0<s<{((X,0).

The probability measure P = [1/P(2) ] P is now character-
ized as follows.

Proposition 3: Pis the distribution of W conditioned that
it survives up to time 7. More precisely, for any measurable
subset B of € there holds P[B] = P[X<B |&=T17].

Proof: For any Borel set B of trajectories we have, using
(10)

T T -1
P(XeB|(=T]= JPW(dX) 1, (X)exp[ —MT+ f c(s,X, )ds}(f PW(dX)exp[ —MT+ f c(s,XS)ds])
0 0
p ’ ! ' _PB) _3
= w (dX) 15 (X)exp c(s,X,)ds Py (dX)exp c(s,X,)ds = ——— = P(B). [ |
o ) P(Q)

We will call P the distribution of surviving trajectories. For
the rest of the paper, we put p(dxdz):
= o(dx)p(0,x;T,z)dz, and let v,,v; be two probability
measures on R? which obey (7). Proposition 2 now trans-
lates immediately into the following.

Theorem 1: Among all probability measures Q on 2
with marginals Q [X,e'] = v,, Q [Xr€'] = vy, there ex-
ists a unique Q * that minimizes the relative entropy with
respect to the distribution P of surviving trajectories. More-
over, Q * is a Schrodinger bridge specified by p, v,, and v .

In order to obtain a statement on empirical distribu-
tions, we have to relax the side conditions on the “exact
knowledge” of initial and final distributions.

Proposition 4: For any fixed € > 0, there exists a unique
solution Q¢ of the minimization problem H(Q,P) = mini-
mum over the set 4 € of those probability measures on Q
whose marginals Q [ X,€" ] and Q [ X< ] have a Prohorov
distance less than or equal to € from v, and v, respectively.

Moreover, Q € is a Schrodinger bridge specified by p and
its marginals Q“[ X,€' ], Q[ X,€].

Proof: (1) We put

H(A<P): = inf H(Q,P).
Qe

Since 4 € is convex and H(A €,P) <H( Q * P) < o0, (where
Q* is as in Theorem 1), there exists a uniquely determined
probability measure Q  on () with the property that every
sequence (P,) in A € with H(P, ,7’) —-H(A4 ‘,7’) converges
toward Q€ in variation (cf. Csiszér,'* p. 769; there, Q¢ is
called the generalized I projection of P on A4 ). A fortiori,
any such sequence (P, ) converges weakly toward Q°¢, and
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|
since 4 € is weakly closed, we infer that Q “ed °.

(2) Combining formulas (1.5) and (1.6) of Csiszar,'*
one obtains that H (Q‘,f’) = H(A ,P). On the other hand,
any Qed € with the property H(Q,P) = H(A ©,P) necessar-
ily coincides with Q € due to uniqueness of the generalized 7
projection.

(3) Denoting the marginals Q ‘[ X, ] and Q[ X,€* ]
by v§ and v%, respectively, we consider now the minimiza-
tion problem H/( Q,I~’) = minimum over the probability mea-
sures Q on ) with marginals

Q[Xoe ] =15, Q[Xre] =15
We know from Proposition 2 that the solution (Q €)* of this
problem exists and is a Schrodinger bridge specified by p, v§
and v%.. Since H{((Q ‘)*,7’)<H (Q ¢ P), we infer from step 2
that (Q €)* and Q © are equal. [ |
Given a sequence X L, X 2,... ofi.i.d. random trajectories,
each with distribution P, a set IT of probability measures on
€ said to have the Sanov property with respect to P if
Ly 6X,-eII] — — inf H(QP).
n < o<1l
By Sanov’s theorem (see Deuschel and Stroock,'® p. 70}, a
sufficient condition for II to have the Sanov property is

lim -~ In Prob

n—oo N

inf H(Q,P) = inf H(QP),
Qeint (1) Qecl(Il)

where int(IT) and cl(IT) denote the interior and the closure
of IT with respect to the weak topology.

Proposition 5: The set 4 € defined in Proposition 4 has
the Sanov property with respect to P except possibly for
countably many €> 0.

(12)
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inf H(Q,P) and

Qeint(A°)

Proof: The functions f(e):=

g(e): = inf H( Q,T’) both are nonincreasing and hence
Qecl(A4 )
are continuous except possibly for countably many €. Now

let € be a continuity point of f. Since cl(4 ©) is a subset of
int(A4 ®) for all € < 8, then f(5) <g(e) for all € < 8, and thus
also f(€) <g(¢€). The inequality f(€) >g(€) is obvious. Hence
IT: = A4 € obeys (12), and therefore has the Sanov property
with respect to P. |

The above results together with Theorem 1 of Csiszar'*
(and the remarks following that theorem) imply immediate-
ly the following result.

Theorem 2: Consider N i.i.d. particles in R?, each with
initial distribution o, moving according to G, and being
killed independently with rate M — ¢(s,x), where the con-
stant M is some upper bound of ¢. Then the “surviving trajec-
tories” X ',...,.X " are, for N— o, asymptotically quasi-inde-
pendent under the condition

p(‘l— Z 6Xi’v())<€’ f)(i Z 5X{"VT><6’
K 1 o n = 7

and their limiting distribution (in the sense of Csiszar'* ) is a
Schrodinger bridge specified by p and some v§ and v% such
that p(v,,v ) <eand p(v,v%) <€ (where p denotes the Pro-
horov distance, and where €> 0 is chosen such that the set
A © defined in Proposition 4 has the Sanov property with
respect to P; cf. Proposition 5. For the notion of asymptotic
quasi-independence and limiting distribution, we refer to
Csiszar, ' Definition 2.1).

We conclude by formulating a corollary to Theorem 2 in
a more qualitative way.

Let p be a fundamental solution of (11), let o be some
probability  distribution on RY  put  u(dx,
dz): = o(dx)p(0,x;T,z)dz, and let v, v; be given probabili-
ty distributions on R? obeying (7). Consider N i.i.d. parti-
cles, each with initial distribution o, moving according to G,
and being killed independently with rate M — c(s,x), where
M is some fixed upper bound of ¢. Then, for large N, the
conditional distribution of the empirical distribution of sur-
viving trajectories, given that the initial and final empirical
distributions of surviving trajectories are close to v, and v,
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respectively, is approximately a Schrodinger bridge specified
by p and initial and final marginals which are close to v, and
v, respectively.
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This paper proposes an approach via the maximum entropy principle in order to determine the
nonstationary solutions of the Fokker-Planck equation with time varying coefficients. The
constraints are not the state moments (as usual) but their dynamic equations. The maximum
entropy principle herein utilized is a slight extension of Jaynes’ principle, which involves the

“path entropy” of the stochastic process.

I. INTRODUCTION

The Fokker—Planck equation (FP equation in the fol-
lowing) is a basic tool of theoretical physics, and in many
problems such as, for instance, the analysis of the effects of
fluctuations close to the transition point, it is more suitable
than the Langevin or It0 equation. It is also powerful in the
study of stochastic porcesses, and for all these reasons, it is of
paramount interest to have efficient methods for obtaining
the explicit expression of its solution.

Consider the one-dimensional FP equation

d, p(x,t)= —a,.[flxt) p(x,t)]

+ 19, [ g(x,t) p(x,2)], (1)

where J, (resp.d, ) holds for the partial derivative w.r.t. ¢
(resp. x) and d,, represents the second partial derivative
w.r.t. x; then loosely speaking, there are two main useful
techniques that are utilized to find its solutions.

The first one (see, for instance, Risken)' considers the
special case when f(x) and g(x) are independent of time,
and it consists of using eigenfunction expansions. In short, it
works as follows: First, by making a suitable change of vari-
able x’ = y(x), one transforms Eq. (1) into

ApWt) = —3,(f) p(nt)) +19,,p(nt) (2)

and then one looks for nonstationary solutions of (2) in the
form

b)) =p(yexp{ — A}, (3)

where p(y) and A are the eigenfunctions and eigenvalues of
the FP operator ( — 0, f+ 1d,,), with appropriate bound-
ary conditions.

The second technique (see, for instance, Kree and
Soize)? refers to the general case when f(x,z ) and g(x,t)
depend explicitly upon time. Shortly, one first considers the
function g(x,t ) defined as

g(x,t):=p(xt)[4(x)] 7, 4)
$(x): = (2m)~%exp{ — x?/2}, (5)
and one expands ¢g(x,¢ ) in the form
iy H;(x)
qgxt) = g;(t)— ) (6)
jz'o ! N
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where H;(x),j=0,1,2,... denotes the Hermite‘s polynomi-
als [ie, defined by the equation H,(x)g(x)
= ( — 1Y(d /dx)-¢(x)]. Second, we substitute (6) into
(1), we integrate over R w.r.t. x, and we so obtain an infinite
set of first-order linear differential equations to calculate the
q; (t)’s.

The troublesome point with this approach is its conver-
gence. Numerical experiments have shown that, as expected,
the convergence is as much better as p(x,? ) is close to the
normal law, but when it is not the case, this convergence
becomes questionable.

So, as an alternative, we shall herein suggest a new ap-
proach for solving the FP equation, which is mainly based
upon the use of Jaynes* maximum entropy principle. One of
the main advantages of this technique if that it provides the
solution in a compact form which is physically more mean-
ingful than the expression by means of series expansions and
eigenfunctions, because it is defined directly in terms of the
elements of the FP equations.

Il. THEORETICAL PRELIMINARIES
A. A characterization of the Fokker-Planck equation
1. Preliminary notations

Let x(z)eR ", x™: = (x,,X5,...,X, ) denote a stochastic
process with the probability density p(x,t ), and the incre-
ment z: = x(¢ + 7) — x(¢ ). Define the conditional proba-
bility density ¢(z,7/x,t ) of z at ¢ + 7 given the state x at ¢;
define the multiindex k: = (k,,k,,....k, ), k; >0 for every i,
define

@ (x): = xbixhe o xn (N

and the moments
my (1): = {0*(x)). (8)

The conditional expectation of w*(z) given x at ¢ will be
denoted by (w*(z)/x,t) and furthermore the expression
|k|>K will be shorthand for k, + &, + -+ + k,>K. Wecan
now state the following results.

Proposition 2. 1: Consider the continuous stochastic pro-
cess above, and assume that it is Markovian and satisfies the
following conditions:
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(zi/xt)=71f(xt); i=12,.n, (9)
(z;z;/x,t) = 71g;(x,t); §j=12,..n, 10)
(@*(2)/x,t) =0(7); |k|>3. (1

Then the moments m, s are given by the following dynami-
cal equations:

m(t)={fi(xt)), i= (8,0 0u) |il=1

(12)

iy (1) = <2 fi8i0 (x) + % ﬁ: 2": g,-,-t?.-,-w"(x)>

i=1 i=1j=1

=P (xt)), k32, (13)
with the notations d,: = d/3x; and d;: = d%/dx,; dx; and
where §; is the Kronecker delta. [ |

Proposition 2.2: Assume that the following conditions
are satisfied

(A1) Conditions of proposition (2.1);

(A2) fi(x,t ) and 3,f; (x,t ) are continuous and bound-
ed for every pair (i, j) and every (x,f )eR"*;

(A3) g;(x,t), J, g;(x,t),and dy, g;(x,t ) are contin-
uous and bounded for every quartet (i,j,k,s) and every
(x,t)eR" "1,

Then the moment equations (12) and (13) yield the FP
equation

dp=—3 AU+ 3+ (14

i=1j=

as a consequence, and conversely, the FP equation provides
these moment equations. |

Proposition 2.3: Assume that the following conditions
are satisfied

(B1) Conditions of proposition (2.1);

(B2) for every i, f;(x,t ) is a polynomial in the form

K,

*f (D)o (%),

k=0

filx,t) = (15)

where f; () is bounded, |f; (1) |[<M < + o, 0<t< + 0;
(B3) for every pair (iy), g;(x,t ) is a polynomial in the
form

Ky
gi(xt) = Z i (2w (x), (16)
tkl=0

where the g, (¢) are bounded.

Then the moment equations (12) and (13) yield the FP
equation as a consequence and conversely, the FP equation
provides these moment equations. [ ]

For the proof, see for instance Ref. 4.

These results show that, under some mathematical as-
sumptions which are not so much restrictive at all, thereis a
complete equivalence between the FP equation (14) on the
one hand, and the moment equations (12) and (13) on the
other hand, in such a manner that, in the following, we shall
use the latter to solve the former.
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{li. SOLUTION VIA THE MAXIMUM PATH ENTROPY
PRINCIPLE

A. Extension of the maximum entropy principle

Owing to the fact that the constraints (14) and (13)
explicitly involve the derivative of the moments, that is to
say d,p(x,t )}, we shall first generalize the maximum entropy
principle as follows.

1. Maximum path entropy principle

Assume that all we know about a stochastic process
x(t) is a set of constraints on its probability density p(x,? ).
Then as an estimate of p(x,t ), we shall select that p(x,? )
which satisfies these constraints and maximizes the entropic
function

H(X;t't"): = —f J' p(x,t)Inp(x,t)dxdt (17)
t R"

=J H(X,t )dt, (18)

for any arbitrary interval [¢',¢"]. ]

The meaning of this statement is quite understandable.
For a given fixed interval {¢',t "], if H(X,t ) is maximum for
anyte[t',t"], then H(X; st',t ") isalsomaximum. But the con-
verse is not necessarily true, and this is the reason why we
require that [¢’,¢ "] be arbitrary.

Let us also remark that, by using physical and math-
ematical arguments, we’> have shown that H(X:t't")/
(¢” —t') can be considered as the informational engropy of
the portion of stochastic trajectory generated by x(¢ ) on the
interval [¢',t"]); clearly, it is a path entropy H(X;t',t").

B. General expression of the probability density
estimation

1. Preliminaries

(i) In order to solve the FP equation (14), we shall
rewrite the moment equations (12) and (13) in the form

J [xiatp(x’t) —fi(xt)p(x,t )]dx =0, (19)
R

f [@*(x)3,p(x,t ) — py (x,2 )p(x,t ) ]dx =0,

R

2<|K|<K, (20)

where X is the order of the approximation, and we shall
consider (19) and (20) as being the constraints.

(ii) Next, we are estimating the solution of the partial
differential equation (14), and for a given initial p(x,?,), this
solution is completely well defined at the instants ¢’ and ¢ ”.
As a result, we shall add the supplementary condition that:
p(x,t') and p(x,t ") have given fixed values.

With these prerequisites, we shall proceed as follows.

Step I: By using the Lagrange multipliers Zo(t ), A: (L),
and p, (¢ ), we shall maximize the quantity [indeed we have
the additional constraint § p(x,t )dx = 1!]
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J- f [—plnp+fiop+ Y A (1) (x;8,p — fip)
R” Jt

! i=1

K

+ i (8 W * (X)) p — Pkp)]dt dx=1L

k| =2

(21

and the corresponding variational condition of optimizaton
is

—f f [lnp+1+/"10(t)+2/1,-(t)f,~+2pk(t)Pk]
R"Jt' i k
X8p(x,t )dtdx+f J [z/l,-(t )x;
R"J¢’ i

+ X m(t )w"(x)]&(a,p(x,t))dt dx=0. (22)
k

Step 2: In order to manipulate the variation 8(d,p(x,t )),
we shall write, for instance

J‘ J 1y (£)Y* (x)8(3,p(x,t ))dt dx
e )
= [ @m0
R
—J. i (£)8p(x,t ) }Ydx dt

= ——f i (2" (x)8p(x,t Ydx dt. 23)
R"Jt*

Step 3: Substituting this result into (22), we obtain the
general form of the estimate p (x,# ) which is

Pr(x,t) =CXP{ - [/lo(t) + 2 A (1) fi(xt)

i=1

K

+ I-‘k(t )Pk(x,t)
=2
n . K
+ 3 At)x + ﬂk(t)a)“(x)]},
= ki=2
' | (24)
where A,(¢ ) holds for
Ao(t): =1+ Ao(2). (25)

C. Determination of the Lagrange multipliers

Step 1: In order to determine the explicit expressions of
the vectors

AT )= (Ao ),A,(2),..4, (1))
and

pI( )= (g (2 )y, (1))
we shall substitute (24) into the constraints (19) and (20)
to obtain a nonlinear vector differential equation in the form
AUAWA + B(tAu)A + C(LAA + D(tA W)L

+ E(tAu)p + F(tAu)p = b(t,A,u), (26)

where the matrices 4,B,C,D,E,F, and the vector b are de-
fined in terms of the expected values of functions which de-
pend upon both x and ¢. For instance one has
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bT(tAu): = (' (i (3,8 ) )y (P, (3,2 )),..).

Step 2: The determination of the solution of (26) is es-
sentially a numerical computation problem, and for in-
stance, one can use the iterative procedure defined by the
equation

A(tj‘n9,u'n)in+] +B(t’/ln!ﬂn);!'n+l
+ C(t’/ln’:u'n )/{n+l +D(t’ﬂ’n’:un )ﬁn+l

+ E(tA o, M o1 + F(LA, 1,0, w1 =btA,.u,),
(27)
Step 3. Initial conditions for A(t) and u(t): In order to
determine these parameters, we shall proceed as follows.
(i) Let us refer to the initial condition p,(x): = p(x,1,)
and let us assume that one has exactly

n K
Po(x) =eXP[ -y ax,— ¥ Bkw"(x)], (28)
i=0 k=2
then comparing with (24) directly yields
Ao(0) = ay, (29)
Ai(0) =, (0) =0, i>1, |k[>2, (30)
and
A0 =a;, i=12,.n, (31)
4 (0) =B, 2<[k|<K. (32)

(ii) Assume now that p,(x) is not given in the special
form (28), then by using a Galerking approximation, for
instance, we shall determine «; and 8, so as to minimize the
criterion

2
mi.{'f [lnpo(x) — (z ax; + Zﬁkw"(x))] DPo(x)dx,
o 7% R" i k
(33)

and we shall use the conditions (29) to (32). [ |

Remark of practical interest: In order to initiate the iter-
ative procedure (27), we shall need initial estimates for
{f;(x,1)), (P, (x,t)), and the like. To this end, one can se-
lect po(x), and one will have, for instance

(i(xt))o= f Ji (%t )po(x)dx.
R
Another alternative is to make the approximation
[ =x"t, (1),
gij (x’t ) gglj(t )9
and to take the normal distribution so defined by the corre-

sponding FP equation

dp=—Y oL (t)p)+1 Y &;(1)9,p.
i L)

For instance, if zero is an equilibrium position for the
system in the absence of random inputs, one then has
f:(0,t ) =0, and one can select

fi(x,ty=x"3_£,(0,t).
Regarding g, (¢ ), a possible choice is

8;(): =f 8; (x,t)p, (x)dx.
I
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Illustrative example: In order to illustrate the proce-
dure, we shall outline the well-known special case defined by
the one-dimensional FP equation

dp= —3.(xf(2)p) + 19..(g(7 )p)
with the initial condition

p(x,0) = exp{ — L In(270?) — (x — x,)*/20°}. (35)
We bear in mind that the solution of (34) is

p(x,t) = {2mv(t )]~ 2exp{ — (x — m,(¢))*/2v(¢ )},
(36)

(34)

with
v(t):=my(t) —mi(e),
my(t) =flt)m(t),
my(t) =2f(t)m,(t) +g(2),

m;(0) = x,,

m,(0) =0 + x3.
Let us seek the solution of (34) by applying the method

above, and let us consider the approximation of the second

moment.
(i) One has

Sx,t) =xf(t),

glx,t) =g(2),

Pk(x9t ) = kf(t )xk+%k(k_ l)g(t )xk—Z’
and Eq. (24) yields

Ba(x,t) =exp{ — [Ao(1) + (2 )g(2)]
— x[A (A1) + A,(1)]
— X2 (2, (1)) + 1} (37)
=exp{ —a(t) —xB(t) —x*y(t)}, (38)

where the definition of @ (¢ ), B(¢ ), and (¢ ) is obvious.
(i1) We now substitute (38) into the condition

J-ﬁz(x:t )dx = 1; (39)
and the conditions (19) and (20), to yield

@+ B (x) + #{x?) =0, (40)

a(x) +B(x*) + #(x*) = — flt ){x), (41)

a(x?) + B () 4+ #(x*y = — 21 ) (x?) —g(1), (42)

where (40) is obtained by deriving (39) w.r.t. time.
(iii) The initial conditions on 4, (¢ ) and i, (¢ ) are [see
Eqgs. (29) to (32)]

Ag(0) = — %1n(27702) — (x?,/202), (43)
A,(0) =0, 4,(0) =x,/d% (44)
p2(0) =0, 1,(0) = — (1/20%). (45)

(iv) In order to calculate a,B,7; we need to determine
estimates of {x"), i =1,...,4 and to this end we shall take
p(x,t) = p(x,0), therefore

<x)o = Xp» (46)
(x*)o=x5 + 0, (47)
2392 J. Math. Phys., Vol. 31, No. 10, October 1990

(x*)o = x5 + 30%x,, (48)
(x*)o =x§ + 6x20% + 30*. (49)

(v) Substituting (46)-(49) into (40)-(42) yields
(a,8,7), therefore (A4(2 ),A,(2 ),u,(2)),-

(vi) We now substitute (1,(z ),4,(2 ),u,(2)), into the
expression (37) of p,(x,t) and we can then calculate
({x),{(x*),{(x*),{x*)), therefore (a,B,7), and thence
(/lo(t )’/‘Ll(t ),Hz(t ))2

And so on.

IV. CONCLUDING REMARKS

In the present paper, we have proposed a new method
for determining the solution of the Fokker-Planck equation
by directly referring to the dynamical equations of the state
moments, considered as constraints in the application of the
maximum entropy principle.

The idea of using the moments to estimate the solution
of the FP equation can be found in the literature, and Ris-
ken' has given some methods, but they deal mainly with
stationary solutions on the one hand, and transition mo-
ments f(x,¢ ) and g(x,? ) in polynomial forms w.r.t. x, on the
other hand. Recently Haken® applied the maximum entropy
principle to nonequilibrium phase transitions, but again in
the special polynomial case (the laser equation), and by us-
ing a perturbation scheme around the stationary solution.

In contrast, the novelty of our approach is the utiliza-
tion of the “path entropy” that provides the sought solution
without referring to the values of the moments themselves.
In order to obtain the Lagrange multipliers, we have to solve
a set of implicit nonlinear differential equations, but ap-
proximate solutions can be easily derived. In addition, we
have obtained the general form of the solution (even in the
absence of the explicit determination of the Lagrange multi-
pliers) and this feature may be of interest in theoretical stud-
ies. On a rigorous standpoint, strictly speaking, we need all
the constraints to correctly calculate p(x,? ), but numerical
experiments have shown that, very often, the first five or six
conditions are largely sufficient to achieve a good accuracy.
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Symmetries of a two-body relativistic harmonic oscillator and a two-body relativistic Coulomb
system are considered. It is shown that, in the harmonic case, the Lie algebra of first integrals
includes Poincaré algebra and u(3). In the Coulomb case, the Lie algebra of first integrals
includes Poincaré algebra and one of the algebras so(1, 3), so(4), or the algebra corresponding
to the group of rigid motions in R>. In both cases, the algebra generated by internal symmetry
together with the complete space-time symmetry is infinite dimensional.

I. INTRODUCTION, NOTATIONS, BASIC DEFINITIONS

During the last 20 years, the relativistic theory of direct-
ly interacting particles has been intensely developed.' In this
approach, the field that carries interaction is supposed to be
eliminated, and one ends up with an effective action-at-a-
distance theory, relevant for a lot of situations in which the
creation of particles is not significant whereas other relativis-
tic effects must be taken into account. A great advantage of
this approach is the ability to deal with a finite number of
degrees of freedom, in a manifestly covariant manner. Rela-
tivistic predictive mechanics,” especially in its a priori Ham-
iltonian version,® is a framework for such investigations.
Many explicitly solvable models have been considered in this
formalism,*’ as well as in alternative but mostly equivalent
formulations, based on the use of either the singular Lagran-
gian or constraints Hamiltonian dynamics.®

In so far as we know, the Lie algebra generated by the
first integrals of these models was never systematically in-
vestigated,” although it should obviously help to understand
the mechanism of dynamical symmetries from a relativistic
viewpoint. In this article, we start such a study, considering
only two-body systems. (Recall that one-particle problems
are trivial from the point of view of predictive mechanics,
and inadequate for our purpose, since the presence of an
external field destroys space-time symmetry.)

Our analysis will be devoted to the simplest cases of two-
particle systems, namely the relativistic oscillator and the
system which corresponds to a Coulomb potential. The os-
cillator is of particular physical interest as it provides a clas-
sical prototype of the quark model. The other model is the
most naive relativistic generalization of a Coulombian’s two-
body system. We shall not try to use it for a realistic descrip-
tion of gravitational or electromagnetic interaction. Most
probably, such a description involves this potential plus ex-
tra terms which cannot be neglected when relativistic veloc-
ities occur.® So, the naive Coulombian model can be used as a
reference to which the results of a realistic description
should be compared eventually.

In the scope of the present work, the relativistic Cou-
lomb potential is mainly interesting because it shares with
the harmonic oscillator the property of being exactly solv-
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able in closed form. It is therefore natural to start our search
for symmetries by a study of these two models. ( Their non-
relativistic counterparts are well known to play particular
roles.’

These models are not only exactly solvable in abstract
form (that is, in terms of abstract canonical variables), but
also the so-called position equation which in predictive me-
chanics determines the relationship between the canonical
coordinates and the physical coordinates is tractable in both
cases. In fact, this equation was exactly solved for the oscilla-
tor, and more generally, for any potential which, in the nota-
tions below, writes V(Z*), this equation can be reduced to an
ordinary differential equation of the Sturm-Liouville type.

This Introduction will be completed by a survey of basic
definitions used in our formalism. Sections II and III are,
respectively, devoted to the oscillator and the relativistic
Coulomb system. A general method for solving the position
equations corresponding to a potential ¥(z?) is indicated in
the Appendix.

We shall use the following notation. (a) Flat space-time
(M,, g), where g is the metric tensor on M, such that
8w = 1, g; = — &;; all other components of g are equal to
zero. (b) Greek subscripts run from 0 to 3, Latin from 1 to 3.
(c) One-particle phase space T(M,) is identified with the
product of M, by the space of four-vectors. (d) Two-particle
phase space MCT(M,) X T(M,). (e) Set of all smooth
functions on M:% (M). (f) Small characters for Lie alge-
bras, capitals for groups, example SO(4), so(4). (g) For
each 4*, B*, we will use:

A"B, = A'B.

(h) Canonical coordinates g, p7, ¢5, p5. (i) The projectors
onto the space orthogonal to the total momentum:

%, = 8% — (P°Pg/P?),
where
P®=pi+p;.
(j) For each 4 #, we define:
Ar=TI* 4"

Let us briefly recall the definition of two-particle sys-

© 1990 American Institute of Physics 2393



tems in predictive mechanics. We consider: (1) two-particle

phase space M with canonical coordinates g7, pf, g%, p5 and
standard Poisson bracket, i.e., the two-argument map:

{, ' hFMXF M) -F (M),

such that
{fgt=—{a s}, (1.1)
{fen}={rgth+g{fn}, (1.2)
(flgh}}+ (h{fg) + (&{nf}) =0 (1.3)

the only nonvanishing Poisson brackets of the coordinates
among themselves are

{g7.p,} = {g5.p,} = 5. (1.4)

(2) Two Hamiltonians, i.e., two scalar functions H, and
H,over M.

In this work, we consider essentially Poincaré invariant
interactions. Therefore, H, and H, are Poincaré invariant,
ie.,

{H,,P?} =0, {H,P°}=0,

{H M} =0, {H,M*}=0, (1.5)
where

P =p{ +p7, (1.6)

M = gipf — &pf + 6505 — 45ps5. (1.7)

Moreover, H, and H, satisfy the predictivity condition:

{H,H,}=0. (1.8)

(3) Relationship between the positions x{,x5 and ca-
nonical coordinates is established by solving the position
equations:

{H,x3}={H,x¢} =0. (1.9)

For the reader who is not familiar with the formalism, some
remarks are useful.

First, we are dealing with a two-time formalism. The
evolution of the system can be written in terms of two inde-
pendent parameters, each one associated with each particle’s
proper time. According to this point of view, the time devel-
opment is generated by two scalar functions H,, H,. These
functions generate two Hamiltonian vector fields on the
symplectic manifold M, which justifies our terminology.

In this scheme, the Hamiltonians are interpreted as pro-
portional to the squared masses, which are automatically
constants of the motion. (In contrast, the energy is simply
the time component of the linear momentum. We do not use
it as a generator.)

In agreement with a famous theorem,'® the physical
variables x,, x, cannot be canonical. Thus the system is not
completely defined unless a solution of Eq. (1.9) is chosen.
In so far as solvable models are concerned, one usually de-
mands that x,, x, reduce to ¢,, ¢, on the 15-dimensional
manifold P (g, — ¢,) = 0. This requirement is interpreted
as an equal-time condition in the center-of-mass frame.
There are cases where one may alternatively consider an
asymptotic condition, namely, that X, — X, coincide with
4, — G, at spatial infinity. Naturally, it is essential that the
Poincaré symmetry not be destroyed when passing from the
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physical coordinates to the canonical ones. In other words, it
must be possible to define the Poincaré group equivalently
by its quadratic invariants as well in terms of g, p as in terms
of position and velocities. This condition ensures that P “ and
M,,, are not only an arbitrary representation of the abstract
Poincaré Lie algebra, but are correctly related to space-time
symmetry. Solutions based on invariant Cauchy data im-
posed on the invariant manifold P- (g, — g,) = 0 obviously
satisfy this condition.

Finally, it is worthwhile to notice that, generally, our
phase space M does not cover the whole 7(M,) X T(M,).
Consider for instance the oscillator. The potential
k(g, — §,)? is singular for null values of P°. The relevant
part of T(M,) X T(M,) is necessarily an open set satisfying
P?:£0. For obvious physical reasons, we actually define M
by the condition that P2> 0 and P oriented toward the fu-
ture. Since P “ is a constant of the motion, this restriction is
consistent. Moreover, we shall see that the formula which
solves Eq. (1.9) for this model blows up when P:p, or P-p,
(which fortunately are constants of the motion) vanish.
Hence, a further restriction of M, by the conditions P:p, #0,
P-p,#0.

For any two-body relativistic system formulated as in
(1), (2), and (3), a first integral is by definition a function
JEF (M) such that

{fH}Y={fH,}=0. (1.10)

From the Jacobi identity (1.3), it follows that such functions
form a Lie algebra with respect to the Poisson bracket. This
Lie algebra is the principal subject of our paper. Any subal-
gebra of it is by definition a dynamical algebra. It is of partic-
ular interest to exhibit finite-dimensional dynamical alge-
bras.

Equations (1.5) and (1.8) together with the definition
(1.10) show that, for each two-particle relativistic predic-
tive system the quantities, H,, H,, P° and M° are first
integrals. Since P*, M *# satisfy the commutation relations:

{P=PP} =0, (1.11a)
{MBPr} =gwrpf _ gfrpe (1.11b)
{MBM™} = — gPM = | ghoy e

+gTTMP — g M, (1.11¢)

which are the well-known relations for Poincaré algebra, it is
clear that symmetries of each predictive two-particle system
include Poincaré algebra.

Let us consider two particular predictive relativistic sys-
tems, namely,

H =3P +y)’ + k2, H,=}(}P—y)*+kZ

(1.12)
and
H]:L(LP_*_}))Z_'_ a ,
2 \2 [— 32
1(1 )2 a
H—=—-—p— + s 1.13
2 2\ 2 Yy \/t? ( )

where k > 0, a are constants, and relative variables are intro-
duced through the notations
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P*=pi +p5, Q%=1i(q7 +43),

V=3t —p3), F=q7 —¢;. (1.14)
One can easily check that systems (1.12) and (1.13) satisfy
conditions (1.5) and (1.8). They are natural relativistic gen-
eralizations of the two-particle nonrelativistic harmonic os-
cillator®>* and the two-particle Kepler system, respectively.
They reduce to the system of two noninteracting particles for
k = 0and a = 0. In both cases, the interaction is carried by a
potential, depending only on %, which is added to the free-
particle Hamiltonians.

The position equation (1.9) has been explicitly solved
for (1.12).* For any potential of the form V(3?), the general
form of its solution is known, up to the determination of two
scalar functions which depend on the shape of V.!' We indi-
cate, in the Appendix, how each one of these functions can be
separately calculated. The method applies, in particular, to
the Coulomb case.

A further motivation for the study of oscillator and
Kepler potential is that their nonrelativistic counterparts are
known to play particular roles with respect to dynamical
symmetries.” And, in fact, we shall see in the following sec-
tions that the Lie algebra of first integrals associated with
(1.12), resp. (1.13), includes finite-dimensional subalge-
bras that are the same as in the relativistic analog.

Il. THE OSCILLATOR

The system (1.12) describing the two-particle relativis-
tic oscillator was first suggested by one of us (D-V).>* In
this model, the relative inertia-momentum tensor

N8 = (12K + 2k #5°

is a first integral of the system (1.12). Looking for the Pois-
son brackets { NV °2,N *®}, we see that it is convenient to intro-
duce the tensor

2.1

Me® =11, 1P, M+ (2.2)
Since P?and M *¢ ‘are first integrals of the system (1.12), we
see that I1%, and M “* are first integrals, too.

Let us consider the Lie algebra generated by

P, M N and M*® and their Poisson brackets. We
have

{P*,PP} =0, (2.3a)
{MBpr} = g"”Pﬁ — gﬂ”P e (2.3b)
{MaB,Mré} - _ gﬁrMaG +gﬂéMar +garMB¢9 _ga6Mﬂ7,
(2.3¢)
(NN} = TIP"M=° 4 IPM 7 + I + TS 27,
(2.4a)
{MaB’NYS} - HBrNaG . I‘IB«SNay + HarNBB + na&Nﬂy’
(2.4b)
{Maﬁ’jf{ 7} = _ 1AL 20 + 12 o
+ TI"M 7o — T1*0pf 7, (2.4¢)
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{Maﬂ’ﬂyé}z _gﬂrjla6+g&ﬂa7+gayj'{m_gaaﬂﬁy’

(2.5a)
{MaB’Nrﬁ} = __gBrNaé _gBJNar+garNB¢5 + ngNBr,

(2.5b)
{P",M*"} =0, (2.5¢)
{P" N} = 0. (2.5d)

The expressions {2.3)-(2.5) show that first integrals (1.6),
(1.7), (2.1), (2.2), do not close to a Lie algebra. The Lie
algebra generated by their successive Poisson brackets is in-
finitely dimensional. The cause of it is the appearance of
projectors I1%# in the formulas (2.4), which spoils the paral-
lelism with nonrelativistic theory. But we shall show that
these projectors can be avoided if, from the first integrals
(1.6), (1.7), (2.1), and (2.2), we extract a suitable set of
functionally independent (nonlinear) combinations.
To see it, let us notice identities:

PaNaB = P'BNGB = 0’ NaB = NB&’ (2_6a)
PMoy=PPMy =0, M,,— — . (2.6b)

They show that NV, consists of six and ﬁ'laﬁ of three indepen-
dent functions.

Let us now consider an arbitrary frame in space-time.
Define the matrix A#, such that

A°M = P,,/\/Fz,
A, = 6; - PiA“’ 2.7)
where

e
(P°/P? — 1) (P*/PY)
P>= —§,PPI.

In other words, A is a Lorentz matrix that transforms all
tensors to the rest frame of the center-of-mass; M 'and N’ are
just M and N transformed to this frame. This matrix has the
following properties:

A# AP, 6%7 = g, (2.8a)
A° TP, =0, (2.8b)
NP, =N, (2.8¢)
N, P”=0, (2.8d)
{A*,, M "} = {A* N} = 0. (2.8¢)

Moreover, A”, is a first integral of the system (1.12), be-
cause its matrix elements are functions of P¢ only.

Using A*,, we shall extract nine independent first inte-
grals from N,; and M . In order to do it, we define:

N'#8 = A"” ASVN“V, (2.9a)
MHZB — Aa“ A‘BVM"“’. (2.9b)
It is obvious that
M= —M"P, N'“P<N'"F (2.10)
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and Eq. (2.8b) shows that
M'0B=M'BO=N'OB=N'BO=O. (211)

The remaining components of N '*# and M '*# are first inte-
grals of the system (1.2) (they are built as products of first
integrals) and satisfy the following relations:

{M,.j’ﬂml} = &M §M

— 5% M 4 SUM (2.12a)
{MIN"} = N 4 N

_ S*N Y _ SN, (2.12b)
(NN} = — 55— 5

— §%M T — &M (2.12¢)

what can be checked using (2.8), (2.5), and (2.4).

These are the familiar commutation relations for the
U(3) Lie algebra.6 Expressions (2.3) and (2.12) show that
the set of first integrals of our system includes a subalgebra
(spanned by M ' and N '?) isomorphic to the Lie algebra of
U(3). Because {A*,,M °} 0, the brackets {M “*,M '} are
not linear combinations of P%,M“*, M 'V N'¥ so the vector
space spanned by M '?,N'* and the generators of the Poin-
caré group is not a Lie algebra. In contrast, the algebra gener-
ated by M'¥ and N'* can be trivially extended by a direct
sum with the algebra of space-time translations.

Notice that the separation of space from time among the
components of A only depends on the choice of an arbitrary
direction in space-time, which corresponds to the rest frame
of some inertial observer. For each inertial observer, the
above procedure associates a different dynamical algebra
isomorphic to the Lie algebra of U(3).

Iil. THE COULOMB-LIKE SYSTEM

Let us take the most naive generalization of Coulomb
interaction, given by the Hamiltonians (1.13). It is easy to
see that the predictive relativistic analog of Runge-Lenz
vector, namely,

R, = —2,V+5M,, (3.1
where
V=a(—3%)" 1

is a first integral of the motion generated by H,, H,. Indeed,
we can notice that only spatial relative variables are involved
in R,,. Thus the evolution of R,, is in fact governed by {R ,,4}
where

2h =7 +2V.
With the help of the useful formulas:

(3.2)

{Za,j"ﬁ} = Haﬁ’

{z.,h} =3,
- av
whl = ——,
o Jz*
and setting
pr=—2,
hence
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G _ _1,

z,,
Jz,
we find
{R'u’h} = _j)‘u, (V+P"dl/‘) >
dp

which vanishes as a consequence of the “Coulomb” form
assumed for V(p). A tedious but straightforward calcula-
tion, analogous to its nonrelativistic counterpart, provides
{RAR®} = —20M". (3.3)
In Eq. (3.3), we notice that 4 is a constant of the motion

which, being manifestly invariant by rotation, has a vanish-
ing bracket with angular momentum. In particular,
{h,M*} =0. (3.4)

This remark permits us to set Eq. (3.3) in a more convenient
form. To do this, we introduce

€= —signh,
that is to say
e=—10,+1,

when 2> 0, h =0, h <0, respectively.

So doing, we split phase space into three invariant pieces
M M© M which are manifolds of dimensions 16,
15, 16, respectively. Here, M ¢ =’ corresponds to the case
where 7* and V are of opposite signs (remind that * cannot
be positive according to the choice of signature). This occurs
for a > 0 (Kepler-like motion, attractive force), on the or-
bits where 2* remains bounded.

By analogy with the well-known nonrelativistic theory,
we define

K*=R/\2h, fore#0
and simply
K*=R*% whene=0. 3.5)

Now, we compute {K %K} with the help of (3.3). Since
{A,R_} vanishes, we obtain easily

{K K"} =eM*. (3.6)
Besides, it is straightforward to calculate

{Maﬁ’RJS}:gaéRB_g.&SRu, (3.7)
which yields

{M K} = gK P _ g
and, in particular,

{M5 K%} =N"K" - I?K“, (3.8)

Consider Eqgs. (3.6)—(3.8) together with (2.4c). Similarly,
as in the oscillator case, the appearance of the projector 1%
in (3.8) and (2.4c) forbids that the Poisson brackets of
K “,Xl #vclose to a Lie algebra. However, using the matrix A
defined in (2.7), we can eliminate as follows the projectors
from (3.8), (2.4c).

In order to doit, let us consider M’ asin Eq. (2.9b),and
define

K'*=A%K?. (3.9)
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Because of (2.8), we have
Ko=M""=M"=0. (3.10)

Commutation relations between the remaining componen*s
of K'* and M '*# are

{K"K"}=eM", (3.11a)
{M,U’K:k}___ —§*K Y 4 K" (3.11b)
B34y = 43171 9

Y + &M R, (3.11¢c)

These relations describe the following Lie algebras:'> (i)
so(4) for € <0. (ii) For € = 0, we have the Lie algebra .« of
the semidirect product of SO(3) and a tridimensional Abe-
lian group (rigid motions in Euclidian space R?). (iii) so(1,
3)fore>0.

Expressions (3.11) show that the first integrals of our
system include a subalgebra, spanned by M ‘¥ and K, iso-
morphic to so,, </, so(1, 3), respectively, for € negative,
zero, positive. Since the brackets {M “2,.M 7} do not produce
linear combinations of P, M#*, M ', N’ the vector space
spanned by M'7 K" and the generators of the Poincaré
group is not a Lie algebra. In contrast, the algebra generated
by M 'Y and K '/ can be trivially extended by direct sum with
the algebra of space-time translations.

V. CONCLUSION AND OUTLOOK

Finally, the Poincaré algebra is combined with the Lie
algebra of a symmetry of the relative motion (internal sym-
metry) through their embedding into a large infinite-dimen-
sional Lie algebra.

The internal symmetry has the same abstract structure
as in the corresponding nonrelativistic system. But, by a sort
of degeneracy with respect to the case of Galilean mechan-
ics, the internal symmetry algebra is realized in infinitely
many ways. Indeed, to each inertial observer corresponds a
representation of the internal Lie algebra. In so far as we
consider simultaneously all these algebras on the same foot-
ing, we preserve manifest covariance.

In the present scheme, internal symmetries exactly com-
mute with space time translations, hence with P2, Thus, if we
anticipate quantization, it seems that (in spite of the fact that
O’Raifeartaigh’s theorem'® does not deal with infinite-di-
mensional algebras) an eventual mass splitting of multiplets
should be expected only if the potential is modified by extra
terms.

The possibility to combine space-time and internal sym-
metries within an infinite-dimensional Lie algebra has been
considered already many years ago, but, soon faced the criti-
cism of a tremendous arbitrariness, especially with respect to
the interpretation of the infinitely many additional genera-
tors that are necessary in order to span this big algebra.'*

Here, in contrast, the only arbitrariness lies in the con-
struction of the relativistic dynamical system. Once the
shape of the potential has been fixed, the structure of the
algebra of first integrals is locally independent of the way in
which the position equations are solved. But the dynamical
interpretation of its generators is possible only after the posi-
tion equations have been solved (just like is possible the de-
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termination of the world lines).

In the two examples treated above, a reasonable solution
of the position equations is available in closed form. In such
models, we can express each first integral in terms of phys-
ical positions and velocities, which permits us to assign a
precise dynamical meaning to all the generators of the alge-
bra formed by these first integrals. We hope that these mod-
els illustrate the advantage of a true dynamical construction
over purely group theoretical approaches.

Further investigation is needed in order to determine if a
part of the present analysis can be carried out in the global
sense, looking for a symmetry group instead of a Lie algebra.

For the moment, a quantum mechanical treatment
seems more promising; then the introduction of an external
field would be of great interest.
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APPENDIX: SOLUTION TO EQS. (1.9) FOR V=F(2)

It has been proposed by one of us (Ph.D-V) to look for?
solution of the form:

X, =gy — (P'Pz/Pz)(¢22+ vy, (Al)
X, =¢, + (P-p/P?) (@2 + ¥,p). (A2)

Since @,, ¥, can be obtained from ¢,, ¥, by particle ex-
change, it is enough to look for ¢, #,. Dropping the particle
label, we shall write simply ¢, .

Let X be the Hamiltonian vector field generated by H,,
that is

X4 ={4,H)}, VAcF (M).

Setting

6= P2/Pp, (A3)
we have

X6=1. (A4)

It was shown in Ref. 4 that the equations in (1.9) which
involve @ and ¢ then become

(X?+2F )Yy +2F'0=0, (A6)
with
dF
F'= ——
d(#)
and that
XZ = —2920(V—h) =17, (A7)
with # defined as in (3.2),
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I1* =25 — (z9)°

and

(A8)

7 = sign of z- .
For the Coulomb case, the equations of motion show expli-
citly that, if we allow Z* to vary, then - changes its sign
when it vanishes (which occurs at perihelion and aphelion).
Remark: 7* cannot be positive, and /? cannot be nega-
tive, since Z and j are space-like.

Now, let us define y by

p=0+y. (A9)
Equation (6) gets simplified as

(X2 42F)y=0. (A10)

In the oscillator case, F' is a constant, and Eq. (A6) was
explicitly solved by demanding that y depends only on 6
(and possibly first integrals of the motion). But, in general,
F’ depends nontrivially on Z°, which makes such require-
ment inconsistent. In view of this difficulty, let us introduce
a new quantity £ which behaves like & under action of X:

XE=1, (A11)

but actually depends on Z2. It is easy to see that £ must be of
the form:

6= £,

where f = XZ* is given by (A7), as an explicit function of £.
In general, y might depend on 16 independent variables
which can be 6, £, and 14 independent first integrals of the
motion. But we are not concerned with the most general
solution of (A6). The one we look for must be as simple as
possible and satisfy some reasonable boundary or asympto-
tic condition. So, let us assume additionally that y only de-
pends on §. (And possibly first integrals of our dynamical
system. It is clear that the constants of the motion play the
role of ignorable variables.) Now, Eq. (A6) reduces to

d’ )
2F' ¥y =0, (A13)
(d§2 )X

in which F' must be considered as a function of £ throughthe

change of variable (A12), which implies a dependence on
the first integrals 4 and /? through Eq. (A7). Equation

(Al12)
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(A13) is an ordinary differential equation of the Sturm-
Liouville type. The behavior of its solutions depend on the
shape of F' as a function of £, and can be analyzed by stan-
dard methods.

Setting p = /¢, we have in the Coulomb case

F'=(a/2)p~* (A14)
and

Vé =ap,

f= —29D(p),
where

D= (2ap —2h\p —1%)'"
So, Eq. (A12) yields
£= —inl,
where, for instance if 4 <O:
I= — (D/2h) —2a( —2h) ~**log(D — 4hp + 2a),
which defines implicitly p(£), to be inserted in (A14).
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A sufficient condition for a dissipative evolution to give rise to an ever more chaotic state is
obtained and the structure of the corresponding density matrix is studied. As a byproduct, the
equation of motion in the Schrodinger picture is, in some cases, explicitly solved.

I. INTRODUCTION

It has been shown recently’ under which optimal condi-
tions on the generator of a quantum dynamical semigroup
does the entropy of a system increase.

This behavior is by itself strongly indicative of irreversi-
bility and progressive loss of information about the system
while it is evolving according to a semigroup of contractions.

There exists, however, a deeper analysis of the amount
of uncertainty inherent to the state of a quantum system that
makes use of the concept of mixing enhancing.”*

This is, in turn, connected with the possibility of partial-
ly ordering density matrices by considering their eigenval-
ues: it is indeed clear that with more states present in a mix-
ture our knowledge of the system is poorer.’

On the other hand, an increasing of the smaller eigenval-
ues together with a decreasing of the bigger ones until they
eventually become equal should produce an ever greater lack
of information, e.g., in finite systems the most mixed (chao-
tic) state is the trace 1/N, N being the dimension.’

This is the typical situation when a state (density ma-
trix) p suffers deleting off-diagonal elements in a given rep-
resentation as it happens in the usual scheme of a measure-
ment process:

p—> PpP, PP =5,P

gt

Y P; = identity;

or, when 5 undergoes a coarse graining:’

Tr Pp
s, i P.
o2 TrP, '

Since the time-decaying of the off-diagonal elements of p in
the position representation is one of the main features of a
model® introduced recently to overcome the conceptual dif-
ficulties arising in connection with linear superpositions of
far away localized macrostates, it seems to be appropriate
discussing its properties from the point of view of mixing
enhancing.

More generally, it should be noticed that loss of infor-
mation in the sense sketched above is not a consequence but
rather one of the possible reasons for the increasing of en-

tropy.
It. MIXING-ENHANCING PROPERTY OF CERTAIN
QUANTUM DYNAMICAL SEMIGROUPS

In order to make more precise the basic ideas outlined in

the Introduction, following Refs. 2-4 we will make the fol-
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lowing statements.

Definition 2.1: (1) Given two density matrices p and &
whose eigenvalues {p;} .y and {o,}., are arranged in de-
creasing order, p is defined to be more mixed than & (p+5) if

pn)= Z pi<o(n)= 2 o;, VneN.
=1 i=1
(i) A map T -] from the state space into itself, which trans-
forms density matrices into density matrices, is mixing en-
hancing if T[p] #p for any density matrix p.

Remarks 2.2: (1) The state space we are referring to is
usually taken to be the self-adjoint part, B(F)}*, of the
Banach space of the trace-class operators, B(#"),, over a
separable Hilbert space 7°. B(5%°)}™ is a real Banach space
and the density matrices are its positive, normalized
(Tr[] = 1) elements.

(2) By a straightforward application of the min-max
principle we can express p(n) =2]_  p; as follows:

pln) =sup e, ,

i.e., the trace is computed over a basis of an n-dimensional
subspace of the Hilbert space 77

(3) Important results stemming from the theory of
Refs. 2—4 are: (i) # is a partial order among the density
matrices giving rise to equivalence classes of equally mixed
states (there are, of course, density matrices whose eigenval-
ues cannot be compared in the above sense); (ii)
Tr f(p)>Tr f(&) for any concave function on R | if and
only if 5& &, p and & two density matrices [not only the von
Neumann entropy S(p) = — Tr p In p is bigger than S(&)
but also all the so-called a  entropies’
S,(p) =[1/(1 —a)] In Tr p%, acR , \{1}, increase go-
ing from ¢ to p]; (iii) p#& if and only if

ias’

p=weaklim 3 4, UL&U,

U, unitary operators Vi, a; 0<4,,<1, 2,4, = 1. [An ex-
ample is provided by the time-averaged density matrix

[ e = oo )
=— drexp| — — Ht p exp| — Ht
T.L "Rl

which is more mixed than g, exp[ — (i/#) Ht] being the evo-
lution operator for a given Hamiltonian H.]

The class of quantum dynamical semigroups we shall
consider is the one that arises when the quantum system of
interest is weakly interacting with an infinite reservoir.

A
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Under certain conditions on the form of the coupling
and the kind of the chosen reservoir, the reduced evolution
for the state p of the (open) system is Markoffian”® and
generated by

a 5y A 1 . ~
= i) =3 T WIBA 43 B8]
K J

=L [p.] 2.3)
B,,B},H=H", % B]B,cB(5) (Banach space of bounded
operators on 7).

Remark 2.4: The rhs of (2.3) is the most general expres-
sion for the generator L[ - ] of a norm-continuous semigroup
{7.}.50 of completely positive’ contractions on the state
space (y,p =p,).>'° If the boundedness of the Hamilto-
nian, as it is often the case, is relaxed, then it could be proved
that L[-] is the generator of a strongly continuous semi-
group with respect to the trace norm:’ (i) Try,p = Trp
(probability preserving property); (i) |v.2]l, <lipll
(&, = Teya'6); (iii) 7,7, = 7,,.; 1, 530 (semigroup
property); (iv) v, is completely positive, >0; (v)

0+ —~0*

l¥.p —pll, — O (instead of the stronger ||y, — 1| — 0).

Now we are in the position to claim the following propo-
sition.

Proposition 2.5: If T[p]l=Z2,BpB is such that
T[1]=1 as a map from B(#°) into B(#°) and
EjB;Bj = 1, then the semigroup generated by

Lp] = —i[Hp] —p+ T[p] (2.6)

is mixing enhancing.

Remark 2.7: The condition on 77 -] is fulfilled by choos-
ing, for instance, B, = B,T with 3, B f = 1, e.g.,acomplete set
of orthogonal projectors.

Proof: According to Remark 2.4 L[ - ] generates a semi-
group {7,},., of completely positive, trace preserving con-
tractions on B(5°)3 Moreover, T[1] =1, V¢>0wheny, is
extended on B(5°)2

In the duality given by the trace we make correspond to
¥, a dual map y*:B(5#°)**— B(5°)** which is in turn com-
pletely positive, identity, and trace preserving.

Given an initial density matrix g, set g, =¥, [p] and let
t>0bes + 7fors, 7>0. We now follow (Ref. 4, Chap. 2) and
consider the family F, C B(#°)** of positive operators of
rank &, bounded above by the identity. Recall now Remark
2.2.2 and note then y¥[Fy ] CFy so that YN>1:

p.(N) =§;{E TI'}yN 71[’33]
= g:lgTr vi[D ]ps<ggIgVTers =p,(N))

and hence: p, &p, if £>5>0 according to Definition 2.1.
Remark 2.8: We have not used the complete positivity of
7., but only the positivity which, together with
Tr y,[p] =tr p and y,[1] =1, characterizes the “doubly
stochastic maps” (Ref. 4, Chap. 2). On the other hand, if we
require {y,},,, to be a norm continuous semigroup of mix-
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ing enhancing, completely positive trace-preserving maps on
B(F)}*, then ¥, must be doubly stochastic V>0 (Ref. 4,
Chap. 2). Thus 7,[1] =1 and, by Lindblad’s theorem,'°
L[] has the form (2.6).

The two simple examples reported in Ref. 1 serve to
illustrate the following mechanism:

(D
B(#), =B(F)=B(C),
H=0, B=((l) (l))zBJr, B'B=B*=1,

Lipr=—p+701=—p+(; (] o)
T[] =1

Given the initial condition g = (§

1 1_2/7 —2t 0

R 2 2
pe=
1
0 —t—
2

_(P](t) 0 )
- 0 P2 () '

Ifp>1/2 then p,(t) > p, (1)Vte[0, + ).
According to the notation introduced in Definition 2.1,

VO0<s<t,

{_,) thesolution is

p.(y=p, (1) <p, (8)=p, (1) <p=p(1),
p1(2)5p1 (1) +p, (B)

=1=p,(2) =p(2),

Therefore p, &p, for any 1>5>0.

The smallest eigenvaluep, (1) =4 + [(1 —2p)/2]e
keeps on increasing and p, (¢) decreasing until, asymptoti-
cally, p, () = p, (0 ) = 1/2 corresponding to the most
mixed state i(5 ) and to the maximal entropy
SPp.)=In2.

(2)
B(5), =B(¥")=B(C?),

weo 5=(0 ),

VOl<s<t.

0
b )
1 0/’
B'B#1, BB'#1,
X 1 (0 O)A 1 (o 0)
L = —— _15
(6] 2(0 P—5hy

+(o 1) A(o 0)
o o/P\1 o
- —%{BTB,;“),}+B,6,B*.

T [p.] = Bp,B"is such that T[1]#1.

Given the initial condition p = (;# }) the solution is

R _(l—pe" 0 )_(pl(t) 0 )
pr 0 pe=') L 0  p,(0))°
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If p > 1/2 then we have a crossing at £, = In 2p > 0.
For 0<t<typ, (1) <p, (¢) and 0<s<t

p (1) =p, (1) =pe~'<pe™"*
=p, (s)=p,(1)<p=p(1).

Thus we have mixing enhancing in this time interval.
For t>t,p, (1) 2p, (t) and

t 4

p(D)=p, () =1—pe”>1—pe “=i=p, (1),

and we have the converse, namely, g, gets ever less mixed
than p, for t>#, according to the fact that p, = i1 is the
most mixed state.

Asymptotically p, reaches the least mixed state represented
by the projectorp_ = (5 ¢)-

H

For p < 1/2 we have no crossing and 1 —pe ™ '> pe ~
for any 0. Hence,

p.(N=p, ()zp, (s)=p,(1)2p(1),

and the uncertainty inherent to the initial state p starts de-
creasing at ¢ = 0. .

This example shows that the conditions of Proposition
2.5 are, in a sense, optimal.

for any 7>s5>0

ll. STRUCTURE OF THE SOLUTION AND
INVESTIGATION OF SOME EXPLICIT MODELS

Now we want to consider a particular class of quantum
dynamical semigroups that fulfill the conditions of Proposi-
tion 2.5. The purpose is exhibiting as explicitly as possible
how mixing enhancing shows up when we are concerned
with the solution of Eq. (2.3), namely, with the density ma-
trix at time ¢, i.e., §,.

According to Remark 2.2.3.iii, we should expect indeed
that p, may be expressed by means of a linear convex combi-
nation of unitary transformations of the initial condition p.

The semigroups at issue will be those generated by

wew)

L{p)= —%[fff,]~ﬂﬁ,+/1(

2
X dcx(—|p|)
J];Jp P at?

i i
xXexpl—qp ) p, ex ——“),
P(ﬁ QP)P P( 7 qp

3.1

where §=(§,,4,,4; ) is the three-dimensional position oper-
ator; A is a characteristic frequency, and 1/y/a an intrinsic
length of the model.

By comparing (3.1) with (2.3) we recognize that
T{-1=3,B;[ 1B is replaced by

( 1 )3 do exp(_ |pl2)
#ar/ af?
X CXP(% ﬁp)[ : ]eXp( - % ﬁp)-

Furthermore, =, B [ B, now reads
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( 1 )’J’ ( |P|2)“ :
dp exp| — 1=1
#jar/ R af?

aswellas 3,B.B].

Hence 7T[1] = 1 and thus the conditions of Proposition
2.5 are met by generators of the above type where the dissipa-
tive part L,[p,] = —Ap, + AT [p,] is once and for all
fixed, whereas all the possible Hamiltonians can be consid-
ered.

This nonunitary modification of the usual Schrédinger
evolution, given by — (i/#)[H,-], constitutes the corner
stone of the so-called “quantum mechanics with spontane-
ous localization” (QMSL),® which turned out to be a suc-
cessful attempt to lay down a reasonable dynamical way out
of the puzzling situations connected with the quantum de-
scription of macrosystems, e.g., the pointers in the descrip-
tions of the measurement process.!’

The original equation at the basis of QMSL, as written
down in Ref. 6, reads

i a ((t°
p, = —— [Hp, 1~ Ap, + A4 —J dx
p ﬁ[ 1—4p \/; .

ool % ool L0
(3.2)

for a single quantum particle living in one dimension. That
the processes

T[p] = \/gr: dx

ool % o on( 1)

that occur with mean frequency 4, do actually provide loca-
lizations of the system is easily seen as follows: since

(qlT[p1]g) = expl — (a/4) (¢ — )*14qIp| D),
itis apparent that off diagonalities in the position representa-
tion pretending to survive beyond the intrinsic length

(\/E ) ™', are strongly damped by the exponential.
Explicit solutions of (3.2) have been worked out in the fol-
lowing two cases:

H=p"/2m (Ref 6),
1 + oo + o l
<qlﬁflﬁ)=—~2ﬁﬁ f_m dxf_x dyexp(—;xy)
1 2
Xexp(—it+lfdsexp[—g—(£~x) ])
o 4 \m

{g+ xlexp( — %fﬁ)f? CXP(*%‘ fﬂ)"? + X,

(3.3)
~ PP mad?
H=%X_ 4+ _— & (Ref. 12),
2m 2
1 + oo + o l
=k ()
9lp.1@) Zﬂﬁf-m _, TR T Y
Xexp(—it-{—/ljds
0
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2
Xexp[ -2 (x cos wt — ~2—sin mt) ])
4 mow

exp( ——:—;I-flt)ﬁexp(—;—ﬁt)\ g+ x).

(3.4)

(g+x

Remarks 3.5: (1) Both solutions do reveal the presence
of a damping factor quite explicitly. This, by itself, would be,
of course, extremely dangerous if the parameters of the mod-
el could not be chosen such that the ordinary quantum de-
scription for a microsystem is affected only after enormous
time. This is indeed the case, together with a surprising addi-
tive effect® which makes the frequency A multiplied by N if
we consider the modified quantum evolution of the center of
mass of an N-particle system. An almost never felt damping
effect for few particles becomes, on the contrary, heavily
influencing macrosystems.

(2) Equation (3.1) is just the generalization of (3.2) to
the three-dimensional case,’® only involving a Fourier trans-
form of a Gaussian on R’ in the expression for 77 - ].

As written in (3.1), it is, however, easier to recognize
that (i) 77 ] can be physically interpreted as a process kick-
ing the system and changing its momentum by an amount p
with a Gaussian probability. This meets classical explana-
tion (in the free case) as a Markov process on the phase
space with a stochastic kernel that leads to the same interpre-
tation.!* (i) T[] is a contraction on
B**(#x),:|T 5], <||6]|, and mixing enhancing owing to
Remark 2.2.3.iii, without paying any reference to its com-
plete positivity and to the fact that 7{1] = 1.

Proposition 3.6: The solution of Egs. (3.1) (for any
choice of Hamiltonian H ) can be expressed by means of
trace-norm convergent series that actually agrees with Re-
]

mark 2.2.3.iii: it is a linear convex combination (in an appro-
priate weak-limit) of unitary transformations of the initial p.
Proof: By considering the equivalent integral equation,

po=e " MUMPU(—1)
+AJ dse=*"= 99Ut —-s)T [2:1UGs—1), (3.7)
(4]
U(t) = expl — (i/mHt ],

after iterating we end up with

p. =e MU(1) i /ka ds, % [pP1U(—1), (3.8)
k=0 0
[ 0 1121,
7, [Pl =U(—s)T[U(s,)pU( — ) U(s,),
* [5] =U(—sk>fkdsk-,
X T[U(Sk)ffk_ll[p]U( — 5 Ulse)-

Since 71 -] is a contraction (see Remark 3.5.ii)

17 1811} < j ds, 1|17 1511

s 15
2L,

N

hence the series in (3.8) turns out to converge with respect to
trace norm. Let q(¢) indicate the position operator at time
:q() =U(—-1qU(t), W(ab) the Weyl operator
exp((i/%) (ap + bg)) and let W, (ab) be
U(—n)W(ab)U(r) = exp{(i/#) [ap(¢) + bi(¢)]}, then

7% p] f dsk_,---fzds, U(=s)T[UGSHT [ U(—=s)T[U)PUC—5)]U(s,)] - 1 Usi)
0

Sk (O’Dk) sl(oapl )pWs| (prl )...W:k(o’pk)'

Let T[] be the time ordering defined by

T[ W, (0.p,) W, (O,p, )W (O,p, )W, (0,p,) ] =[

%

Ga) [ [ o [l - 2

W, (0p,) -
m‘(O’pl)'“

W (0,p,),
Wj.‘ (0’p| );

if ¢, >1¢,,

if t,>¢,°

and remark the symmetry of the Gaussian with respect to the momenta p,’s. Hence,

fl ds, ™ D] =( )Bk 1 J ds, - J ds, J dp, " j dp, exp( lp"Z)
0 * ﬁ\/aT l:l aﬁz

[WYA(O,PA)"‘A"'WL(O,PA)]
and, finally,

p, =e HU(1) 2 /1 ds,\ --jdle- dp,\-".[ldp,
”

T[Ws,\(oypk).”ﬁ.“Ws,\(O’pk)]U( —‘t)-
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€Xp — 2:/'(:1 (‘pi|2/ah2)

(ﬁ\/ﬂ_)}k

(3.9)
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Remark 3.10: Although very complicated—the coeffi-
cients 4,’s in 2.2.3.1ii depending now on discrete and contin-
uous indices mixed together—it is nevertheless true that
they are positive, normalized, and actually the weights of
unitary transformations of the initial g as given by the time
ordering T[ - --p- -] of the various Weyl operators.

A more transparent evidence of the mixing enhancing
structure of the evolution can be obtained trying to connect
the series (3.9) with the solutions in the cases (3.3) and
(3.4).

The huge difficulties arising from noncommutativity in
the time-ordered terms of the series can be overcome if the
Weyl operators keep their form under the time evolution.
Such a situation occurs when the Hamiltonian, being at most
quadratic in the positions and momenta, gives rise to linear
Heisenberg equations: free particle and harmonic oscillator
are two simple examples, and in the Appendix it is shown
how to go from the series (3.9) to the solutions (3.3) and
(3.4). Linear equations of motion in the Heisenberg picture
lead to solutions at time #{§(¢),p(#)) which are linear combi-
nations of the initial conditions (§,p), agree with the classi-
cal solutions and involve only a redefinition of the param-
eters in passing from W(a,b) to

W, (ab)=U(—t)W(ab)U(z) = W(a(1),b(s)),

3
4:() =Y Q0§+ Q5(0p; + Fi (1),

j=1

an inhomogeneous term, coming from analogs in the Heisen-
berg equations.

Following the result in the Appendix let us now make
the ansatz that the solution of (3.1) is given by

1 i
5 = dxdydtd (__- )
P (Zﬂﬁ)e.[ffj;’ xdy d§ dm exp| — ¥k

Xexp( - % x'xr)F(/i,g,‘rr,t) wW(x,y)

X UDPU(— W (xy), (3.12)

where the I/;Vin
U(t) = expl — (i/f)Ht ]

is at most quadratic. Using the cyclicity of the trace and the
Weyl relations we have that a Weyl operator W(a,b) evolves
according to

yEW(ab) = F(A,a, — b)) U( — t)W(ab)U(2), (3.13)

which derives from the definition of “dual” evolution,
tr py*W(ab) = Tr y,pW(ab),
for any p in B(F){™.
Also, ¥*W(a,b) must satisfy the “dual” equation of motion

=123, (3.11) [dual to (3.1)]
3 ] A~
=Y Qg + Q0 + F1(), d,y¥W(ab) = % [Hy¥W(ab)] —AyFW(ab)
i=1
Q(2), Qi) exp — |p|*/af’
Q(I)E[ ¢ \ ] +,1J‘dp_x£’_ﬂl_‘a__
Q,.j(t), Qu(t) R’ (‘h\/a—ﬁ')
being a symplectic 6 X 6 matrix, X CXP( - é ﬁp)}’?‘ w( a,b)exp(——lﬁ— ﬁp)-
F! (t)] (3.14)
F(p) By means of the linear solutions (3.11) we obtain
i |
i i
exp| ——dp|y*W(ab)ex (—-" )
p( ﬁqp)r* (a,b)exp 5
= F(A,a, — b,){W(0, + p)U( — ) W(ab) U(t) W(O, + p)}
= F(A'ya) - bst) U( - t) Wf(g( - t’09 + p),‘"‘( - t,O, + p) ) W(a,b) W(g( - 190’ + p)’ﬂ'( - t’O) + p))U(t)
= F(A"aa - b;t) U( - t) W(a,b) U(t)exp[_;— [a“( - tyo!p) - bg( - t,O,P) ]]
where
3
é‘;‘( - taoap) = 2 szl( - t)p_,"
=t i=123.
3
ﬂ'i( - t’Osp) = Z ‘Q'_/l:( - t)pj’
j=1
Notice that the inhomogeneous terms give rise to phases that cancel each other.
Inserting the above result into (3.14) we continue to the following equation for the function F(---):
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d,F(Aa, —bt) = — AF(A,a, —b,t)

+ A exp( — (a/4)|E( — t,a, — b)|)F(A,a, — b,1),

(3.15)

3
E(—ta,—b)= Y [Q(—na, —QL(—0b,], i=123.

k=1

With the initial condition y¥_, W(a,b) = W(a,b) we get

F(l,ab,t) = exp[ —At+ A J ds exp( - % |E( — t,a,b) |2)]
(4

Remarks 3.17: (1) If H = p*/2m then
1 t/m]
fun = [0 1

and £( —t,a,b) =a — bt/m, if ﬁ=ﬁ2/2m + (mw?/2)§*
then

cos wt

Q) = sin a)t/ma)]

— mo sin wt cos wt

and £( — t,a,b) = a cos wt — (b /mw)sin wt, in agreement
with (3.3) and (3.4), respectively.

(2) The nonintegrability of the function F(---) with
respect to the variables a and b implies that its Fourier trans-
form in (3.12) has to be understood in the distributional
sense, the test function being represented by

WWENUDPU(— W (xy)|¢)

for some state |/} in the Hilbert space 5#°. The whole inte-
gral makes sense through a weak-limit procedure as well as
the formal manipulations in the Appendix. Within this
scheme the Fourier transform of the function F(4,a,b,t) ap-
pears to be the weight in a linear convex combination of the
initial p transformed unitarily by means of the Weyl opera-
tors.

V. CONCLUSIONS

We have given a sufficient condition under which a
quantum dynamical semigroup does enhance the mixing of a
J

APPENDIX: HARMONIC OSCILLATOR
Let us consider H = p*/2m + (mw?/2)é for which
g, = g cos wt + (p/mw)sin wt,

and

W,(0,p) = U( ~ WO U(H) = exp(i pz,,) _ W(_
# mw

Using the Weyl relation we get
T[W, (0p) W, (0p)pW] (0p,)- W] (0p,)]

k

(3.16)

r
quantum system in the sense of the ordering among density

matrices. Mixing enhancing shows up explicitly in the struc-
ture of the solution for generators whose dissipative part has
been chosen to be a Gaussian distributed kicking process
changing the momentum of the single particle quantum sys-
tem and leading to localization in position.

This behavior is even more evident if we look at the
solutions of the modified quantum evolutions (3.3) and
(3.4). They happen to be particular cases of a more general
class of solvable equations of motion where the Hamiltonian
is at most quadratic.

The structure of the solutions reveals a common behav-
ior that leads to decaying of off-diagonal matrix elements in
the position representation, together with general decreasing
of information about the system. It is also clear that the lin-
earity of the Heisenberg equations of motion and thus the
equivalence of classical and quantum solutions, besides al-
lowing us to solve the modified dynamics, characterizes the
damping factor in the weight function. How far this is relat-
ed to the classical limit in Ref. 14 would be a matter of subse-
quent investigation.
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D, = P cos wt — mwq sin wt,

sin wt,p cos wt )

A ) k . K
= W(z p—’sin WS;, Z p; €os a)si)f)W‘r(z &_sin ws;, Z D cos CUS,-).
i=1 i=1

i=1 Mo i=1 Mo

Hence
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! 1 1 7 ! + oo
ds, 7% [p =—-———fds ---st f d
J; Pl =05 amt o L)

+ o k p2
. dp, ex (— —')
j_ I P P igl at

+ oo + oo + i p
) e[ o] af |- fAs- 3 2ounen)]

T IS o, ——

i

i=1

at?

Il s

1 + oo + = + o + oo
=Ff dxf dyJ‘ qu- dp exp(

1 1 +ood +ood +ood + o l l
y apexp{ - px)ere( - )
k!(Zwﬁ)zf_w xJ_w yfw qf_w 4 U b

+w 2
f dp; exp( b ) ex p( P [—— sin ws; + ¢ cos ws; D} W (x )W (x,)

i i
7oe)on( =5 0)

! a P . )4 A ¥
. ds exp| — — | g cos ws + —~— sin ws W(xy)pW'(xy).
o 4 mo

Finally,

+ o + oo + oo + o l l
ﬁ,=e“’f dxf dyf dqf dPeXP(—?Px>CXP<——ﬁ-QY)

-exp[/i f ds exp( -2 [q cos ws + 2 _in a)s] 2)] UYWxy)pW i (x ) U(—1).
o 4 mow

The use being made of Dirac deltas, the exchange of integrals among themselves and with the sum are justified by going in a
representation with suitable vector states in the Hilbert space #” and by remarking the trace-norm convergence of the series

(3.9).

Since

U WxypWixep)U(—6) = W_, (xp)UOpU(—- )W, (x,p),
where

W_,(xyp) = W][xcos wt — (y/mw)sin oty cos wt + mwx sin wt ],

after a coordinate transformation, we end up with

+ec + oo + +
5, = df df d ex(
P (217%)2.]‘ f 'y q 'p €Xp

]
-5 ok 57)

2
Xexp[ — At +/1J. ds exp( — % [q cos ws — £ sin ws] )] W(xp)U(HpU( — ) W(x,p),
o mw

which agrees with (3.4) as we can see by working out (g|3, |¢). The weight function is now

+ o + ®© r 1
N0 R o R

! 2
F(A,q.p,t) = exp[ —At+ A f ds exp[ - % (q cos ws — £ sin ws)] ],
0

and is to be understood in a distributional sense.
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This paper contains a series of remarks about the concept of Complete System of Observables
(CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch
[Helv. Phys. Acta 33, 711 (1960) ] and the other by Prugovecki [Can. J. Phys. 47, 1083

(1968)].

I. INTRODUCTION

As is well known, the concept of Complete System of
Observables (CSO) was introduced in quantum mechanics
by Dirac' based on rather heuristic considerations on the
problem of assigning unambiguous elements of a Hilbert
space to sets of measurements on a physical system. Dirac’s
formulation becomes rigorous only in a few cases, for in-
stance, when the dimension of the Hilbert space in consider-
ation is finite, in which a self-adjoint operator has real pure
point spectrum.

In general, Dirac’s formulation is not suitable in infi-
nite-dimensional Hilbert spaces and a new definition is need-
ed if the CSO concept is to be applicable in quantum me-
chanics; this problem was considered by Prugovecki® and
Jauch® in the 1960s, but it seems that it has not been ana-
lyzed recently.

In this section we give the definitions of Prugovecki and
Jauch. In Sec. II some ideas supporting these definitions are
presented, as well as some physical aspects of the CSO con-
cept. In Sec. III we analyze the relations between these defi-
nitions and we also show that one definition implies the oth-
er under a suitable assumption; such an assumption was
presented in Ref. 4 but not in Ref. 2, although it should have
been presented. In Sec. IV some remarks concerning the
CSO concept are given.

From now on #° will represent a separable complex
Hilbert space and all measures in this work are o-finite posi-
tive Borel measures on 2" If (4,,...,4,,) is a set of commut-
ing self-adjoint operators in 7 (two self-adjoint operators
commute iff their spectral families commute), the spectrum
of A; will be denoted by A; and its spectral projections by
E“(B), where B denotes any Borel set in Z#.

As we consider here two definitions of CSO they will be
distinguished as P-CSO and J-CSQO, after Prugovecki and
Jauch.

Definition 1 (Prugovecki® ): The set (4,,...,4,,) of com-
muting self-adjoint operators in ¥ constitutes a P-CSO iff
there exists a unitary transformation V:L ,2[ (A) -7, where
A=A, X+ XA, is the support of i, such that the opera-
tors ¥ ~'4,V are the multiplication operators

dom(V ~'4,V)
= {\I/EL,E(A):J‘x,.2|\lf(.7c)|2 du(x) < w},
A

(V= '4, /) (x) = x,¥(x),

for 1<i<n, x = (xy,..,x,)-

Yedom(V ~'4,V),
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Now we turn our attention to Jauch’s definition. If Wis
aset of operators in 57 its commutant W’ is defined as the set
of all bounded operators that commute with all the operators
in W. If W contains only self-adjoint operators W', W",
W".... are von Neumann algebras*® (a set of continuous
operators % is said to be a von Neumann algebra if
%" = %); W" is the smallest von Neumann algebra con-
taining all the spectral projections of the operators in W and
it is called the von Neumann algebra generated by W. A von
Neumann algebra % is Abelian if % C %' and, if, in addi-
tion, %' = %, % admits no Abelian extension and it is
called maximal Abelian.

Definition 2 (Jauch® ): The set G = (4,,...,4,,) of com-
muting self-adjoint operators in 77 constitute a J-CSO iff the
von Neumann algebra generated by G(G ") is maximal Abe-
lian.

Il. COMMENTS ON THE DEFINITIONS OF CSO

The existence of a CSO is tacitly made in quantum me-
chanics; this concept arises from the problem of assigning
unambiguous elements of a Hilbert space to sets of measure-
ments on a physical system, thus it is postulated the exis-
tence of a complete set of independent measurements that
provide the maximum amount of information about the sys-
tem. As each observable in quantum mechanics is represent-
ed by a self-adjoint operator in a Hilbert space, one arrives at
the problem of characterizing a maximal set of self-adjoint
operators.

The original formulation of the CSO concept given by
Dirac' was developed based on properties of self-adjoint op-
erators in finite-dimensional Hilbert spaces. The Hilbert
spaces of quantum mechanics are, in general, infinite dimen-
sional and some modifications are necessary to have this no-
tion extended to the general case.

Jauch and Prugovecki redefined the concept of CSO in
the finite-dimensional case in an equivalent way, which
could be generalized to infinite-dimensional Hilbert spaces.
Let us summarize the situation in the finite-dimensional
case: According to Dirac’s formulation a set (F,,...,F,) of
commuting self-adjoint operators forms a CSO in the finite-
dimensional Hilbert space 7 if there is only one simulta-
neous eigenstate belonging to any set of eigenvalues. One can
show that this definition is equivalent to any of the following
assertions. ‘

(a) (Refs. 2 and 4) There is a unitary mapping
V:L% (A) -, such that

(V ~'F,1¥) (x) = x;¥(x),

© 1990 American Institute of Physics 2406



where 4 is a finite measure and x = (x,,...,x,, ).

(b) (Ref. 3) There is a vector £€.% such that every
element 7e%” can be represented in the form
n=p(F,,..F,)§ with some polynomial p(F,,...F,);
Jauch® remarked that the set of such polynomials consti-
tutes the von Neumann algebra generated by (F;,...,F, ) and
this algebra is maximal Abelian.

The above assertions support the definitions of P-CSO
and J-CSO. The definition of J-CSO is based on purely alge-
braic considerations and it also works for an arbitrary set of
commuting self-adjoint operators.?

lll. ON THE EQUIVALENCE OF J-CSO AND P-CSO

In this section we prove the equivalence (under certain
assumptions) of the two CSO definitions given in Sec. I, but
before this the definitions of P-CSO and J-CSO are related to
the existence of cyclic vectors with respect to certain sets of
operators.

Definition 3: Let G = (A4,,...,4, ) be a set of commuting
self-adjoint operators in 7. A £€57 is P-cyclic with respect
to G if fedom(p(4,,..,4,)) for any polynomial
p(A,,....4,) and the linear manifold spanned by all vectors
of the form p(4,,...,4,, )£ is dense in 7.

Definition 4: Let G = (A,,...,A, ) be a set of commuting
self-adjoint operators in 5. A £€57 is J-cyclic with respect
to G iff the linear manifold spanned by the vectors (7¢:
TeG ") is dense in 7.

Now we dwell on the explanation of an assumption
needed for the validity of the “if part” of Lemma 1 below and
of the spectral representation presented in Ref. 4.

If A:dom A - is self-adjoint and nedom A we have
(by the Spectral Theorem’ ) .

{n|4n) =f x dv)) (x), (1)
R

where v}, (B) = (5| E*(B)n) for any Borel set Bin #; if n is
J-cyclic we can follow the arguments given in Ref. 4 and
conclude that 4 acts as a multiplication by the independent
variable in L 21,,. (RB").

Let (4, ,...,'14,, ) be a set of » commuting self-adjoint op-
erators in 5. There exists* a unique spectral measure S de-
fined on the o algebra generated by the Borel rectangles of

the product space
A=A, X XA,,
such that
S(B,X-XB,)=E*(B,)---E™(B,)
for any Borel rectangle B, X -+ X B, in A.
For each 7e¥” we consider the o-finite measure u,, on
the Borel sets of A, characterized by
Hr (B) = (7|S(B)7)

for any Borel set B. For a convenient spectral representation
of the elements of (4,,...,4,) we should have*

(€14, €) = J %, dpsg (%), 2)

where £e7 is J-cyclic with respect to (4,,...,.4,) and
X = (X,..,X, ). [It will be shown that if assumption (3)
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holds, there exists a vector that is P-cyclic and J-cyclic with
respect to (A4,,...,4,,).]

If A, is to be represented by the multiplication by x;, we
see that we should have*

J x; dvg" (x;) =f x; dug(x), (3)
A, A
and this will be supposed to be satisfied. It is worth noting
the two following points.

(1) Assumption (3) is satisfied if i, is absolutely con-
tinuous with respect to the product measure (see Ref. 4),

vgl x e XUz"~

(ii) In Ref. 2 relation (3) should be supposed to be
satisfied for measure ¢ in Definition 1 [for instance, in Eq.
(23)], and it is necessary for the validity of the “if part” of
Lemma 1 below.

From now on we suppose that assumption (3) holds.

Lemma 1* The set (A4,,...,4,) of commuting self-ad-
joint operators in 5% is a P-CSO iff there exists a vector P-
cyclic with respect to (4,,...,4,,).

Lemma 2 The set (4,,...,4,) of commuting self-ad-
joint operators in ¥ is a J-CSO iff there exists a J-cyclic
vector with respect to (4,,...,4,,).

Suppose (4, ,...,4, ) is a P-CSO. Let €> 0 and ne#° be
given. By Lemma 1 there is a £&e#° P-cyclic, so there is a
polynomial p(4,,...,4,,) such that

lp(A4,,...4,)€ — || <€/2. (4)

Let I, CI, CI, C... measurable bounded sets in #" such
that

i L =R
Using Lemma 1 and the representation of (4,,...,4, ) given

in Definition 1 we have

s (44, )P4y, sA,))E — p(A,,..,4,)E |

= f IXI[(xl )--~1x" )p(xl !""x" )
A

—p(xynx,)) P du(x,,...x,),

where A = A, X -+ XA, and y, denotes the characteristic
function of the set I. Since

s, (X1 s X )P (X Xy ) — PUX X, )P4 P(X) 5, ) [P

and [p(x,,...,.x,)|* is u integrable we can apply the Domi-
nate Convergence Theorem and conclude that there is a nat-
ural number & such that

”XIA (Al ""’An )p(AI ""’An )§ “‘P(A1 v'-"An )§ ” < 6/2-
5
Combining Eqs. (4) and (5) we have S
s, Ay seerd, )P Ay A, E — 7] <.

Taking into account that the von Neumann algebra gen-
erated by G = (4,,...,4,,) consists precisely of the set of es-
sentially bounded functions* of (4,,..,4,), we see that
X1 (A41,...4,)p(4,,...,4,) is an element of G". Hence we
conclude that £ is a J-cyclic vector with respect to G, and
according to Lemma 2, G is a J-CSO.

Now, suppose that G = (4,,...,.4,,) is a J-CSO. Under
assumption (3) Jauch and Misra* have shown that thereis a
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unique class ¥ of equivalent measures on the o algebra gen-
erated by the Borel rectangles of A, such that a measure pe¢
ifithastheformp(B) = (£ |S(B)¢& ) for some J-cyclic £€57;
moreover, for any ue% , 77 is unitarily equivalent to L ,ﬁ (A)
and A, corresponds to the multiplication by x; in L} (A).
Hence G is also a P-CSO.

As a direct consequence of Lemmas 1 and 2, and the
above paragraph, we have the following.

If  is a J-cyclic vector with respect to the J-CSO
G = (4,,...,4,,), there is a P-cyclic vector £ with respect to
G, which is also a J-cyclic vector with respect to G. We have
proved the following proposition.

Proposition 1 [under assumption (3)]: The set
G=(4,,..,4,) of commuting self-adjoint operators in #°
constitutes a J-CSO iff Gis a P-CSOQ iff there is a £ that is
J-cyclic and P-cyclic with respect to G.

IV. FURTHER REMARKS

In this section some remarks concerning the CSO con-
cept are presented.

(i) The definition of J-CSO works for an arbitrary set of
commuting self-adjoint operators,® as well as Lemma 2; but
it does not seem to exist examples in quantum mechanics in
which an infinite number of observables is necessary to con-
stitute a CSO.

(ii) Assumption (3) is not necessary for the proof of
Lemma 2.

(iii) Now we prove that if (4,,....4,) constitute a J-
CSO and/or a P-CSO, then any other observable that com-
mutes with A4,,...,4, is a function of 4,,...,4,,.

Proposition 2 [under assumption (3)]: Let (A,,...,A, ) be
aJ-CSO and/or a P-CSO. If T'is a self-adjoint operator in &%
that commutes with 4, ,...,4,,, then there exists a function f
such that 7= f(4,,...,4,).

Proof: Suppose, to begin with, that T is bounded. By
Proposition 1; there exists a P-cyclic vector & with respect to
(4,,...,4,). Thus there is a sequence of polynomials
(p;(4,,...,4,)) such that

P41, A,)E-TE, j—ooo.
Since

“Pj (A1 )---9An )"2 = J; Ip/(x) |2 dlué’ (x)’

where x = (x,,...,x, ), it follows that (p;(x)) is a Cauchy
sequence in L,ZL:(A), and by the Riesz—Fischer Theorem

there exists a geL Z (A) such that
p;—g in L} (A).
Hence

p; (Al )E — 8(Ay,.d,)E |2
=f ‘P,- (x) —-g(x)|2 d/zg(x) -0,
A

and we have

pi(Ays.,A,)E—~8(4,,..4,)E J— .
Let ne#’. There is a sequence of polynomials

(g, (A4,,....4,)) such that (g, (4,,...,4,,)€) converges to 7;
since T is continuous and any function of commuting self-
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adjoint operators is a closed operator, it is clear that
Tq.(A4,,.,A)E-Ty

and

g(Ay,..4,)9: (4y,..,4,)8 = g (4,,...,4,)8(4,,...4,)§
=g, (4., 4,)T¢
= Tq,(4,,...,4,)§;

hence we have nedom(g(4,,...,4,,)) and

8(A,,...4,)q, (4,,...,4,)E~8(A,,...4,)n;
therefore

T=g(A,,.,A4,). ,

Finally, let 7'be an unbounded self-adjoint operator and

(E J:yeR) its spectral family. According to the above result,
for each yeR there is a function £, such that

ET=f(4,,..4,).

Since (f,:peR) characterizes uniquely’ the operator T’
we may define the function

fid,,..4,) Efydy [f, (4,504, ]

k- oo;

=Jydy[EI]=T-

(iv) Proposition 2 gives us a pleasant result from the
physical point of view and justifies the word “complete” in
the expression CSO; in fact, the result of Proposition 2 was
considered by Mackey® as a convenient definition of CSO.

(v) Suppose the position operators @, ,...,Q, of a quan-
tum system in R” constitute a J-CSO and/or a P-CSQO, then
0,0, are represented by the multiplication by x,,....x,,
respectively, in L i for some finite measure u. If the momen-
tum operators are defined as the generators of the transla-
tions

U, W(Xy5e0x,) =V (X, —t,0x, — 1),

Vel i, we have to assume that U, _, are unitary operators,
since the momenta are observables (by The Stone
Theorem’ ); hence the sets of 4 measure zero must be trans-
lation invariant, which implies that u is equivalent to the
Lebesgue measure. Therefore i and the Lebesgue measure
are in the class % mentioned in Sec. II1, so we can take the
Hilbert space of the quantum system as L 2(#"), with the
Lebesgue measure, and Q,,...,Q, as the multiplication by
X1 ,...sX,, respectively; of course, this is the usual framework
of the textbooks on quantum mechanics (also see Ref. 8).

(vi) As a final remark, we observe that in the case that a
single operator A4 is a J-CSO and/or a P-CSO, Eq. (3) is
always satisfied and Definition 1 express the so-called “ca-
nonical form” of the self-adjoint operator 4.” Jauch and
Misra* have announced examples where Eq. (3) is not satis-
fied.

V.CONCLUSION

We have discussed the concept of CSO in quantum me-
chanics from the mathematical and physical points of view;
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special attention was given to the definitions and results of
Jauch and Prugovecki. Many results obtained here were im-
provements of previous results and remarks given by other
authors, but here it was possible to collect them together. An
assumption made in this work was identity (3), and if identi-
ty (3) holds it was possible to prove the equivalence of J-
CSO and P-CSO; we could think of identity (3) as a condi-
tion of independence of the operators in the CSO.

From the practical view, remark (v) in Sec. IV is out-
standing, but it seems necessary to do analogous studies
when other sets of operators are supposed to constitute a
CSO, particularly sets containing the energy operator; in our
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opinion, there are physical aspects of the CSO concept not
explored yet.
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The potential interaction Ax%/(1 + gx?), g > 0, of the harmonic oscillator H, = — d?/dx* + x*
considered as an operator in the space L,( — oo, oo ) is bounded. This together with the
nondegeneracy of the eigenvalues implies that the eigenvectors of the perturbed harmonic
oscillator as functions of the parameters A and g are strongly differentiable. The eigenvalues
are therefore differentiable functions for every real A and every real g > 0. In particular, the
first eigenvalue E,(A) as a function of 4 is strictly concave (E | (1) <0). This paper, exploiting
the above properties, aims at several inequalities for the eigenvalues of H, + Ax?/(1 + gx?),
g> 0. Emphasis is given to the inequality that follows from the strict concavity of the function

E[(A).

I. INTRODUCTION

A great amount of work has been devoted in the last few
years to the investigation of the eigenvalues of the perturbed
harmonic oscillator:

2 2
( - i_z +x*+ Ax 2

dx 1+gx
See Ref. 1 and the references therein.

A significant approximate relation for all eigenvalues
E,, n>0, has been found in Ref. 2 for sufficiently small val-
ues of A /g. This relation is

)¢=E¢; A>0, g>0. (L)

E ~2m+1+LA_ & (mmny-a, (12)
2g ¢
where
0 _ 2
I, =J- exp( —x)HZ(x) L—-g—xzdx, (1.3)
o 1+ gx

with n =0, 1, 2,... and H, (x) the Hermite polynomial of
degree n.

The above approximation scheme, however, does not
say how small are the values of A /g for which (1.2) holds,
and also, it is not apparent whether the approximation taken
from (1.2) approximates the true eigenvalues from below or
from above.

In this paper, we prove that for the first eigenvalue rela-
tion (1.2) is a strict inequality. In fact it is an upper bound
and holds for every A >0 and g > 0. This has been achieved
by proving that the first eigenvalue is a strictly concave func-
tion of A in the interval [0, o ). The method we follow is
based on the fact that the eigenfunctions of (1.1) are strong-
ly differentiable functions with respect to A in the space
L,(— o0,0).

The nonstrict concavity alone (without differentiabil-
ity) can also be proved by the use of the minimum principle
for the first eigenvalue.

The strict inequality in (1.2) is proved in Sec. III after
giving some preliminaries in Sec. II. In Sec. IV a general
comparison principle is proved from which several bounds
for all the eigenvalues follow easily. In Sec. V numerical re-
sults are used for the estimation of the first eigenvalue
E,(4,g) for several values of 4 and g.
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Il. PRELIMINARIES (ONE-PARAMETER
PERTURBATION THEORY)

Suppose that H(v) is a family of self-adjoint operators,
bounded or unbounded in a separable Hilbert space H, de-
pending on a real parameter v in some open interval /; of the
real axis. Suppose also that an isolated eigenvalue E(v) of
H(v) exists for every v in the open interval /, corresponding
to the normalized eigenvector x(v); H(v)x(v)

= E(v)x(v).

In Ref. 3, under the additional assumptions that

(i) H(v) as a function of the real parameter v is differ-
entiable, with respect to the operator norm, for every vin /,,
and the derivative

dH(v)
v

H'(v) =

is a uniformly bounded operator, i.e., |[H'(v)||<K < o, on
every compact subinterval of /;; and

(ii) the eigenvalue E(v) is simple (nondegenerate) for
every vin /;, it has been proved that the corresponding eigen-
vector x(v) as a function from [, into H, x(v):l,—H, is
strongly differentiable and the derivative x’(v) is given by

(V)= —RWPWH'(v)x(v); [lx(»)|| =1, (2.1)
where P(v) is the orthogonal projection on H8{x(v)} and
R (v) is the inverse of H — E(v)1, restricted on HO{x(v)}.

Now, from the relation

E(w) = (HW)x(v),x(v})), ||x(»)|| =1,
it follows immediately that E(v) is differentiable and the
derivative E’(v) is given by

E'(v) = (H'(")x(v),x(v))},
because H(v) is self-adjoint.

The relation (2.2) is called in quantum chemistry a
Hellman-Feynman theorem and it was known formally
many years ago.* Formally, it was also known the relation

d’E,(v)

v

for the first eigenvalue E,(v) in case where H(v) is un-
bounded,’ and the relation

[x(Ml=1, (22)

<<H "(V)xl(v)’ x[(V)) ) (23)
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d?’E,(v)
dv:

for the last eigenvalue E,(v) in the case where H(v) is
bounded. See Ref. 3 for rigorous proofs.

Moreover, in the case where H(v) has, for every vin [, a
complete orthonormal system of eigenvectors x,(v),
n = 1,2,..., which correspond to the simple (nondegenerate)
eigenvalues E, (v), one has from the above relations (2.1)
and (2.2) the expression®

>(H" (v)x,(v),x ()}, (2.4)

d’E
——;:}2&)—= (H"(v)x, (v),x, (V)
- 1
I, 2 R S
,,;1 E . (v) —E.(v)
n#*k

X [CH' (v)x, (v),x, (M) 7, (2.5)

from which one obtains the so-called curvature theorems
(2.3) and (2.4) for the first and the last eigenvalue, respec-
tively. In Ref. 3 has been proved something more, that in the
case where H'’(v) has purely continuous spectrum the strict
inequalities in (2.3) and (2.4) hold.

We now consider the particular case of the operator
H(v) in which we are now interested:

Hwv)=H,+vA, H'(v)=4, H"(v)=0, 0<¥l.
(2.6)

In (2.6) H, is a self-adjoint operator with a complete
orthonormal set of eigenvectors ¢,, n = 1, 2,..., correspond-
ing to the eigenvalues ¢, <, <c;< "  <¢,—> 0, and Aisa
bounded self-adjoint operator.

From the above we conclude the following.

The first eigenvalue E,(v) of the operator H, + vA4 is
strictly concave, i.e.,

d’E,(v)
/ dv?
when 4 has no eigenvalues. Note that strong differentiability
of the eigenvectors x, (v), n>1, implies weak continuity and
this, together with the simplicity (nondegeneracy) of eigen-
values, leads to the fact that the variation of the parameter v
does not change the order of the eigenvalues

O0<E (V) <E,(v)<<E (v)< .

Indeed, E,(v) <E,(v) and E,(u)>E,(u), u> v, implies
that there exists a number £ between v and u such that
E (&) = E,(£). But for y near &, E,(u)#E,(u). This
means that

<0, v>0, 2.7)

(e (u),x,(u)) =0,
and for p— ¢,

(x|(§),x2(§)) =0,
contrary to the degeneracy of the eigenvalues. Thus E, (v)
remains the nth eigenvalue for all v. Also we have that
E,(0)=c, and x,(0) =e,. From (2.7) and (2.2) we ob-
tain

dE,(v) < dE,(0)
dv dv
so that for the first eigenvalue E, (v) of H, + vA we have

= (de,e,), (2.8)
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E (v) <c, + v{de,e,) . (2.9)

Then the first eigenvalue E, (1) of H, + A satisfies the in-
equality

E|(1)=E, <c, + {de,e,) . (2.10)
Note that relation (2.10) says something more than the infi-
mum principle:

E, = }ng ((Hoy+ A [, 1)
f#0

<((H()+A)e|,el)
=c, + (dee,) .

lll. THE UPPER BOUND ON THE FIRST EIGENVALUE
Eq(2)

The one-dimensional Schrédinger equation

2
— L v fweo = Eé, (3.1)
dx
with an interaction of the type
V(x) =x24+Ax*/(1 +gx*), g>0, 4>0, (3.2)

takes exactly the form of an eigenvalue equation of the oper-
ator H, + A4,

H(A) =H,+ AA=H,+ A [x*/(1 + gx*)],
H(A)x, (1) =E,(A)x,(4),

considered here as a function of the potential parameter A.
Here, H, is taken as the harmonic oscillator operator

(3.3)

2
H,= —di;+x2; Hee,(x) = (2n—1e,(x); n=12...,
X
with
1 172 )
ce,(x) = [—————] e " H, _,(x) (3.4)
2" Yn— W7

the corresponding normalized eigenfunctions, and 4 as the
perturbation operator

A: Af(x) = [x*/(1 +gx*)] fix) (3.5)

in the space L,( — 0,00 ). This is the case of the above con-
sidered particular form of the operator H(v);
H(v) = H,+ vA, Eq. (2.6)

Now, assumption (i) is satisfied because the operator 4
in (3.5) is a bounded operator on L,( — 0,00 ). Assump-
tion (ii) is also satisfied for all eigenvalues E, (1) in the case
of the one-dimensional Schrddiner equation.

Chaudhuri and Mukherjee? in their study of the prob-
lem (3.3), in order to obtain the energy eigenvalues, have
developed a simple approximation scheme only for small
values of £k = A /g and have been led to

E,(k)y=2n—1+%k—k[Jm2"~Y(n—1)1]"'T,_,,
(3.6)

where

o —_ 2
I,_, =J exp( —x)H? | (x) 1 gxz dx,
o 1+ gx

with n = 1, 2,... and H,(x) is a Hermite polynomial of de-
gree n.

3.7)

E. K. Ifantis and P. N. Panagopoulos 2411



Proposition 1: The relation (3.6) is a strict upper bound
for the first eigenvalue £, (1) for every A = A /g and can be
expressed as follows:

E (1) <1 +-{l—[l — ﬂ‘/zg_'/ze”g<1 — erf-—l—)] .
g Vg

Proof: The first eigenvalue E,(A1) of the operator
H, + AA is strictly concave, i.e.,

d’E\ (L)
dA?
because the operator 4, defined by (3.5), has no eigenvalues.
Since here ¢, = 1 and e,(x) = 7~ "/4-e = */2 relation (2.9)
leads to

<0; (3.9)

e~

1 +gx
Relation (3.8) follows by expressing the integral in (3.10) in
terms of the error function.®

On the other hand, the relations (3.6) and (3.7) give for
the first eigenvalue E, (1) the following approximate expres-
sion:
EM) =1+ k—k[Jr]™'I,

o 2

LA A (ML ey
o 14 gx?

(3.11)

2

E,(,l)<1+i[1—ﬁ—”22r dx]. (3.10)
g 0

2¢g g

which after some manipulation can take the form

e~
2

1+ gx”

E,(/i):1+i[l—7r’”22fm dx].(3.12)
14 0

This shows that Chaudhuri and Mukherjee’s relation (3.11)
is in fact a strict inequality holding for every k = 4 /g.

Remark 3.1: Inequality (3.8) follows from the strict
concavity of the function £,(4). In general, concavity or
convexity is impossible for all eigenvalues of the parameter
problem (H, + A4)x(1) = E(A)x(A). In fact, in a finite-
dimensional space the first eigenvalue is concave and the last
convex.” However, in infinite-dimensional spaces, there are
cases where concavity holds for all eigenvalues, as we know
from examples.

We believe that in the present case of the perturbed har-
monic oscillator concavity holds for all eigenvalues and
therefore the strict inequality in (3.6) holds for every
n=12,..

IV. SOME MONOTONICITY PROPERTIES LEADING TO
UPPER BOUNDS ON THE EIGENVALUES

The comparison principle we give below follows easily
from those results of Ref. 3 that are briefly presented in Sec.
IL. This is given here in a general form and may be viewed as
a generalization of a well-known comparison principle in the
Sturm-Liouville eigenvalue problem.’

Proposition 2: Assume that the self-adjoint operator H,,
is bounded below with compact resolvent, so that the spec-
trum of H, + A consist only of eigenvalues, for every bound-
ed self-adjoint operator 4. Assume also that the eigenvalues
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of H, 4+ A are nondegenerate and remain so if 4 is replaced
by a + BA, a>0, B>0, a*> + B*#0. Then A<B in the sense
(Af.[)Y<{(Bf, f)impliesE, (A)<E,(B),where E, (4) and
E, (B), n>1, are, respectively, the eigenvalues of the prob-
lems (Hy+ A) f=Ef, (Hy+ B) f= Ef. Also the strict
inequality holds, if 4 < B.

Proof: Consider the parameter eigenvalue problem

(Ho+ (1 - v)A+vB]x,(v) =E,()x,(v),

O<v«l, 4.1
so that E,(0) = E,(A) and E,(1) = E,(B), n>1. From
(2.2) we obtain

dE, (v)

dv

= ((B—A4)x,(v)x,(v))>O0.

Thus
E,(1)>E,(0) or E,(4)<E,(B). (4.2)

Applying this proposition to the eigenvalue problem (3.3)
we obtain the following results:

(1) for every A > 0 and g > O the eigenvalues E, (1,g) of
(3.3) satisfy the inequality

E (ALg)<@2n—1y1+ 4, nxl, A>0, g>0.
(4.3)

This follows by comparing the interaction in (3.3) with the
interaction Ax?(g = 0) and is appropriate for every A and
small g, because for g = 0 the equality holds.

(2) The eigenvalues E, (4,g), for fixed A, decrease as g
increases and for fixed g increase with A.

(3) For every A and g#0

E (Ag)<2n—1+4/g, n>l.
This follows because

Ax* A gx’ < A

T+gx®> g l4gx® g

Note that the inequalities (4.3) and (4.4) are well known.®

(4.4)

V. NUMERICAL RESULTS

In Table I the upper bounds for the first eigenvalue
E,(A) have been determined from the inequality (3.8)
which is in fact relation (3.10) expressed in terms of the
error function. The numerical results are almost the same as
those found in Ref. 2 by using a different expression of the
integral in the right hand of (3.10).

Table II compares the upper bounds given by (3.8) for
several values of A and g with the upper bounds obtained in

TABLE I. Upper bounds for the first cigenvalue.

g Upper bounds of Ref. 2 Upper bounds given by (3.8)

0.5 1+ 0.314 52464 1+ 0.314 6656 981
1 1+ 0.242 12964 1+ 0.242 1278 484
2 1+ 0.172 16044 1+0.172 1602 214
5 1 4 0.097 93834 1 4+ 0.097 9382 514
10 1+ 0.059 44344 1 + 0.059 4434 924
20 1+ 0.034 33774 1 + 0.034 3373 264
100 1+ 0.008 4114 14 0.008 4110 7134
500 1 +0.001 84514 1+ 0.001 8491 6024
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TABLE II. Comparison of the upper bounds given by (3.8).

TABLE II. (Continued.)

g= 0.5

A=01 1.03121 1.031 466 569 0.000 256 569
A=02 1.061 96 1.062 933 139 0.000973 139
A=05 1.151 56 1.157 332 849 0.005 772 849
A=1 1.29295 1.314 665 698 0.021 715 698
A=2 1.551 04 1.629 331 396 0.078 291 396
A=5 2.19211 2.573 328 49 0.381 218 49
A=10 3.016 85 4.146 656 98 1.129 806 98
A =20 4.255 06 7.293 31396 3.038 253 96
A=50 6.792 78 16.733 2849 9.940 504 9
A=100 9.69215 32.466 569 8 22.774 419 8
g=1

A=01 1.024 10 1.024 212 784 0.000 112 784
A=02 1.048 01 1.048 425 569 0.000 415 569
A=05 1.118 54 1.121 063 924 0.002 523 924
A=1 1.23235 1.242 127 848 0.009 777 848
A= 1.447 32 1.484 255 696 0.036 935 696
A=5 2.01300 2.210639 24 0.197 639 24
A=10 2.782 33 3.421 278 48 0.638 948 48
A=20 3.977 69 5.842 556 96 1.864 866 96
A=50 6.478 11 13.106 392 4 6.628 282 4
A=100 9.3594 25.212784 8 15.853 384 8
g=2

A=01 1.017 18 1.017 216022 0.000 036 022
A=02 1.034 29 1.034 432 044 0.000 142 044
A=05 1.085 19 1.086 080 11 0.000 890 11
A=1 1.168 67 1.172 160 221 0.003 490 221
A=2 1.33072 1.344 320 442 0.013 600 442
A=35 1.782 13 1.860 801 105 0.078 671 105
A=10 2.442 50 2.721 602 21 0.279 102 21
A=20 3.53492 4.443 204 42 0.908 284 42
A=350 5.93198 9.608 011 05 3.676 031 05
A=100 87582 18.216 022 1 9.457 822 1
g=735

A=0.1 1.009 78 1.009 793 825 0.000013 825
A=02 1.019 56 1.019 587 65 0.000 027 65
A=05 1.048 86 1.048 969 125 0.000 109 125
A=1 1.097 29 1.097 938 251 0.000 648 251
A=2 1.193 31 1.195 876 502 0.002 566 502
A=35 1.474 02 1.489 691 255 0.015 671 255
A=10 1.918 90 1.979 382 51 0.060 482 51
A=120 2.73391 2.958 765 02 0.224 85502
A =50 4.75570 5.896 912 55 1.141 21255
A=100 734216 10.793 825 1 3.451 6651
g=10

A=01 1.005 94 1.005 944 349 0.000 004 349
A=02 1.011 88 1.011 888 698 0.000 008 698
A=05 1.029 68 1.029 721 746 0.000 041 746
A=1 1.059 29 1.059 443 492 0.000 153 492
A=2 1.118 30 1.118 886 984 0.000 586 984
A=5 1.293 58 1.297 217 46 0.003 637 46
A=10 1.580 02 1.594 434 92 0.014 41492
A=20 2.13243 2.188 869 84 0.056 439 84
A =50 3.644 41 3972174 6 0.327764 6
A=100 5794 6.944 3492 1.150 3492
g=20

A=01 1.003 43 1.003 433 732 0.000 003 732
A=02 1.006 86 1.006 867 465 0.000 007 465
A=05 1.017 16 1.017 168 663 0.000 008 663
A= 1.034 30 1.034 337 326 0.000 037 326
A=2 1.068 55 1.068 674 652 0.000 124 652
A=5 1.170 96 1.171 686 63 0.000 726 63
A=10 1.340 47 1.343 373 26 0.002 903 26
A=20 1.675 18 1.686 746 52 0.011 566 52
A=350 2.64547 2.716 866 3 0.071 396 3
A=100 4.157 44337326 0.276 732 6
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g=>50

A=0.1 1.001 56 1.001 569 622 0.000 009 622
A=02 1.003 13 1.003 139 244 0.000 009 244
A=0.5 1.007 84 1.007 848 11 0.000008 11
A=1 1.015 69 1.015 696 221 0.000 006 221
A=2 1.031 38 1.031 392 442 0.000 012 442
A=5 1.078 40 1.078 481 105 0.000 081 105
A=10 1.156 67 1.156 962 21 0.000 292 21
A=20 1.312.75 1.313924 42 0.001 174 42
A=350 1.777 48 1.784 811 05 0.007 33105
A=100 25401 2.569 622 1 0.029 5221
g=100

A=0.1 1.000 84 1.000 841 107 0.000 001 107
A=02 1.001 68 1.001 682 214 0.000 002 214
A=05 1.004 20 1.004 205 535 0.000 005 535
A= 1.008 41 1.008 411 071 0.000 001 071
A= 1.016 82 1.016 822 142 0.000 002 142
A=S5 1.042 04 1.042 055 356 0.000 015 356
A=10 1.084 06 1.084 110 71 0.000 050 71
A=20 1.168 03 1.168 221 42 0.000 191 42
A=50 1.419 38 1.420 553 55 0.001 173 55
A=100 1.8364 1.841 107 1 0.004 707 1

Ref. 9 by the Ritz aproximation method and by using 30 x 30
and (for large values of g) 100X 100 matrices. This table
shows that the bounds found in Ref. 9 (first row of Table II)
are better than the bounds given by (3.8) (second row of
Table IT). We see that for small values of the ratio A /g the
difference of these two bounds (third row of Table II) is not
significant. More precisely it is of order ax 10~ for (41 /
2)<0.1, of order a x 10~ for (A /g) <0.4, of order & x 103
for (A /g)<1 and of order ax 102 for (4 /g)<4, where
O<a<10.
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The S matrix of the Schrodinger equation, regarded as a function on the real axis with values in
the group of unitary operators L *(S?)—L *(S?), where §? is the unit sphere in R?, is factorized
in two different ways. One of these is a standard Wiener—Hopf factorization with respect to the
real line. The other is the kind of factorization that defines the Jost function and which has
been found to be a useful tool for the solution of the inverse scattering problem. A number of
results are given that relate the two factorizations, their existence as well as the indices they
give rise to. Some known theorems on the standard factorization lead to new results for the
three-dimensional inverse scattering problem for the Schrédinger equation with a noncentral
potential; in particular, a characterization of admissible S matrices is obtained.

I. INTRODUCTION

As is well known, the Jost function f; (k) plays an im-
portant role in scattering theory, and particularly in the in-
verse scattering problem at a fixed angular momentum, for
the Schrédinger equation with a central potential. Under
very general conditions this function is the continuous
boundary value of an analytic function that is holomorphic
inC* and approaches unity at |k | — co. Furthermore, it has
a finite number of simple zeros on the positive imaginary axis
at points ix,,, ifand only if — &2, is an eigenvalue of the radial
Schrodinger equation of that particular angular momentum.
The eigenvalue S, (k) = ¢*’ of the S matrix correspond-
ing to angular momentum / can be factored as

S, (k) = [V/f,(k)1fi( = k),

in which the first factor is meromorphic in the upper half-
plane and the second factor is holomorphic in the lower half-
plane. Of course, one can also isolate the zeros and poles so
that the remaining factors are holomorphic and free of zeros.
One then has a standard Wiener—Hopf factorization of the
symbol S, which in this case is of modulus unity. For com-
plex-valued functions such a factorization is trivial and can
be done explicitly by quadrature.

When the potential in the Schrédinger equation is not
central, on the other hand, matters are more complicated. If
the particle described by the Schriodinger equation has an
intrinsic spin then the direction dependence of the potential
may be caused by its spin dependence so that the equation is
form invariant under rotations and the total angular mo-
mentum is conserved. In that case the Schrédinger equation
is still separable but with coupling between different orbital
angular momenta. The S matrix for a given total angular
momentum will then be a finite-dimensional square matrix,

*) Preliminary versions, without proofs, of various parts of this paper were
presented at the summer research conference of the American Mathemat-
ical Society “'Inverse Problems in Partial Differential Equations,” Arcata,
CA, July 1989; the “Rencontre Interdisciplinaire, Problémes Inverses,”
Montpellier, France, November 1989; and the *‘International Conference
on Differential Equations and Mathematical Physics,” Birmingham, AL,
March 1990.
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and so will the Jost function. In such a case, the Wiener—
Hopf factorization is no longer trivial.'?

In the most general case of a potential that depends on
x€R’ the Schrédinger equation cannot be separated and the
S matrix is a function on R with values in the group % of
unitary operators L 2(S*)—L %(S*), where S? is the unit
sphere in R®. Physically, each point on S* stands for the
asymptotic direction of the momentum of a particle. (If the
Schrédinger equation is used for the description of waves
other than quantum mechanical, then each point of § stands
for the direction of a wave vector.) In any case, the factoriza-
tion of this operator-valued function remains an important
tool in the study of the Schrodinger equation and particular-
ly for the solution of the inverse-scattering problem. One
kind of factorization leads to the generalization of the Jost
function; another is a standard Wiener—Hopf factorization
with respect to the real line. A third kind of factorization was
introduced by Faddeev** (see also Ref. 5) in connection
with another solution of the inverse scattering problem. We
will not be concerned with that but will confine our attention
to factorizations in which the factors are regarded as func-
tions of the wave number (or the square root of the energy)
and are continuous boundary values on the real line of ana-
lytic functions of that variable.

In Sec. 1I the two kinds of factorization of S that are of
interest here are precisely defined; one is a standard Wiener—
Hopf factorization with respect to the real line and the other
is the Jost function factorization. Each leads to the definition
of an index, one of which we call the Wiener-Hopf index and
the other the Jost index. Some new results on the Jost factori-
zation and, particularly, on the relation between the two fac-
torizations are given; the most important one is Theorem
2.11. In Sec. III the Jost function factorization is implemen-
ted by the known technique of the generalized Marchenko
equations and new results are contained in Theorem 3.1. Up
to this point no assumption has been made about the admis-
sibility of .S as an S matrix of the Schrédinger equation. In
Sec. IV this assumption is added and a third index, the Le-
vinson index, is defined. Theorem 4.7 is the principal result
of this section. In Sec. V the results of Secs. III and IV are
applied to the inverse scattering problem and a new neces-
sary and sufficient condition for the admissibility of a given S
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matrix is presented. Section VI contains all the proofs that
are too long to be included in the earlier sections.

Notation: A and 4 denote the operators whose integral
kernels are, respectively, the transpose and the complex con-
jugate of that of 4; 47 is the adjoint of 4; nul 4 is the null-
space of 4, ran A is its range, tr A is its trace, and 1 is the
identity operator. We will usually denote operators by the
same letters as their integral kernels. If fis a function on R
then f#(k): = f( — k); if g is a function on the unit sphere
§? in R® then the operator Q is defined by (Qg)(8):

= g( — 6);6 will denote both a point on §% and the corre-
sponding unit vector in R’.

Il. FACTORIZATIONS DEFINED

Let us begin by defining a class of functions (sometimes
called symbols in this context) in whose factorization we are
interested.

Definition 2.1: Se€ if and only if S(k)

=1 — (k/2mwi)A(k), where 1 is the unit operator and the
following six conditions are satisfied:

(i) The kernel 4 (k,6,0") that defines the operator fam-
ily A(k), k<R, with values in the ring of bounded operators
L?(8%*)—L *(8%), is a continuous, uniformly bounded, dif-
ferentiable function R X §?X §%-C;

(ii) QAQ = 4; this is called reciprocity;

(i) A( — k) = A(k);

(iv) STS = SS' = 1; unitarity,

(v) |IS — 1||]eL *(R); || || here is the operator norm;

(vi) the operators & and & * defined by (1), (2), and
(3) in terms of 4 are compact.

We need the following functions:

e<a,e,e'):=——"—f°° dk kA(k, — 6,6"e- "% (1)
2m)3J -«

Y(a,080'):=G(a+B60"), aBbeR,, 6,0'eS*, (2)
G#(a,00'):=G(—a—p60"'), apecR,, 6,0'cS

(3)
H(a,080'):=G(a—B6,0"), afecR,, 6,0'cs (4)

These integral kernels define the operators %, & *, 77, the
first two are self-adjoint and the unitarity of .S implies that
|9°<1and || % #?||<1, whereas ## = " (Ref.5). Item
(vi) and these operators will play a role in the implementa-
tion of the needed factorization, to be discussed later.

If S'is admissible as an S matrix of the Schrodinger equa-
tion with a potential that is in a specified class, then S&©. For
example, the following class will do.

Definition 2.2: ¥y = {V|VeR,lim,, _ V(x) =0, and
a,Ce>0, such that for all xeR', |VV(x)|<C(a

+ |xP) 4~k

This class is smaller than it needs to be but it is easy to
define. A larger class, called %, which contains ", and
which also guarantees that Se@, is defined in Ref. 5.

A standard left Wiener-Hopf factorization of S (also
called proper)®® with respect to the real line is a decomposi-
tion of the form

S=W, DW_,

where
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D=Po+§:P,(1‘ii.)p’- (5)
jat k—i

The P, j>1, are mutually orthogonal one-dimensional
projections, P, =P trP,=1, P,P,=0 if i#j, and
Py =1—2Z,,P; W, is holomorphic and invertible every-
where in C*, lim,,_ . |W, — 1|| =0, and the partial in-
dices p; are nonzero integers. If D = 1 then the factorization
is called canonical (or regular). Whereas the partial indices
are uniquely determined by S, the factors W, and Dare not.
(However, if a canonical factorization exists, it is unique.)
The sum of the partial indices is called the total index or the
sum index. We shall call it the Wiener—Hopf index and de-
note it by

indWH S: = zpl'
)

It was proved by Aktosun and van der Mee'© that if the
potential underlying a given S'is in a class that they specified
(Ve7", would do if zero is not an exceptional point of the
Schridinger equation) then S has a left standard factoriza-
tion. They also showed that if S = @S ¥ ~'Q (which is the
case if Se©) and § has a left standard factorization
S= W, DW_ then it is always possible to choose the fac-

torization in such a way that W_ = QW #* ~'Q, in other
words,
S=QWQDW* . (6)

It follows that in that case DQ = QD, because D# =D — .
It is a characteristic of the standard factorization that the
poles are in fixed positions at + / and of a standard form.

The Jost function factorization, on the other hand,
which is needed for the solution of the inverse scattering
problem, is of a different kind. Here the factors are required
to be meromorphic with simple poles at specified positions
(on the imaginary axis) that are not standard, and moreover
the residues are to be operators that have specified finite-
dimensional ranges.'" These data are collected in the follow-
ing set.

Definition 2.3: The set # consists of all finite sets o of p,,
pairs {«,,,5%°,, } consisting of a positive number «,, and a
§,,-dimensional subspace &°,,, of L *(§?) (8,, < ). The set
{4,,} will be denoted by N, and their sum by n,,, n, = 26,,;
the set {x,, } will be called P,,.

It is important for the inverse scattering problem that
the set oe# that specifies all the bound-state data can be
determined from the scattering amplitude.” However, for
our purposes here that fact is of no significance.

We also need to define a class of relevant functions.

Definition 2.4: .# * is the set of all functions R—L *(R)
with values in the ring of bounded operators
[L2(8*)—L?*(S*)] that are boundary values of analytic
functions, meromorphic in C*, and whose operator norm
approaches zero at infinity there. Similarly, 4"+ is the set of
functions in .# * that are holomorphicin C*.

One then poses a Riemann—Hilbert problem with opera-
tor-valued solutions.

Problem W (S): Let Se€ and ge# be given. Find F
such that

(i) F— le.# *, with simple poles at the points ix,,,
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k,€P_, and residues there whose ranges equal 5% ,,;

(ii) on R, F satisfies the equation

F¥* =QS*FQ. 7N
If the set ois empty, we shall denote the corresponding prob-
lem by W}, and if, in addition, (i) reads Fe.# *, we denote it
by W73.

If this problem has a solution that is invertible, with an
inverse that is holomorphic in C*, then this inverse is the
Jost function and we have achieved a factorization of the
form

S=QFQF* - (8)

This is very similar to (6), except that the prescribed poles
are in the factor function F itself and their form is more
specifically given.

The factorization defined by W is not necessarily
unique: For given S and o the problem W! (S) may have
more than one solution; moreover, in general more than one
set o exists such that W ! (S) has a solution for a given S. The
following lemma will be proved in Sec. VL

Lemma 2.5: Suppose that the problem W (S) has a
holomorphically invertible solution. Then for every choice
of P, with p, <n, there exist sets ue% with n, = n,, such
that W ,‘L (S) also has a holomorphically invertible solution.

In other words, the pole positions in o can be shifted at
will without destroying the existence of a holomorphically
invertible solution, and, as the proof shows, so can the ranges
of the residues to a certain extent. The latter, however, can-
not be changed completely freely.'” The sum of the dimen-
sions of the ranges of the residues, on the other hand, is fixed,
as the following proposition asserts.

Proposition 2.6: Suppose that the problem W . (S) has a
holomorphically invertible solution. Then

(i) a necessary condition for another problem W }, S)
to have a holomorphically invertible solution is that
n,=n,;

(iis there exists another set pue# with P, and
n, = n, + m (where m is a non-negative integer) arbitrar-
ily given, such that W ;’t (S) has a solution F whose inverse
F ~ ' has m simple polesin C*.

Proof: The first part of this theorem combines Lemma
2.5 and the Index Theorem 2.6.8 of Ref. 5. To prove the
second part we add and remove poles and zeros (i.e., poles of
the inverse) just as we remove poles and add new ones in the
proof of Lemma 2.5. ®

The second part of this theorem tells us that if we are
willing to allow zeros in the solution, in the sense that its
inverse has poles, then we can arbitrarily increase the num-
ber of poles in the solution sought. The first part of the
theorem justifies defining a non-negative integer which we
call the Jost index, by the following.

Suppose that W' (S) has a holomorphically invertible
solution F. Then

ind; S:=n,.
In other words, ind; S is the sum of the dimensions of the
ranges of the residues of F at all its (simple) polesin C™*.
The following lemma, which was first proved as Corol-
lary 5.2 of Ref. 10, relates the caronical factorization of
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S to the problem W (S). (Recall that if Se© then
S-1=05%Q)

Lemma 2.7: Suppose that S ~' = QS #Q. Then S hasa
left canonical factorization S= W _ W_ if and only if
W (S) has a solution F that is holomorphically invertible.
Wethenhave F= QW _  Q, W_ =QW#*~'Q, and Fis the
unique solution of W (S).

A convenient tool in the study of the more general case
with poles is the reduction method.'** It utilizes the rational
function

i
Ha:z(l—B, + B, +'K‘)

k — ix,
k+ ix
X (]l—Bz +B2 k———'—z—) et

— ik,

)

Here, the B; are self-adjoint projections that are successively
constructed so that the function F*%: =11 'F is free of
poles. They are uniquely determined by the spaces 57, in o.
The solvability of W ! (S) may thus be reduced to the exis-
tence of a canonical factorization of the reduced S matrix.

Lemma 2.8: If W (S) has a holomorphically invertible
solution F then S ™% = QII 'QSTI¥ hasaleft canonical fac-
torization; conversely, if § ™ has a left canonical factoriza-
tion, then W (S) has a unique solution F and the inverse
F ~ ' is holomorphic in C*. Here, I, is the factor of the
form (9) appropriate for W} .

Proof: Suppose that S has a left canonical factoriza-
tion. Then by Lemma 2.7 W { (S™) has a unique solution
Fred, F =T F™ solves W!(S) uniquely, and
(F ~'—=1)e4"*.Conversely, if W (S) has a holomorphi-
cally invertible solution F then F™:=1II;'F solves
W.(S™) and is holomorphically invertible. Hence, by
Lemma 2.7 S ™ posesses a left canonical factorization. @

If a left standard factorization exists, however, the most
powerful procedure is to reduce the solvability of W} (S) to
a similar problem for the diagonal factor, which is a rational
function. We prove the following in Sec. VL

Lemma 2.9: Suppose that S = QS # ~'Q has the left
standard factorization S= W, DQW * ~'Q. Then the fol-
lowing holds.

If W (S) has a unique solution then there exists a set
o'e# withP, =P_and N, = N_ suchthat W], (D) hasa
unique solution, and vice versa.

If W. (D) has a unique solution then 30’c# with
P, =P, and N, = N, such that W, (S) has a unique so-
lution.

The same holds if “unique” is everywhere replaced by
“holomorphically invertible.”

The problem W ! (D) for the rational function D, on the
other hand, is solved by the following result.

Lemma 2.10: Suppose that

\p,
D=+ 3 p(KE 2y,

J=1 k—i
Pi=PLtrP=1,j>1, P, +3,, P =1, PP, =0if i#j,
all the p; are nonzero integers, and QD = DQ. A necessary
condition for the problem W ! (D) to have a holomorphical-

ly invertible solution is that (1) each p; is even and positive,
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and (2) n, = }Z,p;. Conversely, if each p, is even and posi-
tive, then there exists a set oe# with n, = }3,p; such that
the problem W (D) has a holomorphically invertible solu-
tion.

This, too, is proved in Sec. V1.

The combination of Lemmas 2.9 and 2.10 allows us to
conclude the following theorem.

Theorem 2.11: Suppose that $ = QS ¥ ~'Q has a left
standard factorization. Then the following two conditions
are necessary for the problem W (.S) to have a holomorphi-
cally invertible solution:

(1) either S has no left partial indices, or each left partial
index of S'is even and positive;

(2) n, =}indyy S

Conversely, if (1) holds, then there exists a set g€ %
withn, =} indyy S and arbitrarily prescribed P, such that
the problem W' (S) has a holomorphically invertible solu-
tion.

It should be noted that the set o for which W' (S) hasa
holomorphically invertible solution is not entirely freely at
our disposal once a left standard factorization is given. That
is why these results always refer to the existence of a set oe A
such that W' has a holomorphically invertible solution.
They do not assert that such a solution exists for all oe %
with n, = lindyy S.

lll. IMPLEMENTING A FACTORIZATION

The solution of the problem W ! (.S) is implemented by
Fourier transformation as follows.> Define n, functions
R, XS*C,

Vo(@,0) =Y. (—6e ™, (10)
where the functions Y, , b= 1,..., 8,,, span the space 7%°,,
and «,,€P,. Let the functions z}' span the null spaces of

(1 + 9#), respectively. Then define the matrices s+ with
the elements

st =2 ) o (11)
and the column matrices ¢, (8) with the elements
' (8): = ('7,G% ), (0). (12)

Here, (-,") , is the inner product on L*(R, XS?) and
G*(a,0',0):=G(—a,6'0) is to be regarded as a
family of vectors in L*(R, XS?) parametrized by
0e83G, : =GI1 + Q).

The generalized Marchenko equations then are the fol-
lowing two Fredholm equations of the second kind on
R, X§%

AFIr, =G, + Q+N¥,, (13)

whereI' =T + I' _ isrelated to the sought solution F(k)
of W' (S) by

I'a) =_1_J‘oc dk [F(k) — 1]e ™ * (14)
A7 J - w

Y (2,6,0):=Y yr(a,0)p7 (),
mb
and the functions p”” are to be determined by the set of
linear algebraic equations
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i) =23 st,.p70(0).

m,b

Remark: Clearly, the unique solvability of Egs. (15)
depends on the invertibility of the matrices s *. Let us call
the linear span of the functions %, defined in (10). Then we
may state the existence of inverses of the matrices s* geo-
metrically: The matrices s* are invertible if and only if
9, Unul(1 + ¥ *) = {0}, respectively. Since & # is self-ad-
joint and hence nul(1 + ¥ #), =ran(1 + ¥#), this may
also be stated in the equivalent form: The matrices s* are
invertible if and only if ) Uran(1 + ¥ #) = {0}, respective-
ly.

(15)

A part of the following theorem was proved in Ref. 5
and the rest of it will be proved in Sec. VI.
Theorem 3.1: The following three statements are equiv-
alent:
(a) The problem W ! (S) has a unique solution F.
(b) The problem W' (S) has a solution F that is holomor-
phically invertible, i.e., (F ' — 1)e4 ",
(¢) The following three conditions hold:
(i) the operator % does not have the eigenvalue 1,
(ii) dim nul(1 + ¥#) = dim nul(1 — ¥ %) =~n_,
(iii) the matrices s* of (11) are invertible.
If one of the conditions (a)—(c)is satisfied then the solution
Fis obtained from the solutions of (13) by

F(ko68')=1 +J da e*°T'(a,6,8")
0

Y7, (0)p"(6")
m,b l(k - [K," )

where T =T, + T _ andp™: =p"" +p™".

Note that if S'is given, then ¥ and & ¥ are given, and
hence, so are the null spaces of 1 + & #. Therefore, the num-
ber n, =ind, S of the problem W' (S) that has a unique
solution, if it exists, can be determined directly from S. The
question is, does such a problem W (S) always exist if ¥
does not have the eigenvalue 1? First, we have the following
result, which will be proved in Sec. VI.

Lemma 3.2: Given S and P_ in a set oe# with
n, =dimnul(1 + ¥ ¥) = dim nul(1 — Y #)>p,, there
always exist n, functions Y,‘ﬁm so that the matrices s* de-
fined in (11) are invertible.

As a consequence, the following proposition holds.

Proposition 3.3: Suppose that Se© is such that the opera-
tor % does not have the eigenvalue 1 and
dim nul(1 + $#) =dim nul(1 — ¥¥): = N. Then there
exists a set o€ % with n, = N such that the problem W ! (S)
has a unique solution. Moreover, the set P, can be chosen at
will, so long as p, <n,,.

IV. ADMISSIBLE S MATRICES

We have, so far, made no assumptions concerning the
admissibility of the given symbol S, i.e., we have not assumed
that it is a Schrodinger S matrix for which there exists an
underlying potential. If a potential exists, for example in
7 s, and it causes NV bound states of negative energy (let us
assume that zero is not an exceptional point) then this num-
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ber can be recognized from .S by means of the generalized
Levinson theorem. This leads to the definition of a third kind
of index in terms of the total phase change of the Fredholm
determinant of S. Since that Fredholm determinant general-
ly does not approach unity as k— « even though ||§ — 1||
approaches naught, we have to proceed with caution.

Definition 4.1: The function S:R—>% is in Il if and only
if it has the following properties:

(i) S is continuous; (i) S*¥=5§ (i)
lim, _||S(k) — 1|| = 0; (iv) for each keR the Fredholm de-
terminant det S exists; (v) 3¢, ¢, such that as k— «

8(k)=ck+c¢, +0(1),
where (k) =] arg det S(k) is defined to be continuous,
det S(k) = 2%®),

The operator S — 1 being compact if Se&, the unitary S

has a point spectrum only. Its eigenvalues ¢ define the
eigenphase shifts 77,. Since lim,|_ , ||S — 1|| =0, each ei-
genphase shift can be defined so as to approach naught as
|k | - o0. The phase 6 defined above is related to the eigen-
phase shifts by 6(k) = 29, (k), but the convergence of the
series is not uniform in k: Even though lim, __%,(k) =0
for each n, their sum grows linearly as k¥ — . If the potential
Ve, then Sell, ¢, is an integral multiple of 7, and it is
always permissible to choose ¢, = 0 (Ref. 5), which we shall
do. Item (iii) in the above definition implies that there are no
half-bound states. We now define the Levinson index of S by

ind; S:= (1/7)5(0).

A three-dimensional generalization of Levinson’s theorem '
can then be stated in the following form.

Generalized Levinson’s theorem: If S is the S matrix of a
potential Ve’ that produces N bound states (counting
their multiplicities) and there is no half-bound state, then
ind, S=N. :

Thus if S is admissible and there is no half-bound state,
then ind; S is a non-negative integer. It is related to the
Wiener-Hopf index by the following result, which will be
proved in Sec. V1.

Lemma4.2:1f S = QS # —'Q, Sell, and it has a left stan-
dard factorization then ind; § = lindyy S.

Now, if we are given an S matrix that is admissible, with
a potential that leads to NV bound states, then we seek a fac-
torization with N poles; in other words, we pose W ! (S)
with - n, =N. By Theorem 3.1 we then need
N =dim nul(1 + ¥#) = dim nul(1 — ¥ #). The follow-
ing lemma assures that this requirement is, in fact, satisfied;
it will be proved in Sec. V1.

Lemma 4.3: If S is admissible and the underlying
potential causes N bound states of negative energy (counting
their multiplicities) then dim nul(1 + ¥ ¥) = dim nul(1

—9#%)=N.

The following lemma will also be proved in Sec. V1.

Lemma 4.4: If S is admissible then the matrices s+ de-
fined in (11) are invertible.

Let us define

S, (k,0,6"): = S(k,0,0")e* =9 xeR3, (16)
which is the S matrix of a potential shifted by x;
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A, = (27i/k) (1 — §,) is the corresponding scattering am-
plitude. The number of bound states produced by a potential
is invariant under such a shift. Lemma 4.3 therefore has the
following corollary.

Corollary 4.5: Suppose that & corresponds to the S ma-
trix S, defined in (16), where S is admissible, and thus & #
depends on x. Then the dimensions of the null spaces of
(1 + 9¥) donotdepend on x. .

Finally, we have an important result whose proof is
based on a known theorem for the standard Wiener-Hopf
factorization, as well as on Lemmas 4.2 and 4.3.

Lemma 4.6: If Sis admissible with a potential Ve?" and
no exceptional point at k = 0, then || ¥ || < 1.

Proof: Since the unitarity if the S matrix implies that
|4 ||<1 and since ¥ is compact if Se&, the theorem follows
if we prove that &2 does not have the eigenvalue 1. The
following formula follows directly from Theorem 1.1 of Ref.
9, p. 165, and formulas (2.26) and (2.28) of Ref. 5.

dimnul(1 — ¥#*?) —dim nul(1 — ¥?) = indyy S.
Using Lemma 4.3 we get
dim nul(1 — ¥?)

=dimnul(1 — ¥#?) —indyy S = 2N — indyy S,

where N is the number of bound states (counting their multi-
plicities). Therefore, the desired result follows from the gen-
eralized Levinson theorem together with Lemma 4.2. @

The following theorem now is a direct consequence of
Lemmas 4.3, 4.4, 4.6, and Theorem 3.1.

Theorem 4.7: If S is admissible as an S matrix of the
Schrodinger equation with a potential in 77" that causes n,,
bound states (counting their multiplicities §,,) with data
collectedin e % (in the sense that P, consist of the k,, if the
eigenvalues are — «?, and the 57, are the spans of the corre-
sponding characters), then W' (S) has a unique (and hence
holomorphically invertible) solution.

V. APPLICATION TO THE INVERSE SCATTERING
PROBLEM

The results we have obtained answer some important
questions left open in our previous studies of the inverse scat-
tering problem for the Schrodinger equation in R®. In partic-
ular, this includes the existence of the Jost function (and
thus of the “regular solution”* ) and the unique solvability of
the generalized Marchenko equation. The vector version of
the latter, which is the equation needed for the solution of the
inverse-scattering problem by the generalized Marchenko
method, is obtained by letting Eqgs. (13) act on the vector 1
which is defined as the constant function identically equal to
1, and setting p: =T iand g=0G, 1. Lemmas 4.6, 4.3,
and 4.4, together with Theorem 2.4.7 of Ref. 5 then imply the
following necessary and sufficient conditions for the exis-
tence of an underlying potential.

Theorem 5.1: Let .S be the S matrix of the Schrodinger
equation with a given potential in 7" that has the following
bound-state properties:

(*) it causes &N bound states (counting their multiplic-
ities) of negative energies — &2, with eigenfunctions p™(x)
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and characters Y fjm(t?), and k =0 is not an exceptional
point.

Define S, as in (16) and the operators ¥ and & ¥ by
(1), (2), and (3) in terms of 4, = 2#i/k)(1 —S,) (so
that they depend parametrically on xeR*). Then the follow-
ing conditions hold:

(i) Se&;

(ii) ind, S = N;

(iii) S'satisfies item (viii) of Definition 1.5.15 on p. 28 of
Ref. 5 (forward analyticity);

(iv) if N =0 then ¥ ¥ does not have the eigenvalues
+ 1;if N> 0 then % * has the eigenvalues + 1 and each of
the two corresponding eigenspaces is N dimensional;

(v) the generalized Marchenko equation has a unique
solution:

n=g+ (Q+)B+ I,
where P is given by

B(,0):=3 y(a,0)p™

mb

(17)

and the p™* are the unique solution of the set of linear alge-

braic equations

b,
c[n] =2 Z S::nbpm :

m.b

(18)

here, s,’,, are given by (11), the ;' form a basis in the
eigenspace of & ¥ at the eigenvalue — 1, the functions y),
are defined by (10), and the numbers c!”' are defined by
(12); in other words, the operator & does not have the
eigenvalue 1 (so that | %|| < 1) and the matrix s * is invert-
ible; moreover, this solution is miraculous (i.e., the right-
hand side of (19) is independent of 9);

(vi) the Jost function with all the required properties
exists.

Conversely, let Sbe given and let S, be defined as before.
If S satisfies conditions (i)—(v) for almost all xeR?, then
the function ¢ defined by

Y(k,0,x) = e x4 e*p(a — 0-x,6,x)
- x
P YE (—6)
e

m,b i(k—iK,n)

i(k — ix,,) 0" x
H

in terms of the unique solution 7 of (17) and p'"b of (18)
satisfies the Schrodinger equation with the potential

Vix) = —26V|np(a=0+,0,x)

— >y (— 0-x,9,x)p’"”(x)] , (19)

m,b

which has the bound-state properties (*). Moreover, ¢ satis-
fies the scattering boundary condition and the function
A = (27i/k) (1 — ) is the corresponding scattering ampli-
tude.

Except for the lack of specification of the class in which
the potential lies, this theorem constitutes a necessary and
sufficient condition for, and thus a characterization of, the
admissibility of a given scattering amplitude or S matrix.

2419 J. Math. Phys., Vol. 31, No. 10, October 1990

V1. PROOFS

Proof of Lemma 2.5: Assume that F solves W (S), in
which one of the poles is stipulated to be at k = ik, and let the
residue of F there be R. Define F, : = F(1 + ()/2, so that
F# = + QS#F,, and F=F_ +F_; define also
F o:.=F_1_,

M,:=1+C, [(K¥ =)/ (k*++)].

Let R , bethe residue of F, at k = ix and take C, so that
R, (1 —C,)=0.Then F’, are holomorphic at k = ix.
Since R, =R(1+Q)/2, we define C, =C?% to
be projections (but not necessarily self-adjoint) whose
null spaces equal those of R,, and so that
C, =(1+Q)C,/2=C_ (1+ Q)/2, which is always
possible. This implies that C, C_ =C_C, =0 and
C:=C, +C_ is also a projection. We then define
F':=F' 4+ F'_ =FII, where

M=1+4+C[(2—=v)/(k*+v)]
and find

F#*=FF* 4+ F*=F*N1, +F*I1_
=QS#(F+H+Q—F~H~Q)Q’

and oneeasilyseesthat F, I . Q — F_ Il _ Q@ = F'. There-
fore, F' satisfies (7).

The functions F’, have poles at kK = v and their resi-
dues thereare R ', = F _ (iv)C_ . Thus F' has a pole there
with residue - - -

R'=R’, +R’_ =F_(in)C, +F_ (iw)C_
=F(im)[(1+Q)C, /2
+ (1 -Q)C_ /2] =F(iv)C.

Therefore, since F(iv) is invertible, the dimension of the
range of R’ equals that of the range of C. Note that if F is
holomorphically invertible, then clearly so is F'.

Since nul R =ran(1 — C) = nul C and C is a projec-
tion, nul RNran C = {0}. It follows that R = RC implies
that the range of C has the same dimension as the range of R.
Therefore, dim ran R = dim ran C = dim ran R’. Thus we
conclude that F' is a solution of W, (S) in which one of the
poles has been shifted to a new position, but the dimension of
the range of the new residue is the same as that of the old.
The range of the residue at the new pole can be almost arbi-
trarily assigned (except for its dimension) by proper choice
of the range of C, since F(iv) has an inverse. There is,
however, one restriction: The range of C, must not be a
subspace of its null space. This puts a restriction on the range
of theresidue R ', the precise nature of which is unclear but of
no consequence here.

Suppose, on the other hand, that we choose nul C

=ran(l — C) Dnul R with m: = dim ran C <dim ran R.
Then F still has a pole at k = ix with a residue R(1 — C)
such that dim ran R(1 — C) = dim ran R — m and it also
has a simple pole at & = iv with residue F(iv)C such that
dim ran F(iv)C = m. Hence the sum of the dimensions of
the ranges of the residues is unchanged.

If we chooseran (1 — C) Cnul R withdim ran C> dim
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ran R then F ~ ' will have a pole at k = ik, which we do not
want.

So we now know how to reduce the dimension of the
range of the residue at one pole and to produce a new pole
elsewhere, with no change in the sum of the dimensions of
the ranges. (One may thus split off all poles so that they have
residues with one-dimensional ranges.) How do we increase
the dimension of the range of a residue?

Suppose that F has a simple pole at k = iv, so that

F=R[U/(k—in)]+A+

and F ~ ' is holomorphic there. Suppose further that F hasa
simple pole at k = ik with residue R, whose range may be
assumed to be one-dimensional. In order to remove the pole
at ix and increase the range of the residue at /v we form

F:=F1+Cl(*=vV)/(k*+)])

with the projection C chosen so that R, (1 — C) = 0 with
dim ran C = dim ran R, (see the above argument) so as to
remove the pole at ix. If Cis chosen so that RC = 0 then F’
has a simple pole at k = iv with the residue

R'=R+ AC[(«* —+*)/2iv].

The fact that F ~' is holomorphic at iv implies that 3D,
E such that

RE+AD=ER+DA=1,

which, in turn, implies that nul RNnul 4 = {0} and the
ranges of 4 and R decompose LZ2(S*). Therefore,
dim ran AC =dimran C =dimran R, and dimranR'’
=dimran R + dim ran AC = dimran R + dim ran R,.
Thus the sum of the dimensions of the ranges of the residues
is preserved.

Finally, we may change the range of the residue of any
pole without changing its position and dimension by shifting
it first to a new position and then back. In this manner we
may change the positions and ranges of the residues of all
poles of a solution of W' (S) so as to become a solution of
W, (S),solongasn, = n, and the spaces 7, are properly
chosen. o

Proof of Lemma 2.9: Suppose that W) (D) has the
unique solution f= II'f’, where f' — le#"* (see Defini-
tion 2.4) and I1' has the structure (9) appropriate to W .. It
then follows that F: = QW _ II'f'Q satisfies F # = QS #*FQ.
There exists a function IT of the same structure as (9), with
poles in the same positions and with projections on spaces of
the same dimensions as those of II', such that
W, II' =IW’, . Therefore, Funiquely solves the problem
WL (S), where the set o’ consists of the same pole positions
as o and the dimensions of the corresponding spaces #°,, are
the same. Since both D and II' are meromorphic functions
with finite numbers of poles and residues of finite-dimen-
sional ranges, they are equivalent to finite-dimensional ma-
trices, and so is f’; hence it is invertible and ' ' — 1 is in
# *; by Lemma 2.6.5 of Ref. 5, therefore, /' ~' — 1 is in
A" and sois F.

Conversely, suppose that F uniquely solves the problem
W ! (S). We then reverse all the steps of the above argument
and conclude that W . (D) must have a unique solution f.
Again this solution is rational and ““like a matrix,” and hence
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invertible with f =' — 1 in .#"*. The second part of the
proposition is proved similarly. L

Proof of Lemma 2.10: Suppose that the problem
W' (D) has a holomorphically invertible solution F, so that

F#* =QD*FQ
with the appropriate analyticity and asymptotic properties.

Multiplying the equation on the left by P; and on the right by
P, leads to
PjF#P/ =((k—0)/(k+ i))p'})jFPl,
since QD = DQ implies that the one-dimensional projec-
tions P;, j>1, are such that QP; = P,. The requirement that
limy, . ||F— 1|| = 0leads to P,FP, = 0 for  #j, since the
homogeneous Riemann—Hilbert problem defined by that
equation has only the trivial solution. So we have
F =P, + 3P, f;,whereeach f; solves the simple scalar Rie-
mann—Hilbert problem
*=((k—0/k+DYS,

in which f is to have simple poles and no zeros in C*.
(Zeros would produce poles in £ ~'.) This problem has no
solution unless p is a positive even integer. (For p = 0 the
solution is /= 1, and that can be taken to be part of P,.) If

p = 2m then a solution without zeros in C* must have m
poles and it is of the form

f=k+ D>/ (k*+&])- (K + i),

Therefore, we may conclude that all the p; must be even,
p; = 2m;, and the holomorphically invertible function F
must be

(20)

(k+ D)™™
F=P P :
t2h (k2 +u) (k2 + 42,

It is easily seen that this F is such that
Y dim ran Res, =n, =ind; D=3 m; = % indyy D.
7 J

Conversely, if each p; is even then the function F given
by (20) satisfies the equation F ¥ = QD #FQ, is holomor-
phically invertible, and furthermore the sum of the dimen-
sions of the ranges of the residues at its simple poles equals
$2,p;- *

Proof of Theorem 3.1: Most of this theorem coincides
with Theorem 2.6.15 in Ref. 5. Item (b), however, is new.
For the proof of this part we need the following two lemmas.

Lemma 6.1: If W!(S) has a unique solution then
W (S #) has a solution.

Lemma 6.2: If W' (S) and W (S¥) have solutions
F, and F,, respectively, then (F;'—1)e.# © and
(F;y'—l)e# .

Assume that S has property (a), i.e., that W' (S) hasa
unique solution F,. Then by Lemma 6.1 W} (S #) has a
solution F,, and henceby Lemma 6.2 (F~' — 1)e.# *. By
item (v) of Lemma 2.6.5 of Ref. 5 this implies that
(F7'—=1)e4"*. Thus (a) implies (b). The converse,
namely the statement that if ! (S) has a holomorphically
invertible solution then its solution is unique, follows direct-
ly from Lemma 2.8.

There is, in addition, a gap in the proof of Theorem
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2.6.15 in Ref. 5 [which is Theorem 3.1 without statement
(b) ]. Suppose that conditions (i) and (iii) of statement (c)
are satisfied, but one of the elements of p , () vanishes for
all 8. Then the sum of the dimensions of the range of a pole of
the solution F of W' (S) is lower than the dimension of the
null space of 1+ ¥#*, contrary to (ii). Since
Py () =is* "¢, (0), p" (6)=0 implies that there ex-
ists a constant vector a such that ac , (8) =0 for either +

or — (or both). By definition (12), in turn, this would
mean that there exists a vector z_ enul(1 + %#) [or
z_enul(1 — ¥¥)]suchthat (z, ,G# ) , =0forall & (or
(z_,G* ), =0forall 6). It follows from Lemma 2.6.10 of
Ref. 5 that (z_,G¥), (6)=0 for every
z enul(14+ %*) and for every z_enul(l— 9¥).
Hence, the vanishing of one element of p, for all @ would
imply that (z ,G¥)_ (6) =0 for somez, orz_ . The fol-
lowing Lemma rules this out and thereby closes the gap in
the proof of the theorem. ®

Lemma 6.3: Suppose that 1¢2(%?) and 1€Z(Y #?)
with (1 + 9¥)z, =0,z #0. Then {z, ,G¥) (6)£0.

We must now prove Lemmas 6.1, 6.2, and 6.3.

Proof of Lemma 6.1: By Lemma 2.6.14 of Ref. 5 the
generalized Marchenko equation always has a solution. Fur-
thermore, if 162 (% #2), where 2 (¥ #?) is the spectrum of
% #2 then the Fourier transform of every solution of the
generalized Marchenko equation

AF9)r,=+G,,

'=r, +T_, F=1+ jydae*T(a), solves W(S),
by Lemma 2.6.12 of Ref. 5.

Now ¥ is related to .S precisely as & * is to S #. Sup-
pose, then that W} (S) has a unique solution; then it follows
that 1¢2( %?) and hence W, (S ¥) has a solution. )

Proof of Lemma 62: F¥=QS*F,Q and
F¥ = QSF, Q imply that F ¥ F§ = QF  F, Q. Since the left-
hand side is meromorphic in C ™ and the right-hand side in
C* it follows by Liouville’s theorem that

~ R; OR, 0\

F\F, —1+;(k—ixj —-k+in).—R(k),
where the sum is over the (finite number of) poles specified
in o and R; is the residue of F, F,, which has a finite-dimen-
sional range. Thus there is a finite-dimensional subspace that
contains the range of R — 1 for all £; hence, R is equivalent
to a finite-dimensional matrix. It follows that R ~ ' is a mer-
omorphic function of k and hence F, has a meromorphic
right inverse Iy with Iy — le.# *.

On the other hand, lim,_. , [|F, — 1|| = 0, which im-
plies that for |k | sufficiently large, F, has a holomorphic
inverse. This inverse, being equal to F, R ~ ' in an open set,
can be analytically continued to all of C *. Hence, F, and F,
have inverses that are meromorphicin C* with a finite num-
ber of poles. It follows similarly that F, has a meromorphic
inverse. L

Proof of Lemma 6.3: Note that it follows from
z, (a,0)

- r dﬂfzdﬁ’ G(—a—B66)z, (BO",
o s a1
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for >0, in the limit as @ — 0 that

z, (0,0) = xj dﬂf d6'G(— 6,6z, (BO")
0 2 -

and hence (z_ ,G¥#) , =0isequivalenttoz_ (0,6) = 0 for
almost all 6e8%if (1 + ¥¥)z, =0.

Suppose first that for a// nontrivial solutions z . of
(1+ ¥#)z, =0 we have (z, ,G¥), =0. Let z, be
such a nontrivial solution. Differentiate (21) with respect to
a, calling z’, (,0): =3/daz . (a,0), and integrate by
parts:

Z, (a,9)
- ?Lr dﬂf a6’ 2 G(—a —B.6,0")z, (B
0 52 ap

= i J‘w dﬂf dg’G( - a—B,G,G’)z; (ﬁsel))
0 52 -

which means that (1F ¥ #)z/, =0. Since z__ (0,6)=0,
z’, =0 would imply z, =0, which is not the case, by as-
sumption; therefore z’, does not vanish identically and
(1F ¥#)z’, =0.Now,since by assumption (z,G¥) , =0
for all solutions of (14 ¥#)z=0, it follows that
z’, (0,6) =0and we may repeat the argument for the second
derivative, and so on. Let us concentrate on z .

Since the null space of (1 + ¥ #) is finite-dimensional,
the derivatives of z, must eventually become linearly de-
pendent and we must have two linear relations of the form

N
1 2n)
z V¥ (a,0) =0,
n=>~0
N

P2+ (a,8) =0,
[+]

and also 2z'7(0,6)=0, n=0,.,2N, where z{:
= d"z, /da". These systems have only the trivial solution
z, (a,0) = 0. Similarly, for z_ (a,0) = 0. We conclude that
it is impossible that al/ solutions of (1 + ¥ *#)z, = O satis-
fy (z, ,G¥#) , =0.

Suppose next that for ome solution we have
{z,,G¥), #£0. Let {z'{'}, n=1,.,N, be orthogonal
basis sets in nul(l+ %) so that (z'!!,G¥), 0,
(1',G*), =0, and (z!}',G¥)z£0, n>1. If we pose
W (S) with n, = 1 then Eq. (13) can always be solved for
any given %, since 1¢2(%?). For n, =1 we have
% _ =yp, and Egs. (15) with (11) and (12) read

(z[i]’Gﬁ Yo = 2(zlll,y>+p+,

0= <Z[l] ») +P—>

0=y, pe, n>1l
Therefore, if yis chosenso that (z'}),y) , #0, (z''l,y) , #0,
and (z'['y) , =0, n> 1, (which is always possible) then
p . is uniquely determined and the solution of (13) leads to
aunique solution of W} (S) withrn, = 1. The same would be
true if we had chosen (z_,G¥), %0 instead of
(z,,G¥) , #0.

Next, suppose that n,=2. Then % =y!'ip!}]
+ y'?p'2! leads to
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2
D sip¥l =c*, i=12,
=1

where

sFi=EU ) ., o= (]G ), 0,

e;f = (2,G¥#) . =0.
If the functions y!", 7/ = 1,2, are chosen in such a way that
det s* #£0, then the p!{! are uniquely determined. They also
satisfy the remaining equations if the y!! are chosen so that
Yy, =0,i>2, j=1,2. The final constraint on the
! isthat (s7'), #0, i = 1,2, so that pi! 5£0, i = 1,2. The
large class from which the functions y may be chosen make
such choices always possible. Thus we get a unique solution
of W.(S) with n, =2 as well as a unique solution of
W, (S) with n, =1. Since 1¢2(%?) it follows from
Lemma 2.6.14 of Ref. 5 that W (S #) has a solution. [Re-
member that & corresponds to Sas & # does to.S #.] There-
fore, by Lemma 6.2, the solutions of W ($) and W,‘, (S) are
meromorphically invertible. It then follows from Lemma
2.6.8 of Ref. 5 that this is impossible: Two problems with
unequal numbers of poles cannot both be uniquely solvable.
Therefore, it cannot be the case that (z , ,G¥) , =0forall
but one z, . Similar arguments rule out any other number,
and we may conclude that for all z, we must have
(z ,G¥) , 0. o

Proof of Lemma 3.2: We shall fix our attention on s ™
andz , ,leaving offthe + ; the same argument holds for — .
Letn = dim nul(1 + ¥ #). The equation sa = 0 means that
(z,,ya) , = 0forall 1<r<n, i.e., there exists a linear combi-
nation of » functions y, asin (10), with given numbers .,
that lies in Q: = [nul(1 + ¥ ¥)], =ran(1 4+ ¥ #). As-
sume that the lemma is false. Then, no matter how the n
functions Yf.m are chosen, there always exists such a linear
combination. So choose an arbitrary set of # functions Y ,’j,
then 3{a,,, } such that

S a,,Y. e e

m,b

Now choose another arbitrary set, but with one of the func-
tions Y. the same as before; again, 3{a,,, } such that

Y a,,Y2 e “req.
m,b

It follows by subtraction that for any arbitrary set of one
member less than before, 3{a”,} such that

S an Y, e “req.

m,b
This process is repeated until we arrive at the statement that
for any arbitrary function Y2 and any arbitrary «:

Yo (—60)e Q.
But these functions span all of L?*(S8*XR, ); hence
L*(8*XR,)CQ is implied, which is false since
codim €} = n. This proves the lemma. L

Proof of Lemma 4.2: 1t follows from the well-known
formula
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| B s-1| = L indets
dk dk

that if the eigenvalues of S are 7" then

tr Jw dk S'(k)S ~ (k)

=uy [* dknto =4S (n. 05

= — 41'2 7,(0) = —4i5(0) = — 47iind; S,

since S( — k) = S(k) and by the definition of the Levinson
index. Now if S = QS # ~'Q and it has a left standard fac-
torization then the factorization can be chosen so that
W_ = QW% (Ref. 10). Then

trJ' dkS's —!
=trf de'D"+trJ dkw’'. w3'
—+—trJ dkw'_w:Z'

=trJ de’D“+2trJ dk W', W',

and by closing the contour of integration in the upper half-
plane it follows from the analyticity and asymptotics of W
that

J dkw' . Ww3'

=[W, (]~ +f dkw', [W;'=1]=0.

On the other hand one readily computes from the form (5)
of D that

trf dkD'D "= —2m Y p,.

As a result we have
trJ dkS'S ~'= —2miindyy S,

a formula that was first given by Gohberg and Leiterer in
Ref. 14. It follows that ind, S =1]indyy S. (It would be
desirable to find a more rigorous proof that is based on spe-
cific properties of S and of V if S is admissible. ) o

Proof of Lemma 4.3: Suppose that o is an eigenfunction
of & # with the eigenvalue — 1. Then its Fourier transform
S solves W ( — S) and satisfies the equation f* = — QSf.
Use this function to define

Pkx): = f d6 fk,0)b(k,6,%),

where ¢ is the outgoing-wave solution of the Schrodinger
equation and the integral extends over S2. It follows that g is
a solution of the Schrodinger equation that is an odd func-
tion of k, and if there are no bound states (which we shall
assume to begin with), it is an entire analytic function of &
thatiso(|k |r) as |k | - «, where 7 = |x|. By the Paley-Wie-
ner theorem its Fourier transform vanishes for |¢ | > 7 and it
may be written in the form
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p(kx) =f dt s(t,x)sin kt .

Use of the Schridinger equation and two integrations by
parts lead to the hyperbolic partial differential equation

2
[A— o _ V(x)]s=0, t> — |x]. 22)
at
Furthermore, we must have
s( -rx)=0, lims(sx)=0. (23)

r— o

This quasi-Goursat problem has only the trivial solution. An
outline of the proof (the details of which will be given in a
subsequent paper) of this assertion is as follows.

One first proves that the system

2
[A—gt—z]g=0, xR, 1> —|x|, (24)
8lie _1x =8lixj—w =0, (25)

has only the trivial solution. This, in turn, is proved by ex-
panding the angle dependence of g on spherical harmonics
and proving that the system
A (B )
ar r

g/‘t—‘—r=gllr—~w =0,

g =0, t>r, r>0,

has only the trivial solution.

The case with V 70 is then proved by assuming that s
satisfies the system (22), (23) and setting s=0 for
t < — |x|. Then the function

F(t,x): = s(1,x)

+fdy——V2)——s(t— |x —y|.»)
dr|lx —y

is seen to satisfy the system (24), (25) and hence must van-
ish. Therefore, s satisfies a homogeneous integral equation
the Fourier transform (with respect to ¢) of which is the
homogeneous form of the Lippmann-Schwinger equation.
It follows that s = 0. Consequently, ¢ (k,x) = 0 and hence
f(k,0) =0, contrary to assumption. Therefore, if ¥ causes
no bound states then & ¥ cannot have the eigenvalue — 1.

Consider now the case with bound states. In that case
the function @ has simple poles at the points k = ix,, with
residues 3,4 °ul (x), where u?(x) is a bound state eigen-
function of the Schrodinger equation with the eigenvalue

— 1% and

hﬁ::fd&f(ix,e)Yﬁ( - 8), (26)
Y® being a bound state character. Now the Fourier trans-
form of @ is
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s(tx) = LJ dk e “p(k,x).
77. - ac

When ¢> r the contour may be closed by a large semicircle
in the lower half-plane and one obtains

s(tx) =23 h? ur (x)e” " =5, (1,x). (27)

b,x,,

Therefore,

@kx) = f dt sin kts(t,x) + f dt sin kts, (2,x).
0 r

Insertion of @ in the Schridinger equation now results in the
hyperbolic equation for — r<s<r

2

[A _9 V]s =0,
dt?

s( —tx) = —s(t,x), and the boundary condition at

t =r,(3/3r){r[s(rx) — s, (r.x) ]} = 0, which implies that

s(rx) = 5o (r,x). The earlier argument shows that the solu-

tion of this problem is unique.

Suppose that there are N bound states. Then there are N
linearly independent functions #” and hence N linearly inde-
pendent functions s, (#,x). This leads to exactly N linearly
independent solutions s(z,7) because the previous argument
showed that s, = 0 implies s = 0. But the number of linearly
independent functions s equals the number of linearly inde-
pendent functions @, which, in turn, equals the number of
linearly independent functions £, the Fourier transforms of
eigenfunctions of & # with the eigenvalue — 1. Therefore,
the total number of eigenvalues of the Schrodinger equation,
counting their degeneracy, equals the dimension of the ei-
genspace of & * at the eigenvalue — 1.

The proof for the eigenvalue + 1 is the same, except
that then s(¢,x) is an even function of ¢ and sin kt is replaced
by cos kt. ®

Proof of Lemma 4.4: Assume that s is not invertible.
This implies that there exists a set of N complex numbers a,,
such that 2 ,a,s.,, =0 for all N values of the pair m,b.
Hence, there is a vector z= 2,a,z!"lenul(1 + ¥ ¥) such
that

(zym), =0 (28)
for all %, defined by (10). Let f(k,8) be the Fourier trans-

form of z. A short calculation shows that (28) is equivalent
to

[Lao 72~ orstin, 0 =0
52 "

for all x,,€P, and all the character functions ¥ ,’im. We take
this f to be the function used in the proof of Lemma 4.3.
Then it follows that all the functions A ,’:m defined by (26)
vanish. Consequently, s, of (27) vanishes, and hence by the
first part of the proof of Lemma 4.3 we have s(z,x) = 0 and,
hence, f= 0 and z = 0, contrary to our initial assumption.
The proof that s ~ is invertible is similar. ®
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Anisotropic homogeneous cosmologies with perfect fluid and electric field
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A new three-parameter family of cosmological models is found, which are solutions of
Einstein—-Maxwell equations in a space-time filled with electrically neutral stiff matter. They
generalize an anisotropic homogeneous cosmology without electromagnetic field by Vajk and
Eltgroth [J. Math. Phys. 11, 2212 (1970) ] and support a conjecture about proportionality of
electromagnetic four-potential of an Einstein—-Maxwell solution and the Killing vector of a
corresponding space-time with stiff matter. This conjecture turns out to be the clue to a new
solution-generating method of Einstein—-Maxwell fields with sources.

|. INTRODUCTION

A new method of generation of electrovacuum solutions
in general relativity was proposed recently by Horsky and
Mitskiévic.! This method does not remove the necessity of
solving Einstein’s equations, but it simplifies (sometimes
quite considerably) the manipulations with Maxwell’s equa-
tions, reducing them, in fact, to a certain kind of condition
(we call them Maxwell’s conditions). It is applicable to
vacuum seed solutions of Einstein’s equations possessing at
least one isometry (in contrast with many other methods
that depend on the existence of two Killing vectors).

We propose now a generalization of this method to a
case when the seed solution (still possessing one isometry as
a minimum) corresponds not to a vacuum, but to a stiff
perfect fluid (p = ). The resulting self-consistent system
includes gravitational and electromagnetic fields, as well as
electrically neutral stiff matter.

In Sec. II we discuss the main ideas of the generation
method (as well as of its further generalizations). In Sec. I11
we generate a new three-parameter family of metrics by ap-
plying this method to a specific seed solution, namely to that
found by Vajk and Eltgroth.” These authors have also pre-
sented superpositions of a magnetic field and perfect fluid,
but not in the case when p = u; moreover, our solutions
show greater anisotropy than those considered by them,
even when the electric field is switched off. The latter sub-
case as well as other limiting cases are considered in Sec. IV.
In the same section we determine the Petrov types of our
solutions. A final discussion of the results is given in Sec. V.

Greek indices run from 0 to 3, the space-time signature
is(+ — — —).

Il. TEST ELECTROMAGNETIC FIELDS ON THE
BACKGROUND OF SPACE-TIMES WITH ISOMETRIES
AND TRANSITION TO A SELF-CONSISTENT SYSTEM

On the background of a space-time admitting a Killing
vector &, we consider an electromagnetic field with four-
potential 4 = k£ that satisfies the usual Lorenz condition,?
A4, =0 (kis an arbitrary constant). Then, by virtue of the
properties of Killing vectors,

F.;‘LV = (A Vi A ”;V);v = 2k§v;/‘w = - 2k§ lR/U‘

=2kkE* (T, — 1 184,) = — 4mj,. (1)
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In a vacuum, T, = O, this leads to the well-known conclu-
sion? that a Killing vector of a vacuum space-time generates
a test sourceless electromagnetic field on the background of
the same space-time. In the case of a nonzero stress-energy
tensor of a perfect fluid, 7,,, = (# + p)u, u, — pg,,., the test
electromagnetic field corresponds to the four-current den-
sity

j;t = - (kK/ZTT)[(/t +p)u1§/{uy —'% (lu_p)é_;t]’
(2)

which is also a test object with respect to the space-time
geometry. However, the already mentioned case of a source-
less test electromagnetic field still can be generalized to such
a nonvacuum gravitational field, if two conditions are satis-
fied:

ulé and p=p. (3)

This means that the Killing vector under consideration is
spacelike and the perfect fluid (the source of the background
metric) is stiff.

Otherwise we have a test electromagnetic field with
sources, and, if we would like to contact them with the back-
ground perfect fluid, we have either to consider it to be stiff,
or to admit the Killing vector to be proportional to the four-
velocity u of the fluid (then the space-time is stationary).
Below we consider only the case of a stiff matter and &lu.

In Ref. 1it is noticed that the timelike Killing vectors of
the Schwarzschild and Kerr fields coincide (up to a constant
factor) with the electromagnetic four-potentials of the
Reissner—Nordstrom and Kerr—-Newman fields, respective-
ly, and other examples of such a correspondence are found.
Thus a conjecture was formulated that a Killing covector of
a seed space-time represents (up to a constant factor) an
electromagnetic four-potential which belongs to a new self-
consistent system of gravitational and electromagnetic
ficlds. When the electromagnetic field is switched off (this is
done by tending a parameter to zero, say, k), the initial seed
metric is recovered. It is worth emphasizing that the both
cases, those of the test and nontest fields, are interconnected
in such a simple way only in their covariant, and not contra-
variant, representation, since raising indices should be per-
formed with the help of different metrics thus breaking the
similarity between corresponding quantities.

In solving the problem of generation of Einstein—-Max-
well fields on the basis of this conjecture, further steps in-
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volve some natural assumptions as to the structure of the
new metric. Usually, it is merely enough to introduce some
new functions, which are to be determined by solving Ein-
stein’s equations (instead of the functions already existing in
the seed metric, but without changing the general structure
of it).

In the following section a detailed example is given that
shows how this new method of generation of Einstein—-Max-
well fields works.

llIl. COSMOLOGY WITH A SUPERPOSITION OF
NEUTRAL STIFF MATTER AND ELECTRIC FIELD

We shall now apply our method to a seed solution ob-
tained by Vajk and Eltgroth,**

ds? = dt? — VU +20 gy2 _ p20/0 420 gy2

— /a2 dz, 4)

where A is a free parameter, A>0 or A < — 2. Then the
stress-energy tensor corresponds to a stiff matter with

p=p= 24 ) /ks(1+24)%2 (5)
Here we shall make use of one of the (spacelike) Killing

vectors of the solution (4), £= —d,, or, as a one-form,
£=12/0%2 4y thus taking a four-potential covector

A=kE=kt*/+20 gy k = const. (6)

Since the conditions (3) are satisfied, this field is a solution
of sourceless Maxwell equations on the background of the
metric (4): this is our test electromagnetic field. The covec-
tor (6) can be brought to a simpler form,

A = ktdy, (7

by another choice of the coordinate z. Then the Maxwell
tensor becomes

1F,, dx*Ndx" = kdt\dy. (8)

Let us now consider a generalized metric
ds? = e** dt? — P dx* — *" dy* — e d2, 9

where a, 3, ¥, and § are functions of the coordinate ¢, that
leads to a natural orthonormal tetrad,

0@ =e"dt, 0V =6Pdx, 0P =¢"dy, 6 =¢°dz.
(10)
In this space-time,
1F*9,8d, =ke™ 79,83, (11)

so that Maxwell’s equations are supposed to yield

i(e—a+ﬁ—r+ﬁ) =0

dt
in agreement with the property of the Killing field £ on the
background of the seed metric (4), and as a result of the
Horsky—-Mitskiévic conjecture. This is equivalent to
e @+tB-Y+5 — 4 = const, (12)
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which we call Maxwell’s condition, with 4 = 1 (without any
loss of generality ). Now, the electromagnetic field invariant

F F*= k%2

being negative, this is an electric-type field, not a magnetic-
type one.

Components of the stress-energy tensor of this electric
field with respect to the orthonormal tetrad (10),

T‘(a,u)(v) 0 “ ® 9 (V)
=(k2/81r)e_2"‘_2"[9(°)®9(°)+9‘”@0“’
_9(2)89(2)+9(3)®9(3)]’ (13)

reflects the minimal possible anisotropy of the space-time
geometry under consideration. When k& =0, the electric
field is switched off.

The tetrad choice (10) leads to the following curvature
two-forms:

A%, =e *(B+B*—aB)6 "N,

Q9 =e 2+ —ap)09N02,

00, =e 28+ 8 —ad)9 NG,

9'“)(2) =B}"e_2“9“)/\0‘2),

QW ,, = =2 A OO,

9(2)(3) — 7'/5(3"2“0‘2)/\ 9 (14)

(differentiation with respect to ¢ is denoted by an overdot).
The stress-energy tensor of a stiff matter (1 = p) hasthe
form

T{"aum@("’@e(m=P[0‘°®9‘°’+9“)®9“)
+6(2)®9(2)+0(3)®0(3)]’ (15)

where p is the proper stress (and the proper density) of the
perfect fluid.
Einstein’s equations then read

e~ By + BS + ¥8) = xlp + (k*/8m)e=2"),  (16a)
e ay+ab—pb—y— P —8—8)

=ulp + (k%/8m)e 22—, (16b)
e *(af+ab—B5—B—PB*—6—-8)

=klp — (k?/8m)e 22~ ), (16¢)
e (aB+ay—Br—B—B*—y—7)

=«lp + (k*/8m)e 2%~ ). (16d)

Maxwell’s condition (12) and Einstein’s equations (16)
form a self-consistent system that is equivalent to the system
of the Einstein-Maxwell equations. Next, we consider the
subtraction of these equations from one another:

e—Za[e—a+B+y+§(8_7‘,)]' — (Kk2/477)e—3a+ﬁ——y+é',

(l6c-d)
Lot 8t 73 48] =0, (162:0)
[e—a+ﬁ+7’+5(B+/i/)].=0_ (l6a-d)

Inserting Maxwell’s conditions (12) into these equations,
we obtain
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Y= — (kk 2/81r)t2 + Bt+C,
1

=G t +Bt+C)

X

1

h-j

——t 24 Br+ C)

X

(-5
|
1
-(-
lc

2
x[( K+ B+ Bz+—C B—

47
e2“=§€(—58k7t +Bt+C)

2 2

X[csgnﬁ(__’:f_tz_i_B ’BZ—}—-——C'(B—}- BZ Kk
(s

—1)2(D+ F+ B)/VB* + (xk*/2m)C

N ) [N C)] l -

(-5

Taking another choice of the integration constants we repre-
sent our solution in a simpler form:

%= (MN/A2C) (5t + 1)+~ 3(Ft+1)—"—"—3,
P=NGt+ 1) "R+ 1) ",
e =C(at+ 1) (71 + 1),
P=M(G+ D" (F 1)
Then
ds® = (MN/AC) (5t 4+ 1)" "= 3(Ft 4+ 1)~ "~ m=34s?

(21

—N@t+ D" Y(Ft+ 1)~ " 'dx?
— C(5t + 1) (7t + 1)dy?
—M(&t+l)’"“(%+1)"”“dzz. (22)

A final transformation and rescaling of the metric (22) yield

ds=T~"=m=3(b—aT)"+"~2dT"
—T-""Yb—aD)" 'dx*— T(b—aDdy*
~T-""Ybp—a"'dZ (23)

Here a and b are constant parameters satisfying the condi-
tions
b=1+a,

so that > 1.
We now obtain for the proper stress in (15), for the
electrically neutral stiff matter,

= [b2(mn — 1)/4k]T"+"+ (b —aT) ~"— ™+,
(25)

a = kk?*/8mr>0, (24)

and for the electromagnetic field invariant,
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(17)

N ng"B(—-——t+B— /BZ C’<B+ /Bz+ic
Kk2 : — 1) (2F+ B)/\B* + (xk*/2m)C
(- oo o )] ,

(18)

2
58"3(———t+3— /B?+—c (B+ /BZ "k

-1
32 K‘k2 C)] ](2D+ B)/\B* + (xk*/27)C

(19)

(20)

r

F(I‘)(V)F(#)(V) = — (167T/K)aTn+m+2(b_aT') —n—m+2.

(26)

IV. LIMITING CASES AND THE PETROV
CLASSIFICATION OF THE NEW SPACE-TIME

We consider first the case when a = 0 (the electric field
being switched off). Then the metric (23) takes the form

ds*=T """ 3dT* - T "~ 'dx*
—Tdy*— T " 'dz, 27
with the pressure
p=1[(mn—1)/4c]T"+"m*1, (28)

One recovers the seed metric (4) after performing a trans-
formation

T={[(1 4 24)/24 |}/ +20,

and assigning to m and »n the values m= —2,
= — (14 1/1); corresponding rescalings of x, y, and z
are to be performed simultaneously. The new solution (27)
is more general than the metric (4): In our new space-time a
complete spatial anisotropy is present even in the absence of
an electric field. Moreover, one can also “switch off”” the
perfect fluid by putting mn = 1, which leads to g =p =0,
leaving us with a mere vacuum. The resulting metric,

d52= T—n—(l/n)—3dT2_T—n—ldx2__ Tdyz
~ T~ =14z, (29)

coincides with the Kasner solution.
One may, on the other hand, keep a nonvanishing elec-
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tric field but put mn = 1; then the stiff matter disappears,
and only the electric field is retained.

Of course, all the cases with electric field without
sources can be reformulated to the corresponding cases with
magnetic field (dual to the initial electric one) or mixtures of
the both fields (duality rotation!), since the electromagnetic
stress-energy tensor is the same in all these cases. Originally,
Vajk and Eltgroth? did consider the case of a magnetic field
(but not with the stiff matter as we do here).

We now apply the Petrov classification procedure as
outlined in Ref. 5; the first step is to calculate the Weyl ten-
sor components. In the orthonormal tetrad (10) the Rie-
mann curvature components (14) yield

C(O)(3)(0)(3) = C(2)(1)(l)(2)
= (e */6)[aB+ay~B—B*—B5—¥
— P -y +2(6+8 —ab+ BN,
(30a)
C(O)(Z)(O)(2) = C(3)(1)(1)(3)
~(e~*/6)[aB+ &b ~B—B*—b—&
— By — ¥ + 27 + 7 — &y + B ],
(30b)
Comomm =Cmaram
= (e 2/6)[ay+ab—y— P —6—&
—By —B5+2B+B*— B+ 76)]
(30c)

(all other independent components vanish identically).
Now we pass to the Newman—Penrose (NP) basis,

6= (N (O +6™ =k,

6" = (1/2)(6° — 6"y =1, (31)
aP— 9o — (1/42) (82 + i89) = m,
in which the NP components of the Weyl tensor are
E(0)(1)(0>(1) = —6(3)(2)(3)0) = Coynom>»
E(O)(Z)(om)
= - E'(s)(l)(l)m = 6(0)(3)(0)(3) = - E(Z)(l)(l)(z)
=Corma — Comomm ) (32)

The corresponding spinor Weyl coefficients take the form
Wo=W,=W =} T"*"+(b—qaT)~"+m+"
X [12a*°T? — 2abT(m + 2n + 6)
+b%(n+ 1(m+2)],
W, =V = T"""+ (b—gT)~"+m+!
X[ —12a?T? + 2abT(3m + 6)
—b2(Bm+mn+2)],
¥, =¥,=0,

when our metric coefficients (23) are substituted.

In general, if W #0, we come to the Petrov type [, but if
W =0, V #0, the space-time degenerates into the type D,
and if W= ¥V = 0, the space-time becomes conformally flat

(33)
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(type O). If a#0, we have W = 0 at the instants
T, =(b/12a)

X[m+2n+ 6+ (m?+4n*> — 8mn + 12)V?],
34)

at all other times the Petrov type I being the case. Wand V'
can vanish simultaneously (the Petrov type O) when either
m=n (case A) orat T, = b /2a (case B). Incase A, type O
is realized at both times, 7", and 7 _. In case B this occurs at
T,=T_ only, and moreover, mn =1; hence p=0 [cf.
(25)]. Thus this second case takes place for electrovacuum
without any stiff matter; at the instant 7', we have the Pe-
trov type D since only W vanishes here, and not V. Other-
wise, if it is only W that vanishes at 7', and T_, the space-
time is instantaneously of type D there, being algebraically
general at all other times. In the absence of the electric field
(@ =0), the Petrov type does not change in time, so that
type D takes place when either n= — 1 or m= — 2, or
both, but n#£m, and the Weyl tensor vanishes altogether,
whenm=mn, (n+1)(n + 2) =0 (type O).

V. CONCLUDING REMARKS

The Einstein~-Maxwell field (23), (24), (7) with neu-
tral stiff matter (15), and (25) is a new exact self-consistent
solution of the corresponding field equations and equations
of motion. This solution demonstrates the effectiveness of
the conjecture' that the electromagnetic four-potential of
such a field (7) (divided by k) coincides with a Killing co-
vector of the same metric when & = 0. This is the Killing
vector (its contravariant version being d,) of the metric
(27) which itself generalizes the initial seed metric (4). The
latter is of the Petrov type D, while the new space-time (27)
(stiff matter without electromagnetic field) is algebraically
general, if it is not specialized to (4) or to the cases men-
tioned in the final lines of the previous section.

We do not discuss here the singularities encountered in
the space-times under consideration, as well as the range of
determination of the variable T. They depend on a specific
choice of the parameters a, m, and » in the metric (23), as do
the eventual conclusions about the real existence and the
finiteness of the loci 7= + o in the space-time (23).
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Variation of the R 4 aR ? action with respect to independent metric and connection fields is
shown to be equivalent to the metric-compatible fourth-order gravity coupled to a vector
defined as a function of the trace of the energy-momentum tensor. The field equations are
second order. The Friedmann cosmology based on this model is studied and it is shown to

include nonsingular solutions at t = 0.

I. INTRODUCTION

Actions composed of the Einstein scalar curvature term
plus quadratic powers of curvature and cosmological models
based on these actions have been around for decades'™'° de-
spite the apparent increase in mathematical complexity,
mainly because such theories seem to lead toward a less di-
vergent quantum theory and a reasonable high-energy ex-
tension of the standard theory of general relativity (GR).
Certain classes of these higher-order theories have been
shown to yield either unitary,'' or renormalizable'*'* quan-
tum theories while some others seem to be haunted by
ghosts.

In general, since curvature is defined in terms of second
derivatives of the metric tensor, an action with n powers of
curvature yields field equations of order 2# if the metric is
assumed to be the only dynamical field. In fact, all the good
and bad properties of higher-order theories are due to the
increase in the order of the field equations. Attempts have
been made to exorcise these theories by going to a higher
number of dimensions and adding dimensionally continued
Euler-invariant combinations of higher powers of curvature
such that the field equations are nevertheless second or-
der.'*!5 Dimensionally continued Euler invariants have also
been predicted in the low energy limit of some Superstring
theories'®'” and some seem to admit spontaneous compacti-
fication. ’

While resorting to higher dimensions and considering
Euler-invariant contributions to the Einstein action may be a
promising route to take, here, we suggest an alternative route
which is by no means a new one.>”® We suggest obtaining
second-order equations from quadratic actions by following
the Palatini formalism of treating the metric tensor and the
connections as independent fields, which we call the first-
order formalism. Although such suggestions have been
made previously in the context of gauge theories,”® no con-
crete calculations exist to our knowledge. This may be be-
cause of ambiguities in interpretation and, therefore, a lack
of a recipe for calculations.

Recently,?! however, it was shown that first-order treat-
ment of the simple R + R ? action yields a conformally met-
ric theory, which implies breakdown of the Einstein equiv-
alence principle due to a breakdown of conformal symmetry.
Since R ? contributions are insignificant now, such a viola-

18,19
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tion would not be observable at this time. At the time when
curvature becomes significantly large, quadratic contribu-
tions will become important and a framework in which to
include such contributions was developed. With the formal-
ism of the R + R ? gravity developed in the first-order re-
gime, we will attempt to look at cosmology in four dimen-
sions.

Although working with second-order equations is one
reason to treat the metric and the connections independent-
ly, our motives here are more fundamental; namely, preserv-
ing generality. There are no a priori reasons to assume metric
compatibility in the strong curvature epoch. Furthermore,
there is no reason to assume the metric as the only indepen-
dent field describing gravity at early times. In fact, one
would hope that the relation between the metric and the
connections would emerge from a more fundamental princi-
ple such as the principle of least action. There is no better
example of this than GR itself where first-order variation of
the action, yields metric compatibility automatically.

Therefore, we will show that in the case of R — aR?
gravity, the first-order formalism action can be rewritten in
terms of the metric compatible fourth-order part plus contri-
butions from the metric-incompatible part of the curvature.
Fourth-order gravity can thus be thought of as a special case
of the theory constructed in this manner namely, where the
latter contribution vanishes. In general, however, the met-
ric-incompatible part can modify the fourth-order theory
significantly. We will show that in the case of cosmology
there exists a solution without singularity at ¢ = 0. Expected-
ly, the size of the universe at this time is of the order of the
free parameter of the theory, a, introduced by the quadratic
contribution.

One must also mention the work of Whitt*?> which
seems to resolve the problem of dealing with fourth-order
equations. This is done by solving, in a conformal space, the
pure Einstein gravity coupled to a scalar field. However, we
feel that there, also, generality has been lost due to the as-
sumption of metric compatibility.

In the first part of this paper, we will start with the dis-
cussion of the field equations as derived in the two forma-
lisms. We will show that requiring metric compatibility of
the connections after the action has been varied with respect
to the connections and the metric independently, leads to the
recovery of the fourth-order equations. In the second part,
we will apply the field equations derived and the method
described in Ref. 21 to the classical Friedmann cosmology of
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a spherically symmetric ball of dust described by the Robert-
son—-Walker metric. We will show how under certain as-
sumptions the equations of cosmology evolve into the stan-
dard GR equations. The conventions used here are those of
Weinberg.>

Il. THE FIELD EQUATIONS

A detailed derivation of the first-order field equations
can be found in Ref. 21. Here we give a short summary. Let
us start with the simplest unitary action:

“C{=J‘V _g(R _aR2+ Tmatter)dax’

where R = R,,, g"". The Ricci tensor R,,, is now a function
of the connection field and its derivatives and its variation in
a geodesic frame, neglecting torsion, can be written as

8R,, =V, (8T*,,) —V (8T*,,). (2.2)

Assuming that 7, ... is independent of the connections,
varying the full action now with respect to the metricg,,, and
the connections I“m,, respectively, gives

(2.1)

R, —18.,R—2aR(R,, —}8,..R)= —87GT,,

(2.3)
and
V.(/ —gg**(1 —2aR)) =0. (2.4)
Manipulating the last equation yields
Va8 = ba8u (2.5)
where
b, =2aR,, /(1 —2aR). (2.6)

The connections can then be derived, using Eq. (2.5) as
FA#V = %g/m(gﬁ,u,v + gév,u - g;u',&)
— (84, b, +64,b, —g,.b". 2.7)

The above two equations represent the main deviations from
GR. The former exhibits violation of the Einstein equiv-
alence principle (EEP) and the latter exhibits separation
from metric compatibility by the additional contribution to
the first term, the Christoffel connection. It should be noted
that deviations are of order & which can be important only
when @R ? contributions are comparable to R. This is ex-
pected to occur around planck time.

In order to interpret the results in terms of the more
familiar fourth-order gravity, one can rewrite all the geomet-
ric tensors in terms of their metric compatible counterparts
plus contributions from the vector b, . In particular, we get

4] .
R, =R, —3iDb, +iD b, —4g, Db
—1ib,b, +1g,.b% (2.8)
and
R=R“ —3D-b+3b> (2.9)
Here, the superscript (0) denotes the metric-compatible
quantities and D,, is the corresponding covariant derivative.
The inner products are with respect to the metric. Now, one
can rewrite the original action, aside from the matter contri-
bution as
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A=J\/—g(fc+$"c)d‘x, (2.10)
where
FL.=R© —a(R®)? (2.11)

is the metric-compatible fourth-order action which is usual-
ly considered in higher-derivative gravity and

Lpe = —3Db(1—-2aR ) +3b*(1 —2aR )
—a[9(D:b)* +3b* —9(D:b)b]. (2.12)

Thus .. represent the metric noncompatible addition that
is ignored if one works with fourth-order action to begin
with. This Lagrangian includes a massive vector field b,
with couplings to itself and the curvature.

First-order formalism therefore provides a general
treatment of quadratic gravity which is equivalent to a theo-
ry of fourth-order gravity coupled to a self-interacting mas-
sive vector field. In the limit where b, vanishes, the usual
fourth-order theory is recovered. Furthermore, this proce-
dure replaces the fourth-order field equations by two sets of
second-order equations (2.3) and (2.4).

One might consider gauging away the b, field by a con-
formal transformation given by

8wy = (%)’ 0 (2.13)
and

b',=b, +207'Q,,. (2.14)

However, if the energy-momentum tensor has a nonvanish-
ing trace, b, is defined via Eq. (2.6), and the trace of Eq.
(2.3):

R = 8xGT,
b, = [16anG /(1 — 16arGD1T,,. (2.15)

For conformally noninvariant matter, given the trace of the
energy momentum tensor 7, b, is fixed and cannot be
gauged away.

1ll. FRIEDMANN COSMOLOGY

Having derived the necessary ingredients for calcula-
tions, we will now look at a practical aspect, namely cosmol-
ogy. We assume spherical symmetry, homogeneity, and iso-
tropy of the early universe presented by the Robertson-
Walker metric:

ds8 = —2dt? 4+ a(1)?

dr? ) .
X rtdo? + rtsin’ 0d 2). 3.1
(1 _Kr2+ ¢ (3.1)

We will confine ourselves to the spatially flat (K = 0) case at
this time. However, the upcoming arguments can easily be
generalized to the K = + 1 cases. The energy momentum
tensor is that of a perfect fluid:

T;n' =pguv + uuuv(P +p)’ (3'2)

where p and p are the pressure and mass density, respective-
ly. The conservation laws are given as in Ref. 21 by

v, [G*./(1 —167GaT)] =0, (3.3)

G*, being the Einstein tensor, which interestingly yields
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d 5 d
— (pa’) = —p—(a’). (3.4)
ar (pa’) p dt

The vector b, is now given by Eq. (2.13) and is a timelike
vector. It is convenient to introduce the variable U defined as

U=1-2aR=1-—16rGa(3p —p), (3.5)

and assume an equation of state given by p= (y —1) p,
which together with Eq. (3.4) gives

P =polao/a(t))”, (3.6)
where p, and a, are constants.

The two independent equations of motion are then given
by

1d’a 3db 3 1.da,
a di> 2 dt 2 a dt °
87TG{ U2—1]
- _ X 3.7
v 7~ 64rGa (D
_Ld"“_z(iﬂ)z
a dt? a dt
51 da 1 db, 1 )
224 - ——(b.)?
+(2 dat 02 dt 2 (6o)
2
=_81rG[ U—l]‘ (3.8)
U 647G

Note that in the limit @ -0, U 1 the field equations reduce
to those of GR. Using Eqs. (3.5) and (3.6), U can now be
written in terms of a(¢) and its derivatives and, after some
manipulations, one arrives at

(iﬂ)2=—8-7rG (1+(3’}//4)(1/U—1))’ (3.9)
a at 3 [1+(1/U-D]?

where, now,
U=1—167Ga(3y — 4)pola,/a(n))". (3.10)

Equation (3.9), together with Eq. (3.10), can now be in
principle solved.

It is interesting that GR limit is automatically satisfied
as the expansion parameter a(¢) increases. This is a rather
desirable property since we know that GR explains the pres-
ent epoch successfully. We will examine the behavior of the
solutions of Eq. (3.9) by considering a particle in an effective
potential given by

8 1+ By/4)(1/U(a) — 1)) 2
Via) = — —7(, a,
(a) 37 P(a)( [1+i11/U@ — D]?
(3.11)
and total energy:
E= (ﬂ)z + V(a)=0. (3.12)
dt

The behavior of the soutions of Eq. (3.12) can be studied by
analyzing the shape of the potential ¥(a), as a function of
parameter ¥ and the sign of a.

We plot V(a) as a function of a(#) for 0 <a(?) < .
Ruling out ¥ < 0, there are four possible scenarios:
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Case (i): a>0, y>4/3,
Case (ii): a>0, O<y<4/3,
Case (iii): a<0, y<4/3,
Case (iv): a<0, O0<y<4/3.

The potential ¥(a) has two possible zeros, at U(a) = 0 and
U(a) =U, =3y/(3y —4) corresponding to a=a
=a,(167Ga(3y — 4)p,)'"*", and a=a&, =a, (— 47Ga
X (37 — 4)%p,)"/*", respectively, as shown by Figs. 1-4. The
total energy is given by the E = 0 axis and thus the physical
solutions are those where E > V(a). If desired, one can gen-
eralize to the K= 41 by considering E= + 1 for the
closed and open universe scenarios. Let us now study the
behaviour of a(¢) in the above cases.

A. Case (i)

This is one of the most striking cases. The effective po-
tential introduces a barrier in the first few time constants.
The ¢ = 0 singularity is therefore avoided. The wall crosses
the E = Qaxisat U = 0, a = 4. To see the behavior of a(?) at
this point, we note that Eq. (3.9), at U~0 can be written as

(1 a’a)2 8 U
—— ) =—7Gp—
a dt 3 3y

Iy
9 a

T

a,\*
X [1 — 167Ga(3y — 4)p0(——) ] . (3.13)
a
The solution is found exactly:

a(t) = ay(167Ga(3y — 4)p, + 27Gypyt ). (3.14)

Thus at # = 0, a = 4 and the parameter « determines the
initial size at ¢ = 0. One can show that the second derivative
of a(t) at t =0 .is positive and becomes negative at later
times. Solving Eq. (3.9) numerically demonstrates this as
shown in Fig. 5. The plot illustrates the evolution of a(¢) for
¥ =5/3. At large ¢, the potential gradually increases and
thus the expansion rate slows down as kinetic energy de-
creases.

B. Case (ii)

In this case, the potential V(@) does not meet the E =0
axis and stays in the negative region at all times. Thea = 0
singularity resembles that of GR and the scenario is that of
big-bang. The expansion slows down as Kinetic energy de-
creases in later epochs.

C. Case (jii)

This is simillar to case 7, except that the potential has its
zero at @ = a, . Again, the potential barrier avoids the initial
singularity.

D. Case (iv)

This is the only case where V(a) has two physical zeros.
The hump produced by the potential offers two classically
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Vi(a)

V(a)

V(a)

V(a)

a(t)

>
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a>0 v>4/3
FIG. 1. Energy diagrams: The effec-
tive potential ¥(a) is plotted against

the expansion parameter a. The hori-

zontal axis represents total energy
E=0.

A a
a\/

a>0 0< y<4/3

FIG. 2. Same as Fig. 1.

a<0 y>4/3

FIG. 3. Same as Fig. 1.

A ) a
a4

a<0 0<y<4/3

TN FIG. 4. Same as Fig. 1.
A at/‘_
a a
a=1 Y= 5/3 FIG. 5. Time evolution of the ex-
pansion parameter a(¢) for
t a=1,y=5/3.

J. Math. Phys., Vol. 31, No. 10, October 1990

distinct regions; a negatively unbound region betweena =0
and @ = &, which results in a “big crunch,” and a universe
bouncing between ¢ = g and a = .

Although the shape of the effective potential introduces
new possibilities that may exist in the early times, one cannot
take these effects too seriously. After all, we have said noth-
ing of quantum effects themselves which are expected to be
prominent at early stages. We must, therefore, emphasize
the very speculative nature of this work and appreciate the
results at their face value.

IV. CONCLUSIONS

We have used the prescription given for the first-order
treatment of a gravitational action, composed of the Einstein
term plus a quadratic in the scalar curvature, to discuss the
classical properties of the implied field equations and to
demonstrate a physical calculation where implications of
this formalism can differ from the usual fourth-order results.
The advantages and the results of taking this route are as
follows.

(2) The formalism does not make the assumption of
metric compatibility. One can envision a scenario where
metric compatibility is a low-energy limit property of space
time. The first-order treatment of the quadratic action is,
therefore, an extension of the fourth-order gravity in genera-
lity.

(b) The field equations are only second order so the
usual difficulties with fourth-order equations are bypassed.
The difficulties, however, are replaced by the addition of a
vector that is interpreted as a contribution of the stress-ener-
gy tensor to the connections.

(¢) In the standard Friedmann scenarios, the long-time
limit of the evolution equations yield metric compatibility
and the standard cosmological models based on general rela-
tivity are recovered.

(d) One can find solutions in cosmology with no singu-
larity at t = 0.

It would be interesting to study the Kaluza—Klein sce-
nario. It is reasonable to hope that since singularity can be
avoided under certain assumptions, one could stop the col-
lapse of the extra dimensions by this procedure. Also, the
study of the semiclassical approximation in this formalism is
of interest. A natural question arises: Is metric compatibility
a classical limit of a quantum theory of gravity? This is cur-
rently under consideration by the author.
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Shear-free perfect fluids in general relativity Il. Aligned, Petrov type Ill
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Petrov type 111, shear-free, perfect fluid solutions of the Einstein field equations, with a
barotropic equation of state p = p(w) satisfying w + p=%£0, are investigated. It is shown that if
the acceleration of the fluid is orthogonal to the two-spaces spanned by the repeated principal
null direction of the Weyl tensor and the fluid four-velocity, or if the fluid four-velocity lies in
the two-spaces spanned by the principal null directions of the Weyl tensor, then the fluid’s

volume expansion is zero.

I. INTRODUCTION

There is now considerable evidence in the literature that
supports the conjecture that general relativistic, shear-free
perfect fluids which obey a barotropic equation of state
2 =p(w) such that w + p=£0, are either nonexpanding or
irrotational. For example, this conjecture is known to hold in
(i) all dust space-times (Ellis' ), (ii) conformally flat space-
times (Ellis?), (iii) spatially homogeneous space-times
(King and Ellis* and White*), (iv) shear-free radiation,
p = jw (Treciokas and Ellis® ), (v) the case when the fluid
vorticity o, and acceleration i, are parallel (White and Col-
lins® ), and (vi) the case when the magnetic part of the Weyl
tensor, with respect to the fluid flow, vanishes (Collins’ ).
More recently, the conjecture has been shown to hold for
type N space-times (Carminati® ) and for the case when the
fluid’s expansion and energy density are assumed to be func-
tionally dependent (Lang and Collins® ), and thus includes
hypersurface-homogeneous space times.

Shear-free fluids with a barotropic equation of state are
of considerable interest in cosmology from both the theoreti-
cal and observational point of view'® (Friedmann-Robert-
son-Walker models, Gddel solution, the spherically sym-
metric but spatially inhomogeneous Wyman solution, etc.).
For example, certain observational aspects of shear-free
fluids that are relevant to cosmology are most readily high-
lighted when one considers the formulas for recessional mo-
tion, relative red shift, and transverse motion of neighboring
galaxies.” It then readily follows that shear-free fluid solu-
tions would retain the desirable feature of isotropy of local
motion but allow the galactic red shift to be anisotropic if
1,320 (the relative measure of this anisotropy would be giv-
en by the ratio 3|#,|/6, where 6540 is the volume expan-
sion). Consequently, there would be a preferred direction,
which coincides with that of #,, as indicated by the maxi-
mum red shift. In addition, if the fluid is nonrotating, the
transverse motion of neighboring galaxies has an isotropic
evolution. On the theoretical side, the general validity of the
conjecture together with the possibility that relativistic ki-
netic theory requires perfect fluids to be shear-free,” would
impart a sense of uniqueness'' to the Friedmann—Robert-
son—Walker cosmological models since it has been shown

* On Outside Studies Leave from the School of Mathematical and Physical
Sciences, Murdoch University, Murdoch W.A.., 6150, Australia.
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that they are the only physically reasonable space-times
which represent an expanding, shear-free, irrotational per-
fect fluid, on a global scale.

Finally, it is interesting to note that there are Newtonian
self-gravitating, shear-free fluids that are expanding and ro-
tating.> Therefore, if the conjecture were to be generally val-
id, then it would be a result that would highlight certain
essential differences between fluid dynamics in Newtonian
theory and in general relativity.

This is the second in a series of papers dedicated to the
study of the general validity of the above conjecture in alge-
braically special space-times. We shall show that for any
shear-free, perfect fluid source with p = p(w) and w + p=£0,
of a type III space-time where either the acceleration of the
fluid is orthogonal to the two-spaces spanned by the repeated
principal null direction of the Weyl tensor and the fluid four-
velocity, or the perfect fiuid is aligned with the Weyl tensor,
then the fluid’s volume expansion is zero.

The plan of this article is as follows. Section 1I contains
the main result in the form of a theorem. The proofis given in
Sec. I1I, and Sec. IV contains some concluding remarks.
This paper presupposes a knowledge of the Newman—Pen-
rose (NP) formalism. All considerations will be local. We
have chosen geometrized units so that 87G =1, ¢ =1,
where G is the Newtonian gravitational constant and c is the
speed of light in vacuum. Our conventions for the Riemann
and Ricci tensors and the signature of the space-time are
those of NP.

Il. THE MAIN RESULT

In this article, we shall be investigating Petrov type III,
perfect fluid solutions of the Einstein field equations,'?

Ry —1Rg, = — T, (2.1)
where

T, =(w+plu,u, — pga, uu’=1, (2.2)

in which the fluid congruence is shear-free and the pressure
satisfies a barotropic equation of state,

p=p(w).
Our main result is the following.

Theorem: Consider any Petrov type III, shear-free per-
fect fluid solution of the Einstein field equations, with a baro-

(2.3)
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tropic equation of state p = p(w) satisfying w + p5£0. If the
acceleration of the fluid is orthogonal to the two-spaces
spanned by the repeated principal null direction of the Weyl
tensor and the fluid four-velocity or if the fluid four-velocity
lies in the two-spaces spanned by the principal null direc-
tions of the Weyl tensor, then the fluid volume expansion is
zero.

lil. PROOF OF THE THEOREM™®

Let C,,., and u, denote the Weyl tensor and four veloc-
ity of the fluid, respectively. The assumption that C,,, is of
Petrov type I1I seems to naturally lead to the following spe-
cialization of the principal null tetrad {/,n,m,m}. First, / is
chosen to be the repeated principal null direction of the Wey!l
tensor so that

Copeiale)] =0, Copeal  #0. (3.1)
Therefore the NP Weyl tensor components satisfy
VY, =¥, =¥, =0, ¥,#0 (3.2)

Next, by a null rotation that leaves / fixed, it is possible to
make 7 lie in the two-spaces spanned by / and «. Finally, by
rescaling / and # it is then possible to achieve

u=2""*(l+n). (3.3)

From Egs. (2.1)-(2.2) and (3.3), it follows that the NP
components of the trace-free Ricci tensor S,, =R, — 1Rg.s
satisfy

&y, =P, =P, =0, 3.4

Dy = Py, =29, = §(w +p). (3.5)
The Ricci scalar R=24A is given by

R=w-—3p. (3.6)

1t should be noted that the tetrad is still not fixed uniquely.
The remaining tetrad freedom is expressed by the rotation
le=1°, = em®, (3.7
where £ is a real function.
The shear tensor o,,, vorticity tensor @,,, and expan-
sion 6 of the fluid four-velocity (3.3) are given by"*

n’ = n°,

O =4, (0,0 — M My)) + A0 My, + A0, My,

+Asm,m, + A, m,, (3.8)
©ap = Byvamy |+ Biv M, + Bym A, |, (3.9)
and
0=2""e+E—y—7—p—p+ur+p), (310
where
A= -2 p+p—p—AG+2e+8 -2(r+MNh

A, = —{F+7+2a+B) —k—v}
A3 =2_1/2(5—2'))
B, ={7+7—2(@+B) —k—v},

B,=-2""{p—p+pu—p}
and
v, =2""%(l, —n,).

Therefore, the fluid is shear-free if and only if

prp—pu—pu+2(e+€ —2(y+7 =0, (3.1la)
T+74+2@+p)—x—v=0, (3.11b)
G—A=0. (3.11c)

Next, using Egs. (3.2), (3.4)-(3.6), and (3.11), the NP
form of the Bianchi identities, after some straightforward
manipulations, reduce to the following equivalent set

D+Dw=3w+p)(y+7—€—9), (3.12a)
PAA—-Dw=(w+p)(e+E+y+7), (3.12b)
ow=3(w+p)@+4p), (3.12¢)
o=A4=0, (3.12d)
k=7+(1+3p)(@+h8, (3.12¢)
Dw = 126V, + }(w + p) (5 — 1), (3.12)

D¥, =2(p— e)¥, — k¥, + }(w+p)(a+p),

(3.12g)

SV, =2k +7—B)V,, (3.12h)

DY, — ¥, =2(a+2m)V¥, + (p —4e)¥,, (3.12i)
SV, — AV, =2(y +2u)¥, + (r—4B) VY,

+ 3w+ p)(a+B), (3.12§)

where €3> denotes differentiation with respect to w.

Henceforth, we shall assume that p(1 — 3p) #0, as the
conjecture essentially has been proven in the cases when
p=0 (Ellis') and when p=1 (Treciokas and Ellis®).
Equations (3.11) and (3.12) imply

28x¥; = (w+p3p—p+u—pn)

—(I/p)e+E+7+ 7}, (3.13)

and
T=v4+ 3p—1(@+p). (3.14)

Combining some of the NP Egs. (4.2), together with Egs.
(3.11)-(3.12) yields

Sp—)=@+Bp+p+3plp—p+p—mp] -V,

8P —p) —2A+DY@+B) =3P+ T)NEe+E+Y+7) +Hp@+B(r+7—€e— +(@+B)

X[ —27+27—3p—2e+2—3plp—p+p—m)] +¥,,

2435 J. Math. Phys., Vol. 31, No. 10, October 1990

(3.15a)
D@+ p) —~b(e+9)
=(@+B)(p—26) +7(p+€e+¥)
—k(+7+7), (3.15b)
and
S(y+v) —A@+p)
= —v@p+e+E+ @+B)(u—-2p)
+ ety +7) + T, (3.150)
Applying the commutator [§,A + D] to w yields
(3.16)
J. Carminati 2435



where use has been made of Egs. (3.11), (3.12), and (3.15).
Similarly, consideration of [§, A — D]w leads to

20+D)y(@+ 5
=(r+T)Pp—p+i—pn)+2(@+p)
X[p—p+2y—2€

+3ple+e—y—-N1 (3.17)
Equations (3.16) and (3.17) imply
S(p—pw)=(r+m[Q2/3p)e+E+y+T)

+p—p+p—ul
+@+Blp—p—2
~P(p—p+p—@p1+ ¥, (3.18)

Applying 4 to Eq. (3.11b) yields
S@+PB) = (A+P)(A+3B +27r—2%) +¥,, (3.19)

so that § may now be applied to Eq. (3.12¢) with the result
that

2@+ BN +3p)(3p—1) + 9w+ p)]
+W,(1+3p)=0. (3.20)

Next, applying & to Eq. (3.13) with subsequent use of Egs.
(3.12¢), (3.14), {3.15), (3.17), and (3.18) leads to the im-
portant relation

Wy (1+3p) —(e+E+y+7)
X274+ (/)Y (w+p)@+ M) +ilp—p+up—Hp)
X[v(1+3p) +7(3p— 1] =0. (3.21)
By applying the commutator [8,8] to w, we obtain
(I/p)e+e+y+PV(p—p+H—u)
+3p—pH+u—pw)u+pte+e+y+7) =0,
(3.22)

where use has been made of NP Eqgs. (4.2) and Egs. (3.12).
Combining Egs. (3.13), (3.21), and (3.22) yields

(e+&+r7+n{(1/2p)[p—p +E —pl[&¥(1 + 3p)
+Kkr(3p—1) —j(w+p)(1+3p) ]
-3 p+a+e+e+y+7]
X [2pKT + 4 (w + p)
X(1+3p) +3p(w+p)k@+M}}=0. (3.23)
Thus we are naturally led to distinguish two separate cases:

(a) e+ €+ y+y=0and (b) e+ €+ ¥+ ¥#0. Since the
acceleration vector'® i, is given by

U, =2"YHe+eé+y+M, +ir—7—K+v)m,
(3.24)

it follows that the condition € 4+ € + ¥ + ¥ = 0 can be inter-
preted geometrically as the requirement that the accelera-
tion vector lie in the two-spaces spanned by m and m; i.e.,

(3.24")

We begin the proof of the first part of the Theorem by assum-
ing

E+E+y+7=0.

+ 3T -7 —Kk+V)M,,

u mym, =0.

(3.25)
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From Eq. (3.22), we immediately find that either

orif u + fi#0, then
p—p+p—pu=0. (3.27)

Casel.py+pn=0.
It follows from Egs. (3.13) and (3.21) that either

p—p—2u=0, (3.28)
orifp — p — 2u #0, then

(1+3p)(w+p) —81?(17[1 +3pl + 7[3p — 1])=0,

(3.29)

CaseIA:p —p —2u=0.

Then, by Eq. (3.21), it follows that

1+3p=0. (3.30)
Equations (3.12¢) and (3.13) immediately yield

Kk=7=0, (3.31)
while Eq. (3.11a) leads to

2y+V =p—pu=p—p=(p+p)/2 (3.32)

Applying the operator D to Eq. (3.26) and using Egs.
(3.31), (3.32) with NP Egs. (4.2), we obtain

©2+2A =0. (3.33)
Again, we apply D to Eq. (3.33) with the consequence that

(e+ &) (w+p—24A) =0, (3.34)
and, therefore, because of (3.30), € + € =0 since p#0.
Thus y+7=p—pu=p—jii=p+p=0, and it follows
that the fluid has zero volume expansion; i.e. 8 = 0.

Case IB:p — p — 2u+#0.

The commutators [A,D], [8,A — D] and [8,D] applied
to w yield

D-Dy+ =(r+T)a+B) + F+m@+8),

(3.35)
D-N@+B)=@+B(p+p+e—€—5r—3p),
(3.36)
and
y+7)—D@+p)
=@+l +3p)(r+7)—p—€+€l,  (3.37)

respectively, where use has been made of Egs. (3.11),
(3.12), and NP (4.2).
Combining Egs. (3.37) and (3.15b), we obtain

2+ =30+ @+ y+M+7p—v—7%)

—ku+y+7), (3.38)
while Egs. (3.15b), (3.15¢c), and (3.36) imply
2V, =v(p —p) — 27y, (3.39)

where, in addition, use has been made of Eq. (3.14), together
with Eq. (3.11a) which in this case reduces to

p+p=4+7). (3.40)
To proceed further we need to distinguish whether or not
(a+ B (1 + 3p) is zero.
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Case IB(i): (@ + B) (1 + 3p) #0.
Rewriting Eq. (3.19) using (3.20), yields the following
useful form

S@+B)=@+Pa+3B-2v+2r+Ha@+p)1,

(3.41)
where
H=[(1+3p)(1—-3p) —9p(w +p)1/(1 + 3p).
(3.42)

We may now apply the commutator [§,A — D] to @ + 3,
which, after a lengthy computation, leads to

4H+P-3)Y@+B(y+»
+4u@+p) +7(p —p) — 2uv=0,

since (1 + 3p) (a + B) #0.
Next, using Eq. (3.21), which in this case reduces to

20, (143p) + (p— p + 2u)
X[¥(1+3p) +7(3p—1)]1 =0, (3.44)
together with Eqgs. (3.13), (3.14), and (3.39), we obtain

(3.43)

du(@+p) + m(p—p) — 2uv =0, (3.45)
and thus Eq. (3.43) reduces to

(H+9-3)(y+ % =0. (3.46)
Equation (3.45) may be equivalently expressed as

k¥ +u(@+B)Q=0, (3.47)

where
0= — (14 3p)(w+p)/8
= —Kk[¥(1+3p)+7(3p—D].
Applying the § operator to Eq. (3.47) leads to

#(H+B)Q(H[5+B] —2;(—217—1‘7)—;(27/\[/3

+ Q@+ BV, +3u@+ P (w+p)Q=0. (3.48)

Case IB(ia): y + y#0cp + p#0.
We shall prove that this case is impossible. With the
assumption that ¥ + 750, it follows from Eq. (3.46) that

H=13(1-3p). (3.49)

We now note that u (@ + £)Q #0. This is shown as follows:
If @ = 0, then from (3.47) x7 = 0 and hence because of Eq.
(3.13), we must have 7= 0. It then follows from NP Egs.
(4.2) that v = 0, since k #0. However, 7 = ¥ = 0 is impossi-
ble since we have assumed (@ + ) (3p — 1) #0. Equation
(3.49) yields

Q/Q= (% + 1)/3(w +p). (3.50)
Multiplying Eq. (3.48) by 7 and then using Eqs. (3.47) and
(3.50) leads to

(r+ 7)) (v —=37) =0, (3.51)
since u (@ + 3) Q #0. Suppose ¥ = 37. Then, Eq. (3.14) be-
comes 27 = (@ + B) (1 — 3p), whereas NP Egs. (4.2) yield
W, = 37(2a + 28 + 7 — 3x). Combining these equations
with Eq. (3.20) gives 7 = 3« + 2(@ + ), since 7#0, and it
follows from (3.12¢) that 2« = — 3(a@ + B) (1 + p). Ap-
plying the & operator to this equation leads to
3p(w + p) — 2(1 + p)(1 + 3p) = 0. However, Eq. (3.49)
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reads 9p(w + p) + 2(1 + 3p) (1 — 3p) = 0. Comparison of
these two equations immediately yields 1 + 3p = 0, which is
a contradiction, and, therefore, the subcase v = 37 is impos-
sible.

Next, suppose ¥ 37, then 7+ 7 = 0. In this case, the
commutator [5,A — D] applied to p+p leads to
p + p=4(@+ ), since (p + p) (@ + B) #0. Finally, ap-
plying the operator A —D to this equation yields
p+u+€e—€—5y—3Y=0. The real part of this condi-
tion is p + p = 8(¥ + %), which, together with Eq. (3.40),
gives p + p = ¥ + ¥ = 0, which contradicts our original as-
sumption.

Case IB(ib): y +y=0.

For this case, p+p=y+ 7 =€+ €=0 and, there-
fore, 6 = 0.

Case IB(ii): (@ + B) =0, (1 + 3p) #£0.

From the NP Eq. (4.21), it follows that € + € = 0 and,
consequently, p + p = ¥ + 7 =0. From Egs. (3.12¢) and
(3.15b), we obtain «(p —pu)=0. Since p—p—2u
#0&p #u, it follows that « = 0. But, Eq. (3.13) then yields
i — p = 0, which is a contradiction. Thus this case is impos-
sible.

Case IB(iii): 1 + 3p =0.

From Egs. (3.12¢), (3.29), and NP Egs. (4.2), we find
that «k —T=7=v=a 4+ B =0, since «#0. Next, the
commutator [8,D] applied to w together with the preceding
conditions leads to 8(¥ + 7) = ¥, = 0, which contradicts
the assumption of Petrov type III.

Casell: y + u#0,p—p+u—p=0.

For this case Eqs. (3.12e), (3.13), and (3.21) immedi-
ately yield

k=m=1+3p=0, (3.52)

and the commutators [6,A + D] and [§,A — D] applied to
w lead to

D(@ +B) =r(§~i;‘—+e+z)

— - v,
—(0!+/3)(6+36)+7, (3.53)

and

A@+B) =7(a/2—p/2—€—8) + (@+B)
X (@i —p+ 57+ 3y — 26— 28) — ¥,/2.
(3.54)

Equation (3.11a) reduces to

p—i+2€e+€=0. (3.55)
Using Egs. (3.53)~(3.55) together with NP Eqs. (4.2), the
& operator applied to Eq. (3.25) gives

¥, =2u(@+p). (3.56)
Applying the D operator to this equation vyields
(@ + B) (w + 3p) = 0, and, consequently,

w+3p=0, (3.57)
which is consistent with 1 + 3p = 0. Next, the commutator
[6,D] applied to ¥, results in

S(@a+B)=(a+BQ2r—38— a@). (3.58)
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This equation may be combined with NP Eq. (4.21) to give

H@+p) =1(a+B). (3.59)
It will now prove convenient to consider the cases 7#0 and
7 = 0 separately.

Case IIA: 7#0.

We shall show that this case is impossible. If § is applied

to the complex conjugate of Eq. (3.56), it follows that
7(u — i) (a + B) = 0 and, therefore,

Next, consideration of & applied to Eq. (3.56) and the com-

mutator [6,A] applied to@ + S, in conjunction with various
above equations, leads to

DY, =2V, (u — € — 36), (3.61)
and
AV, =8ur(a@+B) — 48(a + B) (e +¥)
—2W, (4 + 27 + 3¢ + 38). (3.62)
Equations (3.12i) and (3.61) imply
8V, = —2a¥, + W, (2 — p — 2€ — 28). (3.63)

Applying the commutator [§,A] to a + B yields
Ar=7(e+€—2y—pu) —8(c+€)(@@+p),

and, consequently, we may now apply {§,A] to 7, from
which it follows that

V,(e+8 =r[(e+&)(5T+58—27)+pur]  (3.64)

We note that the case € + € = 0 is impossible since it would
then follow that 4 = 0. Applying [A,D] to 7 yields

Ap+u—€—€ +plu+e+e)
—(e+€)}+27(@+p)
+ulp —€—€)+ 217+ w/3 =0,
whereas consideration of [A,D](a + ) leads to
(@+B) [A(p + 1) +p1(2p + 3u — 5 — 5€) + 477 — 3p*
~ 5p(€+ &) — 47(@+ B) + w/3] +7¥, =0, (3.66)

where various above equations and NP Egs. (4.2) have been
used. Combining Eqgs. (3.65) and (3.66) yields

(@+PB) [A(e+E) + (e+E)+TQ2r—6a—68)]
+7¥, =0. (3.67)

The operator D applied to Eqgs. (3.55) and (3.64) leads to

(3.68)

(3.65)

w=06u(2e+ 2 —pu),
and
D(e+€) + (e +€)° =0, (3.69)

respectively. Equations (3.67) and (3.69) may now be com-
pared with NP Eq. (4.2f), and, as a consequence, we find
(e+®)Bla+B Y —Tr[@a+Bl+27)—7u=0,
(3.70)
where use has been made of Egs. (3.59), (3.64), and (3.68),
and certain nonzero factors have been canceled throughout.
Eliminating p from Eq. (3.65) by using Eq. (3.55), and then
combining Egs. (3.69) and NP (4.2f), eventually yields

Ap+pue+€) +47(@+p)+77=0.
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We may now apply [A,D] tou which with subsequent use of
various above equations and NP Eqs. (4.2) leads to
3A(e+8) +3(e+8)—=27(@+p) =0.

Finally, if we compare this equation with Eq. (3.67), and use
Egs. (3.64) and (3.70), we obtain (@ + B)(e +€) =0,
which is a contradiction.

CaseIIB: 7= 0.

In this case, we have

v=2@a+ph). (3.71)
The NP Egs. (4.2) and Eq. (3.53) imply

e+&)=@+P(—p—€e—8) +¥,/2. (3.72)

Next, the application of the operator A to Eq. (3.71) yields
Av=2(a+PB) (27 —3e —3e— i), (3.73)
where use has been made of Egs. (3.54) and (3.55). Apply-
ing the commutator [ A,D] to v leads to, in conjunction with
various above equations and NP Egs. (4.2),
D(e+€)=A(e+€) = — (e +€)? (3.74)

where a common factor of @ + 8 #0 has been cancelled
throughout. Also, using NP Eq. (4.2n) together with Eqgs.
(3.58) and (3.71), we find

Sv= —2(a+B)(a@+3p),
and

(3.75)

Au=ple+e—pu)—w/o. (3.76)

The operator A applied to Eq. (3.56) gives

AV, = —4(@+ B (ulp + 7+ 2€ + 2€] + w/12).

3.77)

Finally, applying the commutator [§,A] to ¥, and using
Eqgs. (3.12), (3.55), (3.56), (3.58), (3.71), (3.72), (3.77),
and NP Egs. (4.2m) and (4.20) yields, after a lengthy com-
putation, Z(a + B) (@ + B) (€ + €) = Oand, consequently,
€ + € = 0, since y and @ + B are nonzero. Thus we conclude
from Eq. (3.10) that @ = 0 and the first part of the theorem
is established; i.e., #,m,m.,=0=6=0.

We begin the proof of the second part of the theorem by
assuming

v, =0, (3.78)

which states that » is the second principal null direction of
the Weyl tensor, so that, necessarily, the fluid four-velocity
lies in the two-spaces spanned by the principal null direc-
tions of the Weyl tensor. From Eq. (3.20), it follows that
either

a+B=0, (3.79)
orif @ + B #0, then
9P(w+p)+ (14+3p)(3p—1)=0. (3.80)

Case I: (a + B) (1 + 3p) #0.

Using Egs. (3.11), (3.12), (3.16), (3.17), (3.19),
(3.78), (3.80), and NP Egs. (4.2), we may apply the opera-
tor & to Eq. (3.21), from which it follows that, after a very
lengthy calculation in which the nonzero factor p*(1 + p)
was canceled throughout,

1,7, T, =0,
where

(3.81)
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T,=3p(a—p)+ (1 —3p)(e+8 + (1 +3p)(y+ ),
T,=r+4+v+ 3p—1)(@+8),
T,=24pv + 5(3p — D} @+ H).

CaselA: T, =0.
We shall show that this case is impossible. For this case,
we have

PE—p) + (1 —3p)(e+8) + (1+3p)(r+7) =0,

(3.82)
which implies
p—p+p—p=0. (3.83)
Substituting Eq. (3.83) into Eq. (3.22) yields
(e+€+y+P(p—p)=0. (3.84)

The case when € 4 € + ¥ + 7 = 0 is impossible since it then
follows from Eq. (3.82) that p—p=2(y+7%)
= — 2(€ + ). Combining this result with Eq. (3.21) im-
mediately gives ¥, (1 + 3p) =0, which contradicts our
original assumptions. Next, assume €+ €+ ¥+ ¥7#0.
Then, p = p, which implies x = fi. Therefore, Eq. (3.11a)
reduces to p — 2 + € + € — ¥ — ¥ = 0. Substituting this re-
sultinto Eq. (3.82) yields € + € + ¥ + ¥ = Owhichis a con-
tradiction.

CaseIB: T, =0.

For this case, we have

v=(1-=-3p@+p —7, (3.85)
and, consequently,
T4+ 7=0. (3.86)

Next, we consider the commutator [,A — D] applied to
a + B. After a very lengthy computation, we find that
where Egs. (3.11), (3.12), (3.16), (3.17), (3.19), (3.21),
(3.78), (3.80), (3.85), and NP Egs. (4.2) have been used,
and the nonzero factor p(1 — 9p%) has been canceled
throughout. Equations (3.11a) and (3.87) immediately
yield p + p = p + z and it follows that 6 = 0.

Case IC: T, =0.

We now require that

24p% +5(3p — (@ +B) =0. (3.88)
Applying 6 to Eq. (3.88) and using Egs. (3.12),
(3.14), (3.80), and NP Egs. (4.2) leads to 8p7

4+ (50 + 1)(3p — 1) (a + B) =0. Similarly, again apply-
ing & to this equation yields (@ + 8) (3p — 1)?/p = 0 which
is a contradiction. Thus this case is impossible.

Casell. @+ #0,1+3p=0.

Equation (3.21) yields

Tp—p+pu—p+2+2€+2y4+27)=0. (3.89)
Now, if 7#0, then p—p+u—pu=0 and €+€
+ ¥ + 7 = 0, and consequently since this subcase is covered
by the first part of the theorem, it follows that 8 = 0. Next,
we assume 7 = 0. From Egs. (3.12¢) and (3.14), we have
K =7, v=2(a + ), and from NP Eq. (4.2p) we find that
v = 0. Since @ + B #0, then x = 7 = 0, which, together
with Eq. (3.13), yields € + € + ¥ + ¥ = 0 and the conclu-
sion that 8 = O follows.

2439 J. Math. Phys., Vol. 31, No. 10, October 1990

CaseIll. @ + = 0.
In this case,

T=19,

and it follows from NP Egs. (4.2¢) and (4.2i) that

K=T,

(3.90)

U, =(p—R@)(V+7) +29(e+8 — 27 (r + 7).
(3.91)
From NP Eq. (4.21), we obtain
pu—pi+(p—p)r+7)+(pu—p)e+€) =0
(3.92)

It follows from combining this equation with Eq. (3.11a)
that either

U—p+y+y7—€—€=0, (3.93)
or,ifi —p+ y+ ¥ — €—€#0, then

pA+E+2y+27=0. (3.94)

CasellIA: i —p+y+7—€—€=0.

Equation (3.93) implies

pP—p=p—H (3.95)
and, consequently, Eq. (3.22) reduces to

(e+€+y+M(p—p+ia—pn)=0. (3.96)

The case when € + € + ¥ + ¥ = 0 has already been consid-
ered, and, therefore, we shall assume € + € + ¥ + ¥#0 so
that p —p + i — =0, which in conjunction with Eq.
(3.94), yields

p=p Wp=p. (3.97)

Consideration of [6,A + D]w together with Egs. (3.11),
(3.97), and NP Eqgs. (4.2) leads to

(1-3p)v+ (14 3p)7=0. {3.98)

Next, applying the & operator to Eq. (3.93) eventually gives
v=7 and, therefore, it follows from Eq. (3.98) that
v = 7 = 0, which is impossible since ¥, 0.

CasellIB:i —p+ v+ ¥ —e€—€#0.

In this case,

p+p+2(e+€ =0
Consideration of [8,A 4+ D]w and [6,D]w leads to

V+@)p—p+u—p)=0,
where use has been made of Eqs. (3.91), (3.92), (3.94),
(3.99), and NP Egs. (4.2). Now, if 7+ v#0, then
p —p+p — =0 and it follows from Eq. (3.22) that we
need only consider € + € + ¥ + 7#0 with p=p, u = 4.
However, these conditions immediately yield
B —p + v+ ¥ — €—€=0, which contradicts our original
assumption, and thus this case is impossible. On the other
hand, if ¥ 4+ 7 =0, then from [§,A 4+ D]w we obtain the
condition ¥(p + u) = 0, where we have used Eqgs. (3.91),
(3.94), (3.99), and a nonzero factor w + p has been can-
celed throughout. The case when v = 0 is impossible since
W, #0. Next, if p + ¢ =0, then p + g + u + 1 = 0, which
implies € + € + ¥ + ¥ = 0, which contradicts our original
assumption. This completes the proof of the second part of
the theorem;i.e., u,/,n., = 0= > 6 = 0. A summary of the
above results in the different subcases, is given in the Appen-
dix.

(3.99)
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IV. DISCUSSION

The results presented lend weight to the conjecture that
general relativistic, shear-free perfect fluids which obey a
barotropic equation of state are either nonexpanding or irro-
tational. It should be stressed that we have only shown the
conjecture to hold in certain Petrov type III space-times
which possess special alignment conditions. The general
type I11 case is still proving to be elusive, due to the complex-
ity of the resulting intermediate computations. Indeed, even
with considerable increase in computer memory, the result-
ing “intermediate swell” of the integrability conditions is at
certain stages too large for the algebraic computing system
Maple to handle. However, there is some hope that it is pos-
sible to overcome this difficulty since the “swell” is, in gen-
eral, dependent on the order with which preceding integrabi-
lity conditions are obtained and used to simplify subsequent
ones. On a separate issue, it appears from a search of the
literature that there are no known type I11, shear-free perfect
fluid solutions of the Einstein field equations. In fact, we
only know of one type III, perfect fluid solution, as given by

APPENDIX: SUMMARY OF RESULTS
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*A.R. Kingand G. F. R. Ellis, Commun. Math. Phys. 31, 209 (1973).
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1981.

3R. Treciokas and G. F. R. Ellis, Commun. Math. Phys. 23, 1 (1971).
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Allnutt,’® and the fluid has necessarily nonzero shear.
Therefore, it is still not known whether shear-free solutions
for type I1I space-times exist. In this regard the analysis pre-
sented here is also useful in that it does provide a number of
possible avenues (Cases IA, IBib, IIB for when
€+ €+ ¥+ 7=0and IB, II, ITIA, IIIB for ¥, = 0) lead-
ing to such shear-free solutions, if they exist with the addi-
tional alignment assumptions.
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The relation between perturbation theory and exact solutions in general relativity is tackled by
investigating the existence and properties of smooth one-parameter families of solutions. On
the one hand, the coefficients of the Taylor expansion (in the parameter) of any given smooth
family of solutions necessarily satisfy the hierarchy of perturbation equations. On the other
hand, it is the converse question (does any solution of the perturbation equations come from
Taylor expanding some family of exact solutions ?) which is of importance for the
mathematical justification of the use of perturbation theory. This converse question is called
the one of the “reliability” of perturbation theory. Using, and completing, recent results on the
characteristic initial value problem, the local reliability of perturbation theory for general
relativity in vacuum is proven very generally. This result is then generalized to the Einstein—
Yang-Mills equations (and therefore, in particular, to the Einstein-Maxwell ones). These
local results are then partially extended to global ones by: (i) proving the existence of
semiglobal vacuum space-times (respectively, Einstein—Yang-Mills solutions) which are
stationary before some retarded time u,, and radiative after u,, and which admit a smooth
conformal structure at future null infinity; and (ii) constructing smooth one-parameter
families of such solutions whose Taylor expansions are of the “multipolar post-Minkowskian”’
type which has been recently used in perturbation analyses of radiative space-times.

I. INTRODUCTION

A large body of knowledge is now available about exis-
tence and uniqueness theorems for Einstein field equations.
There s also a vast literature, of varying degree of clarity and
rigor, on approximation methods in general relativity. How-
ever, very little is known about the relation between the two
approaches, which is unfortunate because the comparison
between Einstein’s theory and observations is almost com-
pletely based on approximation techniques. The mathemat-
ical result coming closest to building a bridge between exis-
tence theorems and one type of approximation method is
Theorem 3 of Christodoulou and Schmidt.! However, this
theorem concerns only the (harmonically) reduced Einstein
equations, and assumes a prescribed matter source, as well as
very special (trivial) Cauchy data for the gravitational field.
Therefore, this theorem does not, per se, provide a math-
ematical justification for any actual approximation scheme
in general relativity. By contrast, in the present paper, we
shall provide a rigorous mathematical justification for a type
of approximation scheme which is of use in practical applica-
tions.?

One can distinguish three main types of approximation
schemes: post-Newtonian ones (where one solves at each
step Poisson equations), post-Minkowskian ones (where
one solves inhomogeneous d’Alembert equations), and the
general class of perturbation expansions around a curved
background. In all three types the nonlinearities of Ein-
stein’s field equations are recursively taken into account. In
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this paper we shall consider both the general perturbation
theory, and its particular post-Minkowskian case (flat back-
ground), when applied to vacuum gravitational fields, i.e., to
solutions of the homogeneous Einstein equations:
R, (g) = 0 (Ref. 3). Because of the practical impossibility,
in general, to solve in closed-form inhomogeneous wave
equations on curved backgrounds the general perturbation
theory is rarely used beyond its first, linearized, level. On the
other hand, Blanchet and Damour® have recently shown
explicitly how to construct to all nonlinearity orders a for-
mal post-Minkowskian algorithm that aims at describing
“the general field outside the source.” The relation between
such formal solutions and exact solutions of the field equa-
tions has been, up to now, left open. The purpose of this
paper is to study this relation, and, surprisingly, we shall be
able to give a simple (favorable) answer concerning the
mathematical status of general perturbation expansions of
the vacuum Einstein equations. We shall then generalize this
result to the Einstein—Yang—Mills equations (which include
the Einstein—-Maxwell ones as a particular case). We shall
also indicate how our method of proof can be applied to the
Einstein—Euler equations.

The key notion is the one of a “curve of solutions” of the
field equations, i.e., a one-parameter family of metrics g(4),
where A is a real parameter. It is now quite common to dis-
cuss linearized fields in relation to “the tangent toa C ! curve
of solutions.”* This discussion has two aspects: First, the
tangent, i ,,: = [dg(4)/dA 1, _,,toa C' curveof solutions
is clearly seen to be a linearized field, i.e., a solution of the
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linearized field equations expanded around the background
8w,: = [g(4)],_,, and, second, an important mathemat-
ical question is to know whether the converse is true. The
latter question (is every solution of the linearized field equa-
tions the tangent to some curve of exact solutions ?) is often
referred to as the one of “linearization stability.”* In this
paper we shall be concerned with the generalization of this
setting to the C = case.” The first aspect of the C! discussion
above extends itself without difficulty to the result that the
sequence of higher derivatives, say /A, := (n!) "'
X [d"g(A)/dA "] ; _,0f a smooth curve of solutions neces-
sarily satisfies the usual hierarchy of equations associated
with the fully expanded perturbation theory around the
background g o, : = g(0) (see Sec. I below for details).
Therefore, the first insight is that a smooth curve of so-
lutions determines a solution of the hierarchy of perturba-
tion equations. This raises the first mathematical question of
the existence of C = one-parameter families of solutions of
Einstein’s equations (the usual discussions of the stability of
Einstein equations, see, for example, Ref. 4 , consider ex-
plicitly only low orders of differentiability, C° or C!). This
question can be broken up into two subquestions: the exis-
tence of C * one-parameter families of solutions of the con-
straint equations, and, the preservation of the smoothness in
A by the map going from the data to the solution (the so-
called “Cauchy map”). The latter subquestion, that con-
cerns the (hyperbolic) evolution part of Einstein’s vacuum
field equations, has (locally) a positive answer for data that
are C = jointly in A and in the coordinates. This follows, for
instance, from a general theorem of Choquet-Bruhat® about
the C? differentiability (in suitable Sobolev spaces) of the
Cauchy map. Alternatively, this can be shown by using some
of the results of Hamilton,” or, without using the heavy ma-
chinery of “tame Fréchet spaces,” by an elegant trick due to
Rendall.® The former subquestion (of showing the existence
of smooth families of solutions of the constraint equations)
is easier to tackle for the characteristic initial value problem
rather than for the usual spacelike Cauchy problem. Indeed,
Rendall® has proven recently an existence and uniqueness
theorem for the characteristic initial value problem for Ein-
stein vacuum equations, which includes the preservation of
the smoothness in A from the (characteristic) data to the
solution. This way one can avoid (in local questions) the
difficulties linked with the usual elliptic constraint equa-
tions, and construct smooth families as solutions of a charac-
teristic problem. We shall generalize this approach to the
Einstein-Yang~Mills equations (see Sec. III below).
Having learned that there exist many smooth one-pa-
rameter families (and therefore many corresponding solu-
tions of the hierarchy of perturbation equations), we are
naturally led, in analogy with the linearization stability
problem, to ask whether any solution of the hierarchy of
perturbation equations comes from some family of exact so-
lutions. It is convenient at this point to introduce a specific
terminology in order to avoid lengthy periphrases. We shall
say that a hierarchy of perturbation equations (for some
nonlinear problem) is reliable’ if every solution of these
equations, say (/4.,,, £y sy Ay 5o ), comes from differenti-
ating a smooth one-parameter family of exact solutions of

2442 J. Math. Phys., Vol. 31, No. 10, October 1990

the original nonlinear problem [ie.,
Ag(A);Vnh,, = (n) ~'[d"g(A)/dA"],_,]. This ter-
minology is well adapted to what constitutes the main moti-
vation for posing such a mathematical problem, namely to
ensure that the formal perturbation series used in comparing
a theory with the observations is physically “reliable” for
sufficiently small values of the expansion parameter because
it is asymptotic when A -0 to some exact solution:

33(/1);VN,g(0) +/1h(1) + - +/1”h(n) 4+ e +A’Nh(N)
=g(A) + O(A V1),

One of the main results of the present paper will be to
prove that, locally, the perturbation theory for the vacuum
Einstein equations is always reliable'® (note that this does
not imply global reliability). This is good news for, e.g., the
multipolar post-Minkowskian expansion scheme of Ref. 2.
It even leads to the possibility of expressing the difference
between the N th order formal expansion and the exact solu-
tion as the remainder term of a Taylor expansion. However,
this remainder term depends on the values of the (N + 1)th
derivative at nonzero values of the parameter; in the present
instance this means on some (N + 1)th field on a curved
metric. This is rarely under control. The strongest explicit
statement that one can make is that, on some fixed compact
space-time region, say K, there will always exist, for any
finite integer N, two (unfortunately unknown) numbers A,
and C, such that

/l</10:>sulr<>|g(0) + Ak, + 0+ AR, —8(A)]

<C%N+1.

So far we talked mainly about Einstein’s vacuum equa-
tions. The fact that differentiable families of exact solutions
provide solutions to perturbation equations extends trivially
to more general cases. The difficulty is to prove, on the one
hand, the existence of smooth families of exact solutions,
and, on the other hand, the fact that every solution of the
hierarchy of perturbation equations comes from differentiat-
ing a smooth curve of exact solutions. As will be clear from
the method of proof that we shall use in Sec. IV, the result of
reliability of perturbation theory extends to all the cases
where a characteristic initial value treatment in the manner
of Ref. 8 works (see end of Sec. IV). This includes, as we
shall show, the Einstein~-Maxwell and the Einstein~Yang—
Mills cases. Einstein’s equations coupled to a barotropic per-
fect fluid can also be treated locally in any connected region
where p + p#0. For finite bodies (having spatially compact
supports) one is, however, confronted with the difficulty
that no existence theorem is known.

It might be worth pointing out that a description of post-
Newtonian-type expansions similar to that given here of
post-Minkowskian ones is not presently possible. The basic
reason is that if one treats the Newtonian limit as a limit of
families of solutions of Einstein’s equations, the limit is sin-
gular from the point of view of the differential equation (see,
e.g., Ref. 11). Therefore, besides explicit examples, nothing
is known in general about the reliability of post-Newtonian
expansions.

Finally, we shall show also that, although our reliability
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results are purely local (i.e., valid in a compact domain of
Z*), they can be used to relate post-Minkowskian expan-
sions and exact solutions on physically infinite domains.
This will be done by proving that certain radiative semiglo-
bal vacuum solutions (whose existence was assumed as a
motivation in Ref. 2) actually do exist and admit a piece of
conformally regular future null infinity with spherical sec-
tions. In particular, we can construct smooth families of
such solutions whose Taylor expansions are exactly of the
multipolar-post-Minkowskian type studied in Ref. 2. Our
construction generalizes also to the Einstein—Yang-Mills
case. This is a nice example of how a combination of various
general theorems [local characteristic initial value problem,
Friedrich’s regularization'? (see, also, Ref. 13) of the con-
formal Einstein equations, general stability of symmetric hy-
perbolic systems] can provide the existence of a class of ex-
act solutions with physically interesting properties.

The paper is organized as follows: Sec. II explicates in
detail the relation between the Taylor series of a smooth
curve of solutions and the hierarchy of perturbation equa-
tions. In Sec. IIT we show (after Rendall’s work® ) how to
construct (locally ) smooth families of solutions via the char-
acteristic initial value problem. We treat both the vacuum
equations and the Einstein—-Yang-Mills ones. We mention
also briefly how to proceed via the usual Cauchy problem. In
Sec. IV we establish our main results: the local reliability of
the perturbation theory for Einstein’s vacuum equations, as
well as for Einstein—Yang—Mills ones. In Sec. V we prove the
existence of smooth families of certain radiative semiglobal
solutions in a way that allows us to extend our reliability
results of post-Minkowskian expansions to a physically infi-
nite domain.

{l. TAYLOR EXPANSIONS OF SMOOTH ONE-
PARAMETER FAMILIES OF SOLUTIONS

Let us consider a smooth one-parameter family (or
curve) of metrics: g(A). As we shall use below local exis-
tence theorems in C * settings, it will be enough for our pur-
pose to define such a C = curve of metrics simply by assum-
ing that the metric components in some chart, g, (x°,4), are
jointly C = in the coordinates and in the parameter on some
open domain U XIC %° (where the open interval IC %
contains zero). A coordinate-independent description of
such families has been given by Geroch.'* As we are dealing
with purely local matters in this section we can avoid this
formalization; it is, however, useful to have in mind the cor-
responding picture of a five-dimensional manifold, coordin-
atized by (x,4).

The smoothness in A allows one to make finite Taylor
expansions of any order N in powers of A:

8as (A) =8yar + Ayas + A %R2yas + 0 + A R nyas

F AN K o (A). (1

The zeroth term, g o)., (X°) = [ga6 (x°4) ] 4 — o, and the ex-
pansion coefficients 4,,,, are C * functions of the coordi-
nates x°. The latter are given by the derivatives
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1 a"gab(xc,/l)
SR ORI
(myas (X°) p YL o (2)

The remainder term is the product of A ¥+ ! by a C * func-
tion of x° and 4:

N+1

(N,ab(x,/l)-———j da(l —a)¥ [ PYREE

] (x5,ad).

(3)

The Ricci tensor R,, is pointwise a smooth (in fact
analytic) function of the metric components and their de-
rivatives up to order 2. Inserting, therefore, the truncated
expansion (1) into the definition of the Ricci tensor one

obtains the  Taylor expansion of R, (A):
- Rab [g(/l)yag(;‘)’Ha zg(/l) ]:
R (A) = R 0yas +/1R(l)ab +4 2R(z)ab +
+ AR myap + AV 'S o (), (4)
where the zeroth term is the Ricci tensor of g4,
Ry = R, [g(O) ], (5)

while the expansion coefficients are successively: The linear-
ized Ricci tensor around the metric g, ,

Riya =L [0y |B1yans (6a)
and, for n>>2, nonlinear expressions of the type:
R(n)ab =L [g(O) ]h(n)ab - N(n)ab [g(O) ’h(l) ""’h(n~ [§) ]
(6b)

In Eq. (6b) L denotes the same linear second-order differen-
tial operator as in Eq. (6a) (linearized Ricci operator
around g ,, ), while the N, ’s are nonlinear polynomials of
the &, ’s and of their derivatives up to order 2.

Let us now assume that all members of the family
8. (A) satisfy Einstein’s vacuum field equations:
R, [g(4)] = 0. This implies, by differentiating with respect
to A, that all the coefficients R,,,,, 7>0, must vanish.
Hence, the metric g, is Ricci-flat,

Rab [g(O) ] =0, N

and the h,,’s automatically satisfy a hierarchy of linear
equations:

L[go 111ya =0, (8a)
ﬂ>2:>L [g(O) ]h(n)ab = N(n)ab [g(O) ’h(n,--',h(,,_ 1) ]
(8b)

Because of the uniqueness of the Taylor expansion, the hier-
archy (7) and (8) is exactly the same as the usual equations
of perturbation theory, obtained by inserting a formal power
series, ., = &wyas + AB1yap + 7 + A "A(uyap + 75 into
Einstein’s vacuum field equations. We shall discuss later one
way of describing the general solution of this perturbation
hierarchy. At this point let us only say that the only case
which is amenable to an explicit treatment is the post-Min-
kowskian case, i.e., 80,0, = /s, the flat Minkowski metric.
Moreover, if one uses harmonic coordinates the hierarchy
consists (besides a sequence of “harmonicity constraints™)
of a sequence of inhomogeneous d’Alembert equations
whose “source terms” are calculable from the previous itera-
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tions. Such a hierarchy is the basis of many approximation
schemes in general relativity.

It is clear that the one-way link, family of exact solu-
tions — solution of perturbation hierarchy, extends to very
general nonlinear problems (it is sufficient that the field
equations be smooth functions of the field variables, and
their derivatives up to some finite order). This includes, for
instance, the Einstein-Yang-Mills equations, that we shall
consider below.

lIl. ON THE EXISTENCE OF SMOOTH ONE-PARAMETER
FAMILIES OF SOLUTIONS

Many of the known exact vacuum solutions of Ein-
stein’s equations depend smoothly on at least one parameter.
The Schwarzschild and Kerr solutions are well-known ex-
amples. The purpose of this section is to demonstrate that
this is a rather general property. To keep the notation simple
we shall consider only one-parameter families; however,
everything we say is easily extended to the multiparameter
case.

Solutions of the field equations are determined by data.
Hence, the obvious questions are: Do smooth curves of data
exist?, and, do smooth curves of data determine smooth
curves of solutions? One can ask these questions for the usual
spacelike Cauchy problem (with elliptic constraints on the
data), as well as for the characteristic initial value problem
(where some analogs of the constraints reduce to ordinary
differential equations). We give a complete treatment of the
characteristic case and make some remarks about the
Cauchy case. We shall first consider Einstein’s vacuum
equations, and then generalize the results to the Einstein—
Yang—Mills equations.

For Einstein’s vacuum equations, Rendall® has recently
presented a new treatment of the local characteristic initial
value problem (ina C * setting) that contains the answers to
our questions. (In the next section we shall complete his
treatment by giving the explicit expressions of the hierarchi-
cal system of ordinary differential equations that play the
role of the constraints). Let us describe first the coordinate
system in which the existence and uniqueness theorem is
proved.

Definition I (“‘Standard coordinates™® ) Let us be given
a (smooth) Lorentz metric (signature — + + + )anda
connected (smooth) spacelike two-surface S. Let N, and N,
be the two null hypersurfaces generated by the null geodesics
issued orthogonally from S (so that S = N, NN, ). A coordi-
nate system x° is called standard with respect to (g,S) if: (i)
the equation of N, is x*> = 0, and the null generators of NV,
are the curves x2 = const, x* = const (4 = 3,4), with x' be-
ing an affine parameter along them; (ii) same requirement
when exchanging the indices 1 and 2; (iii) on S (i.e., when
x'=x*=0) g, = — 1; (iv) the coordinates x* are har-
monic in the future and the past of S."°

To construct (locally) such coordinates starting from
(g,5) one can first Lie-drag along N, a coordinate system x*
(A = 3,4) defined on S by means of an affinely normalized
null vector field / normal (and tangent) to N, . Then one Lie-
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drags x* along N, by means of a correspondingly defined
null vector field » on N, (with the normalization lon = — 1
on S). One then sets x>=0 and I =38/dx' on N,, and,
x' =0and n = d/3x* on N,. This defines the values taken
by the four coordinates (x°) = (x',x%,x*) on N, UN,. These
values can be taken as (smooth) characteristic initial data
for the wave equation [, x” =0 (harmonicity condition)
and thereby be propagated to the future and the past of S.

In general, the existence of such standard coordinates
will be guaranteed only in a neighborhood of S (e.g., because
of possible caustics in N, or N, ). Moreover, if S cannot be
covered by a single coordinate patch (x*) one will need to
use several overlapping standard coordinate systems to
study the characteristic problem based on S, N,, N, .

Theorem 3 in Ref. 8 establishes the following.

Theorem 1 (Rendall® ): Existence and uniqueness of lo-
cal C = solutions in standard coordinates of the characteris-
tic initial value problem for Einstein’s vacuum field equa-
tions.

Notation: Let in #* = {(x°), a = 1,2,3,4} the hyper-
plane x' = 0 be denoted by N,, the hyperplane x> = 0 by N, ,
and the two-plane x' = x> =0 by S(S=N,NN,). Let G
denote the region x'x*30.

A function on N, UN, will be called smooth if its re-
strictions to N, and N, are smooth, and if it is continuous (at
S = N, NN, ). A function on G will be called smooth if it can
be extended to a smooth function on %#*.

Data: Let y,, (4,B=3,4) be smooth functions on
N, UN, which make up a symmetric positive definite matrix
with determinant nowhere vanishing.

Let five C> functions, denoted @, ®,, ®,, B,,
(4 =34), begivenon S.

Statements: Given the data there exists an open neigh-
borhood U of S, a unique smooth function w on
(N, UN,)NU and a unique smooth Lorentz metric g, on
GN U such that: (i) g,, satisfies the vacuum Einstein equa-
tions on GN U; (ii) the given coordinates x° on %#* are stan-
dard coordinates for g,,,; (iii) g,5 = @y, on N, UN,; and
(iVo=3,0, = o,, @, = w,, andg,,, = B4, onS.

Moreover, if the data depend smoothly on one (or sever-
al) parameters, then so does the solution.

We see that this theorem guarantees the existence of
local smooth one-parameter (or several-parameter) families
of vacuum solutions in abundance. In the formulation of the
theorem in Ref. 8 it was assumed that det(7,;) = 1. This s,
however, irrelevant, and we shall see later that it can be use-
ful in applications not to have to normalize the determinant
of ¥, to unity. Let us note also that the data given on N, and
N, are given on both halves of N, and N, (with respect to
S), so that the solution is determined both in the future
(x'>0and x*>»0) and the past (x'<0 and x*<0) of S. If one
is interested only in determining g, in the future of S, it is
sufficient to give data on the “upper halves” of N, and N,.
However, one must still enforce that the data are “smooth”
on these (closed) half-hyperplanes which means extendable
to C = functions on the full hyperplanes.

Before generalizing the characteristic approach to the
coupled Einstein—Yang-Mills system, let us discuss briefly
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how one can prove the existence of smooth families of vacu-
um solutions via the usual spacelike Cauchy problem. The
subquestion of whether smooth families of Cauchy data
evolve into smooth families of solutions has (locally) a posi-
tive answer for data that are C * jointly in A and in the co-
ordinates. As remarked in the Introduction, this follows
from Theorem 3 of Ref. 6 about the finite differentiability (in
suitable Sobolev spaces) of the Cauchy map. This can be
shown also by using the setting of *“tame Fréchet spaces,”’
or, more simply, by using Rendall’s trick® of considering A
as a new coordinate in a symmetric hyperbolic system. It
remains then to prove the existence of smooth families of
solutions of the (elliptic) constraints. Let us only show how
this can be done in particular cases.

If we consider time-symmetric Cauchy data, the second
fundamental form of the Cauchy hypersurface vanishes and
only the “energy constraint’ has to be considered. The latter
can be reduced to the Lichnerowicz equation:

A, & —IDR[h] =0. 9)

A positive definite three-metric 4,5 (a,5=1,2,3) can be
chosen freely and if P satisfies the linear equation (9) the
three-metric ®*A,, together with a zero second fundamen-
tal form, is a solution of the constraints.'® To construct local
solutions we can choose smooth families of three-metrics 4,4
and pose a local Dirichlet problem. The smoothness of the
solution, including in A, is guaranteed by the treatment of
linear elliptic equations in the setting of tame Fréchet spaces
by Hamilton.” In the not time-symmetric case, the existence
of local smooth families of solutions of the constraints fol-
lows from a theorem by Rendall."” He shows that smooth
families of solutions of the linearized constraints are tangent
to smooth families of solutions of the nonlinear constraints.

Let us now deal with the coupled Einstein—Yang—Mills
system. We then consider a Lie group G and a principal G
bundle P over a four-dimensional manifold M. As we shall
mainly be interested in local questions, we will assume that
thebundle is trivial. A connection on Pcan then be described
as a covectorial field on M, A, taking its values in the Lie
algebra & of G (we shall use boldface letters to denote ele-
ments of & ). The fields of the Einstein-Yang-Mills system
are then a (smooth, real-valued) Lorentz metric g,, and a
(smooth, Lie-algebra valued) “‘gauge potential,” A,. Let us
first define a convenient “gauge” in which an existence and
uniqueness theorem can be proved.

Definition 2 “Standard gauge”: Given a two-surface .S
(and its associated null hypersurfaces N, and N,, like in
Definition 1 above) a gauge (i.e., a combined choice of a
trivialization of P and of a coordinatization of M) is called
standard with respect to S if:

(a) the base coordinates x“ are “‘standard” with respect
to S in the sense of Definition 1. In particular, this means
that the “harmonicity conditions” T', =0 are satisfied,
where I', is defined as

Lot =8"(8une ~ 8rea)s

(b) A, =A_/°=0o0n N, (generated by the null vector
field /), and, correspondingly, A, =0on N,;
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(c) the “Lorentz condition” A = Q is satisfied, where A
is defined as

A:=gabaa Ab

(A = Ois equivalent, in harmonic coordinates, to V° A, =0
where V denotes the Levi-Civita connection ).

It is easy to check that such a gauge can always be (lo-
cally) constructed. Indeed, having constructed standard co-
ordinates x“ (see Definition 1), the algebraic conditions (b)
lead to ordinary differential equations within N, and N, for
the gauge transition mapping, say ¢ (going from any given
gauge to the looked for standard gauge). This defines values
for the transition mapping @ on N, UN,. These values can
then be taken as characteristic initial data for the hyperbolic
evolution equation (with principal part g*°d,, @ ) that is
entailed by the Lorentz condition. This propagates ¢ to the
future and the past of S.

We shall now establish the following theorem.

Theorem 2: Existence and uniqueness of local € = solu-
tions in standard gauge of the characteristic initial value
problem for the Einstein—Yang—Mills system.

Notation: Notation of Theorem 1, and in addition let

Fab: = aaAb - abAa + [Aa’Ab]’
Yo =V, F 4 [A,F],
Tab = Fa:.FbS - %gab Frs .Frs,

where the square brackets denote the Lie-algebra product,
and the dot the Cartan—Killing scalar product.

Data: Metric data asin Theorem 1 (i.e., 7,5 on N, UN,,
and@, ®,, ®,, B,, onS). For gauge potential data, let A,
(B =3,4) be smooth (Lie-algebra-valued) functions on
N, UN,, and let & be a smooth (Lie-algebra-valued) func-
tion on S.

Statements: Given the data there exists an open neigh-
borhood U of S, a unique smooth function @ on
(N, UN,)NU, a unique smooth Lorentz metric g, on
GNUand a unique smooth gauge potential A, on GN Usuch
that: (i) (g,,,A,) satisfies the Einstein—Yang-Mills equa-
tions on GNU:

Rab - kTab = o,

Y, =0,
in which k£ denotes the combined gravitational-gauge-field
coupling constant (proportional to G /g2); (ii) the solution
(8.5,A,) is expressed in a standard gauge; (iii) on
N UN,:g s = wf/AB and A, =KB; and (iv) on S'w = @,
W)= @, 0; = 0,841 = Bq,andF', =3.

Moreover, if the data depend smoothly on one (or sever-
al) parameters, then so does the solution.

Proof: Given the data, one defines values for all the com-
ponents of the metric and gauge potential (in a standard
gauge) on N, UN, by integrating the ordinary differential
equations (‘*‘characteristic constraints”) explicitly written
down in the next section [Eqgs. (28), taken with Ay = A B
and the corresponding equations on N, ]. The initial values
(on S) for these ordinary differential equations (written
both on N, and N,) are successively: v =@, 0, = o,,
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Dy = —(‘g; g=—1; F11=‘_’" F22= —& (on N,);
ng =0, gZA,l = BA!’ g,,, =0, glA,z = = ﬁAl + [YA]S;
82 =0, g9,= — [oNz]S’ 81 =0, gu2= — [6"’1]5;
A, =0,A, =0

These values, [ga, ] v,un,s [Aa ] v,un,s are then taken as
initial data for the characteristic initial value problem of the
following gauge-reduced Einstein—Yang-Mills system:

R sz - kTab = 0,
YL =0,
in which one has defined
Rﬁ: = Rab bt %(aarb + abra ),
YL =Y, -4d,A

This gauge-reduced system is a diagonal hyperbolic
quasilinear evolution system for (g,,,A,) with principal
part ( — 187 3,,8.> — 8" J,sA, ). By Theorem 1 of Ref. 8,
there exists an open neighborhood U of S, and unique
smooth functions (g,,,A,) on UNG that solve this gauge-
reduced system and coincide with the characteristic-con-
straints-defined initial values on N, UN,. To prove that
these functions (g,,,A,, ) satisfy also the gauge conditions on
UNG one then proceeds in three steps. First, one checks that
the initial values on S, taken for the ordinary differential
equations, ensure the vanishing of the gauge conditions I'",
and A on S. Second, combining the constraints with the
gauge-reduced field equations one gets linear homogeneous
equations on N, UN, for A and I',. More precisely, denoting
d; + 46 by D, one gets successively on N, : from the Yang—
Mills equations D A =0 (and A =F', — o), which, as
[A]g is known to vanish, ensures the vanishing of A (and
F', — o) all over N,; then, from the w and a constraints,
andR# — kr,, =0,DT', =0andg = — {I",, which imply
thatT, =g=00nN, (wheregisdefined by /°V,/? = gl“);
then one gets similarly Dr,=0=T, =0o0nN,; and, fin-
ally, ﬁl‘z =0=T, =0 on N,. Correspondingly, one gets
also the vanishing of A and I, on N, . The final step consists
of combining the gauge-reduced equations with the Bianchi
identities (for both the gravitational and the gauge-field
equations). This yields a linear homogeneous system for
(T, A) with principal part (g* d,,I",,8” d,,4). The unique-
ness of the solution of the characteristic initial value problem
for this system, guarantees the vanishing of I', and A every-
where in UNG. Finally, the statement concerning smooth
dependence on parameters follows, as in Theorem 1 above,
from the trick® of adding the parameters as new coordinates
in a symmetric hyperbolic system.

IV. LOCAL RELIABILITY OF PERTURBATION THEORY
FOR EINSTEIN'S VACUUM FIELD EQUATIONS, AND
FOR EINSTEIN-YANG-MILLS EQUATIONS

We have seen that a large class of smooth one-parameter
families of solutions of Einstein’s vacuum field equations ex-
ist locally, and that their successive Taylor coefficients satis-
fy the hierarchy of perturbation equations (7) and (8). Itis
natural to ask whether the converse is true. More precisely,
the property for any solution of the hierarchy truncated at
order N (resp. of the whole hierarchy) to coincide with the
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first N derivatives (resp. all derivatives) of a C " (resp. C *)
one-parameter family of solutions will be termed the “reli-
ability up to the NV th order” (resp. “reliability to all orders™)
of the perturbation theory. This terminology is chosen in
order to emphasize the importance of this question in the
context of the use of a (partial) solution of the perturbation
hierarchy as an “approximate solution of the equations.”

If we take just the first Eq. (8a), and consider its local
solutions, this question of “local reliability at first order” is
often termed “local linearization stability.” It was positively
answered in Ref. 18. We shall first show in this section that
the perturbation theory around any curved background for
general relativity in vacuum is locally reliable to all-orders.
We shall then generalize this result to the Einstein—-Yang~
Mills system. More precisely, let us first prove the following
theorem.

Theorem 3: Local reliability (to all orders) of the per-
turbation hierarchy for Einstein’s vacuum field equations.

Let &1 {4 (x"°), with 1<n<N, be a (local) smooth solu-
tion of Egs. (8) with g{o,., (x'°) being some smooth Ricci-
flat Lorentz metric. Then there exists (locally) a (nonuni-
que) C = one-parameter family of Ricci-flat metrics, g'(1),
such that, in some coordinate system x’,

iy (X) = [8an (X"A) 10
and

a x'A
B () = g";/(l ) ] , for 1<n<N.
[ Therefore, Egs. (1) and (3) hold also. ]

If one starts with a solution # {,,, for all orders, the same
conclusion holds with a C = family g’ (4) which is still non-
unique in general. [ Then Eqgs. (1) and (3) hold for any finite
order N, but have, in general, no infinite order limit. ]

Proof: Let us define a family of bicovariant tensors by
the following finite sum:

Ng;b (xA): = 8loyas (X°) + Ah (yab (x*) +A%h (2)ab (x)

o ARy (X9, (10)

For A small enough “g’(1) will still be a Lorentz metric, so
that Eq. (10) defines a smooth family of Lorentz metrics
(henceforth, “smooth” or C *, will mean “locally C ~ joint-
ly in A and in the coordinates”). As we saw in Sec. II, the
hypothesis of the theorem implies that the Ricci tensor of
this family, "R 2, (1): = R, [ g’ (A1) ], satisfies

MR, (XA =AN 1S as (X'5A), (11)

for some smooth tensor S { v, -

Choose now a smooth family of (connected) two-sur-
faces S, , spacelike with respect to “g’(1). As recalled in Sec.
I11, we can then construct standard coordinates with respect
to ("g'(1),5,), say x* = f°(x’*,A4). In these coordinates the
equations of the two-surfaces S; are independent of A and
are simply that of the two-plane S of Theorem 1, namely,
x' = x? = 0. The transformation functions f*(x'?,4) are (lo-
cally) constructed, first by integrating ordinary differential
equations with smooth coefficients, and then by solving
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wave equations with smooth coefficients, and smooth char-
acteristic initial data given on coordinate-fixed null hyper-
surfaces (x' = 0 and x* = 0). Therefore, the results of Ref. 8
apply and guarantee that the f“(x'®,4) are smooth functions
of x’* and A. Performing the (4 dependent) coordinate
transformation x° = f“(x’®,1), we obtain another represen-
tation of the family (10), say *g,, (x°,A). The finite Taylor
expansion of this smooth family leads to

Mg (xA) = eoyas (X°) + Ak y)0 (X°)
+ ARy (XY + - + 4 My (X°)

+AN lk(N)ab (x54). (12)

The new expansion coefficients ggyas, #(nyap» 1<nKH, still
satisfy the perturbation hierarchy (7) and (8) because the
Ricci tensor of Vg, satisfies

NRab(xcs/l) =/{N+1S(N)ab(xc9/1)’ (13)

where the smooth tensor S, ., is just the coordinate trans-
form of the S {,,, of Eq. (11).

Using Theorem 1 of Sec. I1I, let us now define (locally
around S) a one-parameter family of solutions of Einstein’s
vacuum equations, say *g,, (x%,4) (the upper prefix X stand-
ing for *“‘exact”), as being, for each A, the unique Ricci-flat
metric in standard coordinates having as characteristic ini-
tial value data:

on N, UN,:y,5: = [NgAB Ivun, (4,B=34), (14a)

(14b)

From the last statement in Theorem 1, and the fact that the
data depend [as “g(A4)] smoothly on A, we know that the
Ricci-flat family *g(4) will be smooth. We are going to
prove that the successive derivatives, from the zeroth up to
the N th order, of *g(A) coincide (over the local four-dimen-
sional domain of definition of *g) with the expansion coeffi-
cients of Eq. (12). Let us first remark that, by construction,
the %g(A)’s (where Z = N or X) are expressed in standard
coordinates for all A ’s (in some open interval around zero).
In particular, this is true for the zeroth expansion coefficient,
Zg.0y: = “g(A = 0). On the other hand, by definition [take
A = 0in Eqgs. (14)] the characteristic data that define *g o,
are the ones induced by “g,, on N, UN, (with w =1 all
over N, UY, ). Because of the uniqueness part of Theorem 1,
one has immediately the result that *g,, = "g,,, all over
some four-dimensional local neighborhood UNG of S (we
shall henceforth denote simply by g, this common “back-
ground metric”’).

Asfor the higher derivatives, say %A, (where Z = Nor
X), we know that they satisfy the perturbation equations
(8). Moreover, they also satisfy (among others) four partic-
ular “gauge conditions” obtained by differentiating the A-
dependent harmonicity condition,

2L, (A): = 78" (A) [ “Bubc (A) — §Bea (1) ] =0,
(15)
which follows from the construction of both *“g(4) and

Xg(A) in standard coordinates. These gauge conditions can
be written in the form,

onS:@:=18,:=00,:=0,B4;:= ["8141]s-
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Zp b 1Z}, ¢ by __ z z
v(O)b( h(n)a -3 h(n)c5a) _F(n)a[ h(l)""’ h(n—-x)]’

(16)
b

where %A ¢,,,: = 8%, h(nyac» Where Vo, is the Levi-Civita
connection of g, , and where F;, = 0. It is a well-known
result in perturbation theory (see e.g., Ref. 4) that the use of
the gauge conditions (16) in Eqs. (8) satisfied by the %A, ’s
leads to show that the ZA,,,’s satisfy a hierarchy of linear
inhomogeneous ‘“‘wave equations” (with ‘“wave operator”
0o, the De Rham-Lichnerowicz Laplacian computed in
the background metric g, ). If we consider the first step of
the hierarchy, it satisfies the homogeneous wave equation

Oy k) = 0. 17)
Standard results for linear wave equations (see, e.g., Ref.
19) show that a solution of Eq. (17) is uniquely determined
by giving oneself the values of the %A, ,,,’s (fora,b = 1,...,4)
on N, UN, (which, by construction, are characteristic hy-
persurfaces for g, ). Therefore, if we can prove that “a,,,,
isequalto *h,,,, (fora,b = 1,...,4) on N, UN,, this equality
will be propagated also to the future and the past of ¥, NN, .
This will then imply that the difference 43,4, — *A (3, Sat-
isfies again the homogeneous wave equation (17). By induc-
tion it is clear that, if we can prove that A ,,., = *A(,ya
holds on the characteristic hypersurface N, UN, for
a,b=1,..,4 and n = 1,...,N, then this equality will be valid
also in the four-dimensional regions located in the future and
the past of N, NN, . This will prove [by performing the in-
verse coordinate transformation, x'° = f*“(x%A)] that the
originally given family of “approximately Ricci-flat met-
rics,” Eq. (10), differsonly by aterm A ¥+ 'k [, (x'*,A) from
a family of exactly Ricci-flat metrics, namely the inverse
coordinate transform of *g,, (x°,4).

We have just shown that it suffices to prove that the full
metric deviation on N, UN,, [*8as (x54)
— "85 (x4) ] n,un, Witha,b = 1,...,4, tends to zero at least
as A ¥+ ! when A 0. Let us consider in detail what happens
on N, . For any covariant metric expressed in standard co-
ordinates (as “g_, and *g,, ) there are only seven nonidenti-
cally vanishing components on N, . Let us denote them as
follows:

812 =4, (18a)
824 = Bas (18b)
84 = Vup = w;’AB’ (18c)
g, =06 (18d)

In Eq. (18c) we have decomposed ¥, in the conformal
factor @ and a reference conformal metric ¥, (which will be
taken the same as the one appearing in the characteristic
data). Let us also introduce the following abbreviations for
quantities calculable in terms of the a’s, 8’s, s, and &§’s:

8: = ' Dy 45, (19a)
F5: = Jy"°Dy . — 1055, (19b)
Vi = 17" Dy e, (19¢)
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0:=Yyi=1"*Dy,; =6+ Dhno, (19d)
Ya: =V (Vapc — ¥¥oca)s (19)
w,:= DB, —}‘/ﬁBB +iay,. (19f)

In Egs. (19), 78 (resp. ¥*?) denotes the inverse matrix of
V45 (resp. ¥,4z), In the natural logarithm, and the operator
D denotes the differentiation along x' within N,, i.e.,

dp
Dg:=—"L=¢,=l{p).
axt

(20)
The short-hand notations (18) and (19) allow us to write
down explicitly the analogs in the characteristic initial value
problem of the well-known elliptic constraints of the space-
like Cauchy problem. These characteristic constraints can
be organized as a hierarchical system of ordinary differential
equations relating the null hypersurface metric components
(18) to the values on ¥, of some of the components of the
four-dimensional Ricci tensor R, [g]. The obtention of
these constraints was only sketched in the proof of Theorem
3 of Ref. 8. We have derived them explicitly for the purpose
of proving our Theorem 2. For any, in general, non-Ricci
flat, metric g,, in standard coordinates we have identically
along ¥, :

E, [D’w,Dow,w,.] = —R,|, (21a)
E,[Da,a,...1 =0, (21b)
E,[D?B,DBsB4s-] =aR 4, (21c)
E;[D?5,D8,6,...1 = —ia*y*®R 43, (21d)
where
E,,=D?Inw+DI+}(Dinw+ 8)* + 5554, (22a)
E,;=Dn|a|—186, (22b)
8 . 1

E,: = D+—2- DB, —7iBs +"2—a7’A

+%aif§,,8 —ab ,, (22¢)

E;i=D(D—2)5-D

X [2B%w, —30B"By + B Bovi —aB*v.4]
+ (a” '), + o', — R P (). (22d)

In Eqgs. (22) we have introduced some operations and quan-
tities associated with the two-dimensional Riemannian met-
ric ¥5:8" = ¥'®B,, o*: = y*%w,, the double vertical bar
denotes the Levi-Civita covariant derivative associated with
¥ and R P (y) = y*"®R %) (y) the curvature scalar of
Yass [R @ (¥) = + 2K, where K is the Gauss curvature of
the sections x' = const of N, ].

As indicated by the notation of their left-hand sides,
Egs. (21) constitute a hierarchical system of ordinary differ-
ential equations in the following sense: (a) given ¥, on ¥V,
Eq. (21a) with (22a) indeed gives a second-order differen-
tial equation for @, with “source” the value of R, along V,;
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(b) given 7,5, R,, and a solution w of the latter differential
equation, Eq. (21b) with (22b) and (19d) gives a first-order
differential equation for a; (c) given }A g Ry, some solu-
tions w and a, as well as R,, on N, Egs. (21c) and (22c)
give a second-order differential equation for 3,; and finally
(d) given 7,5, R,,, R, ,, some solutions w, &, and 8,,, as well
as ¥*2R ; on N,, Egs. (21d), (22d) give a second-order
differential equation for 4.

We wish to compare *g,, (x°,4) and “g,, (x°,A) on N,,
i.e., to compare (%a, “B,, ¥ 45, Z0) for Z = N and X. First,
by definition [see Eq. (14a)] we know that “y,, and *y,,
are conformal to the same reference metric 7,,: = "y 5,
which means that “w=1 on N,. On the other hand, *w is
defined as the solution of Eq. (21a) with 7,,: = "y, and
*R,, =0, which starts off § (i.e., x' = 0) with the initial
conditions w(x'=0)=1, Dw(x'=0)=0 [see Egs.
(14b)]. In other words we are comparing the solutions of
two ordinary differential equations,

D*mn(*w) + DO

+%[D]n(Nw)+é]2+&§&‘;= — "R, (23a)
D?In(*0) + DB + }[DIn(*w) + 6 ]* + 5554 =0,

(23b)
with the same initial conditions at x' = 0. The coefficients of
these two differential equations are smooth functions of x',
x* and A, and differ only (in the source) by the term

— “R,,, which we know, from Eq. (13), to be of the form
— AY*IS pmn (x',x*,4) with a smooth function Sy, ;. To
simplify the reasoning we shall provisionally introduce a
new parameter, say u, to be identified later with A ¥+ '. Then
consider u: = (w,Dw), and the solution of the first-order
differential equation deduced from Eq. (21a) by replacing
R, by uS,, (x',x*,1), say

o _ F(ux'x*A.u),

Ix!

which takes the value (1,0) at x' = 0. This solution, say
u = @(x'xA,u), reduces to (*o,*» ; ) when u = 0, and to
("@,"w ;) when g = A ¥+, Moreover, as F and the initial
conditions are smooth functions of all their arguments, one
knows by standard theorems about parameter-dependent
ordinary differential equations that ¢ is C © jointly in the
“independent variable” x', and the “parameters” (x?,A,u).
Therefore, we can write

o(x' X Ap) = o(x' x'A) + po(x' xApu), (25a)

(24)

with & being C = in all its arguments. Inserting (25a) into
Egs. (21b), (22b), and using Eq. (19d) yields
a

——1n|a|=—;—9+

g (Yo + po) ~'(¥o, +pd,).
X

(26)

The solution, say a(x',x*,4,u), of Eq. (26) with initial con-
dition a(x! = 0) = — 1 (because of the definition of stan-
dard coordinates) reduces to *a for g =0 and to “a for
u = A"+ We can again clearly see that @ must be smooth
in all its arguments, including &, and that we can write

1
2
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a(x' x*Au) =*a(x' x*A) +pua(x' x"Au), (25b)
for some C = function a.

We can proceed in the same manner for the next equa-
tion of the hierarchy, (21c¢), (22c), replacing R,, by
uSnia(x'x*4) [see Eq. (13)], and defining
B (x',x*A,u) as the solution of Eq. (21c) with initial condi-
tions 8, (x' = 0) = 0 (because g,, =0 on &, and therefore
on S=N,NN,) and DB, (x' =0) ="g,,, (x' =0) [see
Eq. (14b)]. The insertion of Egs. (25a) and (25b) into
(21c), (22c¢) [using Egs. (19¢c)—(19¢) with v, = w(1)
X7¥.s] leads to a differential equation for B, (x',...,u)
which: (i) depends smoothly on z, and (ii) reduces to the
one for 8, when u =0 (and the one for "B, when
i = A Y1), As the initial conditions are also smooth in the
parameters (and even independent of 1), standard theorems
guarantee again the smoothness of the solution, so that one
can write

B, (X' xAp) =%B, (X' x*A) + uB, (x' x4 Au),
(25¢)

for some C = functions 3 .- The same argument works for
Egs. (21d), (22d), replacing R ;5 by Sy, 45 (x',x*,4) and
using, besides the equations already mentioned, Egs. (19f)
and (25¢) to check explicitly the smooth dependence in g,
and the reduction to the equation for *6 when ¢ = 0. In that
case the initial conditions are §(x!=0) =0 (because
g,=0on N,), and D6(x' =0) = — 0 |n, (as deduced
from the restriction to S of the harmonicity condition
I', = 0; 8|, denotes the reference “expansion” of N, , i.e.,
the analog of (19a) computed along V,, with D replaced by
8 /dx%). Note that the various two-surface derivatives that
are hidden in the three dots on the left-hand sides of Eqs.
(21a)—(21d) (e.g., the ones included in the curvature sca-
lar), as well as the other D derivatives, are harmless in the
present reasoning because they act on already known (at
each stage) smooth functions of x',x*,4, and . We then get
also

S(x' xAAu) = *8(x'\ x4 A) + ub(x' x4 Au),  (25d)

for some C * function d.
Replacing now z by A ¥ ! in Egs. (25a)-(25d) we get

on N,:Vg,, (x' x*A) = *g,, (x',x*A)

+ AN (X xtA),  (2T)
for a, b = 1,...,4, and for some smooth functions k_, .

We can transpose the same reasoning for the constraints
on N,. The only differences, beyond exchanging the indices
1 and 2, are that the initial conditions for g, , are obtained
from the ones for g,,, by writing the restriction to S of the
harmonicity condition I';, = 0 [where we recall that ', is
defined by Eq. (15), and vanishes in standard coordinates].
Then the analog of (27) holds also on N, . The combination
of this just proven equality on N, UN, of the first N coeffi-
cients of the Taylor expansions of “g(4) and *g(A1) with the
result obtained above on the uniqueness of the solution of the
reduced perturbation hierarchy completes the proof of the
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first part of Theorem 3, the one concerning finite Taylor
expansions.

Let us now start from a Ricci-flat background
8(0yas (x°) and from an infinite sequence A |, ,,, (x°) satisfy-
ing the perturbation hierarchy (8). We can then construct a
smooth one-parameter family of Lorentz metrics, by using
the Theorem 1.2.6. of Ref. 20. This theorem generalizes Bor-
el’s theorem (given any sequence of numbers there exists a
C = function defined near the origin of the real line which
has these numbers as successive derivatives at the origin) to
sequences of smooth functions. This theorem guarantees
(locally) the existence (and constructability ) of a smooth A-
family ~g;, (x'*,A) such that its value at 4 = Qs g{o,,, (x°),
and its successive Taylor coefficients at A =0 are the
B {myan (X°€), for all n> 1. We can then use the same reasoning
as above, starting now with “g’(4) instead of *g’(4) as “ap-
proximately Ricci-flat” metric. By a (locally smooth) A-de-
pendent coordinate transformation we can introduce stan-
dard coordinates. Then we use [ “g45 | v,un, and [ *824; |5
as characteristic data to define a family of exactly Ricci-flat
metrics, in standard coordinates, say *g,, (x°,4). The com-
parison between the two families is done as above,
2R (x54) = A V1S vy as (x54) holding for any given val-
ue of N. This shows then that “g(4) and *g(4) have the
same infinite sequence of Taylor coefficients at A = 0 (both
in standard coordinates, and in the original coordinate sys-
tem). a

Note that, in a general C ~ setting, there are many exact
solutions giving rise to a given sequence of Taylor coeffi-
cients. Only in the case where the formal series in powers of 4
that correspond to the characteristic data [ g, ] v un, and
[ 8241 ] s converge can we single out a preferred C * family
of exact solutions.

Let us remark that the proof we gave of the local reliabil-
ity of Einstein’s vacuum field equations is essentially based
on two broad facts: (i) the reduction, in some gauge, of the
evolution equations to a system of quasilinear wave equa-
tions for some collection of fields, say ¢ (in our case the ten
g.;’s in harmonic coordinates), and (ii) the fact that the
characteristic initial value problem leads to a hierarchical set
of ordinary differential equations for determining the full
characteristic data for the “reduced” field equations (i.e.,
the values of all the ¢’s on N, UN, ) from some “free” char-
acteristic data, say y (in our case, essentially the conformal
two-metric ¥,, ). The essential structure used in the proof
above of this hierarchical set of ordinary differential equa-
tions has been that it was a smooth function of the hypersur-
face derivatives of the ¢’s and the y’s up to some finite order,
and of any possible source term in the original field equa-
tions.

Let us consider now the coupled Einstein—Yang-Mills
system (see Theorem 2 above). It belongs to the just de-
scribed (¢,y) class of systems to which our method applies,
if we take ¢ = (g,,,A,) in standard gauge (see Definition 2
above), and for y the data of Theorem 2. We find that the
Einstein—Yang-Mills equations in standard gauge, consid-
ered along the null hypersurface %,, imply the following
hierarchical set of ordinary differential equations:
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E’ [D*w,Dw,o,.): = E, + ko~ 'y"?K,K; =0, (28a)

E,[Da,a,..] =0, (28b)

E,[Do,6,.]: = (D + 0)o + K%, + [A; K"} =0,(28¢c)

E'[DB4.DBBy]:

=E, + ka[K, o+ F,;K?] =0, (28d)

E;[D?,D83,...]:
=E; + jka’[o0 + " VP 'FpF 5] =0, (28¢)

E, [DA,,.]:=DA, —B°DA,

+ lay*®Ap , +laoc =0, (28f)
whére K, denotes — 3, Ay -(i.e., Fy, in standard gauge)
and K% = ¢ K. Along N, a corresponding set of equa-
tions must also hold. The initial conditions on S for these
differential equations have been given in the proof of
Theorem 2 above. When one considers (as needed in the
proof of reliability) inhomogeneous Einstein—Yang-Mills
systems,

Rab _'kTab =Sab7
Y,=J,,

but still works in standard gauge, Egs. (28) acquire the fol-
lowing respective source terms:

— 81,0, — 3,084, — 3&*Y*%S 45,0.

This makes it clear that our method of proof applies. There-
fore, one can conclude that Theorem 3 generalizes complete-
ly to the Einstein—Yang-Mills equations.

Finally, the treatment of the characteristic initial value
problem for the Einstein—Euler system (general relativistic
perfect fluid) in Ref. 8 shows that our method can also be
applied to prove the local reliability of perturbation expan-
sions for the coupled gravitation-perfect fluid system. How-
ever, this local result is valid only in a connected domain
where p + p(p) >0, i.e., inside one gravitating fluid, and,
therefore it provides no mathematical justification to the
use, say, of post-Minkowskian perturbation series to repre-
sent the gravitational field generated by finite bodies. What
would be needed for this problem is, first of all, an existence
theorem for solutions describing bodies of finite extent. In
this respect it is amusing to note that, if the recently found
“particlelike” solutions of the Einstein—Yang-Mills equa-
tions?! turn out to be stable, they might be of use in modeling
an “N-body system” for which, as we just showed, a reliabil-
ity result exists.

V. SMOOTH ONE-PARAMETER FAMILIES OF
SEMIGLOBAL PAST-STATIONARY SPACE-TIMES
ADMITTING A PIECE OF .7 WITH RADIATION

Up to now we have considered only the question of the
local reliability of perturbation theory. Our positive answer
to this question allows one to justify the use of perturbation
expansions to approximate, say, vacuum gravitational fields
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over compact space-time domains. However, the algorithm
developed by Blanchet and Damour® was intended to ap-
proximate generic vacuum gravitational fields all over a non-
compact “weak-field zone outside the source.” More pre-
cisely, their algorithm assumes the existence of, what can be
called, “semiglobal past-stationary radiative vacuum space-
times” (for short, “semiglobal space-times™) i.e., solutions
of the vacuum Einstein equations over a manifold homeo-
morphic to %* minus a timelike cylinder, which are station-
ary before some time, and which admit (at least a piece of) a
regular future null infinity (7~ * ) with radiation. In subse-
quent papers’ they used their post-Minkowskian algorithm
to study the structure of the gravitational radiation emitted
by isolated material sources. The question therefore natural-
ly arises whether our result of local reliability can be ex-
tended to one of semiglobal reliability, which would give a
mathematical justification to such perturbation approaches.
By combining the method we used in Sec. IV with theorems
of Friedrich'? on the regularization of the conformal Ein-
stein equations we shall show that this is the case. More
precisely we are going to prove: (i) the existence of semiglo-
bal past-stationary solutions of the vacuum Einstein equa-
tions admitting a piece of 7, and (ii) the possibility to con-
struct smooth one-parameter families of such semiglobal
solutions whose Taylor coefficients in the A expansion are of
the “multipolar post-Minkowskian type” studied in Refs. 2
and 22. The generalization of this construction to the Ein-
stein—Yang-Mills system is briefly discussed at the end of
this section.

To prove the existence of semiglobal past-stationary ra-
diative vacuum space-times let us start by giving ourselves a
semiglobal stationary solution of the vacuum Einstein equa-
tions which is asymptotically flat, say *g. Choose an asymp-
totically flat spacelike hypersurface C* (homeomorphic to
Z7° minus a ball) such that °g is defined on the manifold
C* X % (inthe static case we would naturally take one of the
preferred spacelike hypersurfaces orthogonal to the Killing
vector). Select on C* a spacelike two-surface S (of spherical
topology) such that the outgoing future-directed null geode-
sics issued from S generate a smooth null hypersurface, N, ,
upto.7 * (no caustics). Denote by N, the null hypersur-
face generated locally by the ingoing future-directed null
geodesics issued from .S [see Fig. 1(a) ]. We shall use the two
null hypersurfaces® N, N,, to pose a characteristic initial
value problem (using, say, two patches of standard coordi-
nates to cover S and its neighborhood). We consider a
smooth one-parameter (or several-parameter) family of ini-
tial data on (S, N,,,, N, ) such that: (i) they coincide on .S
and N, with the data for g for all A ’s; (ii) they reduce when
A = 0tothedatafor’g; (iii) when A #0thedataon N, differ
(smoothly) from the data for ’g only on the part of N,, which
is in the future of a null hypersurface N, obtained by Lie
dragging N, some finite time in the future along the time-
like Killing vector defining the stationarity of ‘g and extend-
ing it inwards down to &V, [see Fig. 1(a)]. Rendall’s results
recalled in Sec. III above guarantee the existence and
uniqueness of a smooth family of solutions, say g, (1), gen-
erated by such data only in some local four-dimensional do-
main, say D *, which is a neighborhood of S intersected with
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(b)

FIG. 1. (a) Construction of hyperboloidal data in physical space-time by
piecing together a local characteristic initial value problem and a stationary
solution. (b) Evolution of the hyperboloidal data in an extended conformal
picture.

the future of S. Let us now introduce the infinite four-dimen-
sional domain B* defined as the union of the local domain
D* with the domain sandwiched between N,, and N/,
(and bounded inwardly by &, ). By our choice of data, it is
clear that we can define on B * a smooth family of solutions of
Einstein’s vacuum field equations, say gz (A1), as being
gp(A)Yon D*and ‘gon B* — D*. In the pseudo-Riemannian
manifold (B*gz(4)) we can select a smooth spacelike hy-
persurface, say H °, which starts off in the “nonstationary”
part of B* (i.e., the future of N, ) and then extends out to
J % through the “stationary” part of B* in a smooth as-
ymptotically null manner (such H *s are called “hyperbo-
loids”).

We can now use the theorems of Friedrich'? about the
regularization of the conformal Einstein vacuum equations
to extend the nonstationary character of the metric out to
infinity. By construction the metric gz (1) induces on the
asymptotically null spacelike hypersurface H* data, say
(h(A), k(A)), that satisfy the “hyperboloidal constraints”
of Ref. 12. Now, when A = 0 the data (A(0), k(0)) corre-
spond (by our choice above of local characteristic data) to
the stationary metric °g, and therefore define uniquely g on
the full domain of dependence of H *. But such an asymptoti-
cally flat stationary metric is analytic at future null infinity,
and admits a (unique) analytic extension through.7 + (this
was shown explicitly for the Schwarzschild solution in Ref.
24, and is discussed for the general case in the Appendix).
Placing ourselves in such an analytically extended confor-
mal picture (in which 7~ * is brought down to a finite “dis-
tance”), Fig. 1(b), we see that we have shown the existence
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of a smooth family of Cauchy data for the conformal vacuum
equations that satisfy the constraints for all A°s, and that
determine when A = 0 a known solution of Friedrich’s con-
formal evolution equations in some domain K (which is
compact in this conformal picture, but which extends be-
yond null infinity ). As Friedrich’s evolution equations con-
stitute a symmetric hyperbolic quasilinear system we can use
the general result of Hamilton’” of (C =) stability (under
variation of the data) of the Cauchy development of the data
in a compact domain K having a spacelike future boundary.
Therefore, for A small enough, we will have a smooth family
of conformal metrics containing smooth (null) hypersur-
faces on which the conformal factor vanishes.

Going back to the physical picture, we conclude that we
have proven (for A small enough, i.e., for small enough de-
viations about some stationary metric) the existence of
smooth families of semiglobal nonstationary solutions of the
vacuum Einstein equations that are stationary before some
retarded time, and which admit a smooth piece of future null
infinity, up to some (later) retarded time. Note that our
class of solutions is rather general as it contains (for each A1)
two arbitrary functions of three variables. It is also interest-
ing to note that, after having constructed our solutions by
means of a characteristic initial value problem, we can also
consider the data they induce on a usual spacelike Cauchy
surface (homeomorphic to %° minus a ball). As these
Cauchy data (first and second fundamental forms) belong
to a stationary space-time outside some two surface they
clearly satisfy the asymptotic spatial fall-off conditions used
in the recent work of Christodoulou and Klainerman.” If
we assume that their result (proven for Cauchy surfaces ho-
meomorphic to %*) holds true also for (small enough) data
considered on a Cauchy surface homeomorphic to %° minus
a ball, we can say that our result proves the existence of a
subclass of Cauchy data which evolve into a (piece of a)
smooth 7. The existence of such “good” data is not clear
from their results, as the estimates they get for the fall off of
the gravitational field at null infinity violate the “peeling
property,” and would therefore be incompatible with even a
C conformal structure at 7 if they were sharp. An indica-
tion of how both types of results can be reconciled comes
from perturbation calculations. Indeed, some perturbative
results®® get a smooth .9 for generic semiglobal past-sta-
tionary (approximate) space-times, but find, when a limit is
taken that allows the space-time to have been always nonsta-
tionary, that the smoothness of 7~ can be destroyed, and that
the peeling property may not hold (neither at .7 ~ nor at
" *). These calculations indicate also that the past-station-
arity of these semiglobal approximate space-times is a suffi-
cient but not necessary condition for the smoothness of 7.
What seems needed is just a sufficiently fast approach to
stationarity when going back in the past. In terms of Cauchy
data, this would correspond to data that never belong, near
spatial infinity, to a stationary space-time, but which, in
some sense, tend fast enough to “‘stationary data’ to preserve
the smoothness of 7. (We are assuming here that the global
time asymmetry, ‘‘no incoming radiation condition,” which
is built in most of the perturbation calculations is not crucial
compared to the spatial fall-off). This suggests the interest-
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ing mathematical question of trying to characterize such
“asymptotically stationary” data leading to a smooth .7~
among the general class of data which, probably (because of
the singular conformal structure at spatial infinity, and of
the existing exact?® and perturbative®® results), lead generi-
cally to a violation of peeling.

In the above construction we have used the parameter
dependence only to simplify our need to deviate slightly
from a stationary solution. However, we can also put a pa-
rameter dependence in the data that define the stationary
solution. In particular we can, for instance, replace the mass
M by AM in the characteristic data for the Schwarzschild
solution, and add, on N,,, nonstationary data that have also
A in factor and which contain only a finite number of multi-
poles (starting smoothly off zero at some retarded time cor-
responding to N/, ). Such data will generate a smooth fam-
ily of semiglobal exact solutions whose A expansion will be of
the type of the “multipolar post-Minkowskian” expansions
studied in Refs 2 and 22. Thereby we have extended our
result of local reliability of perturbation expansions to one of
semiglobal reliability (including at future null infinity) for
such “multipolar post-Minkowskian” expansions.

Finally, we can straightforwardly generalize all the
steps of our construction to the Einstein—Yang-Mills case.
The basic ingredients we need are available: they are the
existence and uniqueness of C ~ solutions generated by C
characteristic data (Theorem 2 above) and the possibility to
regularize the conformal Einstein—Yang-Mills equations.”’
As above, this proves the existence of a general class of se-
miglobal past-stationary radiative Einstein-Yang-Mills
(and in particular Einstein-Maxwell) solutions admitting a
C = conformal structure on a piece of .7, and the possibility
to construct smooth multipolar-post-Minkowskian-type
families of such solutions.
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APPENDIX: ANALYTIC EXTENSION THROUGH .7~ OF
STATIONARY VACUUM METRICS

There are various ways, starting from the theorem of
Beig and Simon,*® to show that, for a stationary asymptoti-
cally flat solution of the vacuum Einstein equations, there
existsa chart (u,7,0,¢) such that the metric is conformal to a
metric analytic in # = 1/r near # = 0. In general, such a
chart will not be harmonic. If we wish, we can however as-
sume that the conditions of harmonicity are satisfied up to
some finite order. If we assume that the mass does not van-
ish, and that the mass dipole is transformed to zero we have a
metric of the form?®
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2
dszz_(l__z_j‘_l_{_zM +£)dt2
r rr 7
Stz Fa)
4e, + — | dtdz®
( S

N F
+—3’-£)+ s | 4z a?,

r‘!

where r*: = §,52°2% a8 = 1,2,3. Note that the freedom of
making spatial transformations was used for having a spatial
metric which is conformally flat up to the order O(1/7°).
The functions F, F,, F_; into which we have collected the
higher-order terms are analytic in 1/7 and in the angular
coordinates, (6,p) = (¢"); 4 = 3,4. Going to standard po-
lar coordinates one checks easily that all the terms of the
conformal metric d5°: = r ~ % ds* are analyticin #: = 1/rnear
7= 0,inthe (#,7,0,¢) chart, except for the term proportional
to d72. To take care of that term we must transform the time
coordinate. The dangerous terms are contained in

ds® = — A%(r)dt® + B*(r)dr?
— A¥(dt — (B/A)dr)dt + (B/A)dr),

where
A =1—2M/r+2M?/r?,

If we define a new time coordinate by

B(r)
A(r)

u=t— dr,

we obtain

ds?= — A?du(du + (2B /A)dr)
= —A*du® —24B du dr.

We can now check that d5* = r~2ds” is analytic in 7, at
# =0, in the (u,7,6,¢) chart. The hypersurface 7 = Qs easily
seen to be a null hypersurface, with topology % XS 2.
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Assuming that the physical three-space in a relativistic superdense star has the geometry of a
three-spheroid, a static spherically symmetric model based on an analytic closed-form solution

-3

of Einstein’s field equations is presented. Assuming the density of the order of 2X 10'* g cm 7,

estimates of the total mass and size of the stars of the model are obtained for various values of a
density-variation parameter that is suitably defined. The total mass and the boundary radius of

each of these models are of the order of the mass and size of a neutron star.

I. INTRODUCTION

The models for relativistic spherical stars are usually
constructed by integrating numerically the appropriate set
of Einstein’s field equations on the basis of an a priori fur-
nished equation of state of its matter content. The precise
nature of the behavior of matter in the central core regions of
superdense stars like neutron stars being not known with
certainty, one does not have reliable information about the
equation of state for the matter content of such stars and one
is led to make assumptions of a very general nature. How-
ever, the self-interaction of the gravitational field as reflected
in the nonlinearity of Einstein’s field equations, makes it dif-
ficult to obtain simple exact solutions useful for constructing
models for relativistic stars. This problem has been consid-
ered by several authors.'”’

According to general relativity theory, the geometry of
the physical space is governed by the matter-energy content
of the space, which introduces curvatures in the acompany-
ing space-time. The physical three-space of the Schwarzs-
child interior solution, representing the gravitational field in
the interior of a cold star filled with a uniform distribution of
matter in equilibrium, is curved up into a three-spherical
space whose radius R is directly linked with the density of
matter content of the star. Following this observation Vai-
dya and Tikekar® have shown that space-times whose asso-
ciated physical three-spaces obtained as ¢ = const sections
have geometry of a three-spheroid are useful in developing
relativistic models for superdense spherical condensations of
matter in equilibrium such as neutron stars. Only a few of the
large number of closed-form solutions of Einstein’s field
equations for static spherical destributions of matter admit
such possibilities. Accordingly, it is important to have exact
solutions representing static fluid spheres that may serve as
easily surveyable models for relativistic stars. The particular
class of the superdense-star model of Vaidya and Tikekar® is
found to permit higher values of maximum mass for a neu-
tron star than the values permitted according to the nonnu-
clear analysis of Rhodes and Ruffini.” Knutsen'® has dis-
cussed various physical properties of the Vaidya-Tikekar
model and has shown that it is stable with respect to infini-
tesimal radial pulsations.

In this paper, after a brief discussion of the distinctive
features of the space-times whose associated physical three-
spaces have the geometry of a three-spheroid in Sec. I, we
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have obtained in Sec. II the relations governing the physical
variables of equilibrium configurations of spherical distribu-
tions of matter, assuming that the background space-time
has the above geometry. An exact solution of Einstein’s field
equations obtained in Sec. III, in this setup, is used to devel-
op in subsequent sections a relativistic model for a super-
dense star. Specifying the matter density on the boundary
surface of the configuration to be 2 X 10'* g cm 2, the value
given by Rees et al.,'! for the surface density of matter for a
neutron star, estimates of the total mass and size of the stars
of the model are obtained for various values of a suitably
introduced density-variation parameter. These estimates to-
gether with other relevant quantities are presented in Table
I

These values show that the closed-form solution pre-
sented here leads to a class of physically viable static models
for relativistic stars. An important feature of this class of
models is that if the matter content of star of the model com-
plies with the requirement p — 3p/c*> 0 inherent in the
strong energy conditions, the maximum permissible mass is

TABLE I. Masses and equilibrium radii corresponding to p, = 2.0 10"
g cm 3, for the class of relativistic star models.

Ser. i R(km) a(km) m(km) M/M,* A4 B
No.
1 0.95 78.16 5.23 0.09 0.06 —-193 197
2 0.9 76.08 7.36 0.26 0.18 —1.87 206
3 0.85 73.93 8.97 0.48 0.33 - 179 214
4 0.80 71.73 10.31 0.75 0.51 —-172 223
5 0.75 69.45 11.47 1.05 0.71 —1.64 231
6 0.70 67.09 12.49 1.39 094 —155 239
7 0.65 64.65 13.41 1.77 1.20 — 146 248
8 0.60 62.12 14.24 2.19 1.49 — 136 255
9 0.55 59.47 14.99 2.64 1.79 — 125 2.63
10 0.50 56.70 15.68 3.12 2.12 —1.14 270
11 0.45 53.79 16.30 3.64 2.47 - 101 276
12 0.40 50.72 16.86 4.20 2.85 —0.87 280
13 0.35 47.44 17.35 4.79 3.24 —0.71 283
14 0.30 4392 17.78 543 3.68 —0.53 282
15 0.25 40.10 18.13 6.10 4.14 —033 276
16 0.20 35.86 18.39 6.81 4.62 —0.08 2.59
17 0.15 31.06 18.54 7.56 5.12 021 223
18 0.10 25.36 18.53 8.36 5.67 0.55 1.34

*Note: M = mc’/G, M, = mass of the Sun.
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close to the limit imposed by the analysis of Rhodes and
Ruffini.” Higher masses are permissible if the above condi-
tion is relaxed.

Il. STATIC SPHEROIDAL SPACE-TIME

A three-spheroid, immersed in the four-dimensional
Euclidean space with metric

do? = dx* + dv? + dz2* + du?, @.1n
will have the Cartesian equation
(XX +y+2)/R*+uw¥/b*=1. (2.2)

The sections w = const of the three-spheroid are concentric
spheres, while sections x = const, y = const, and z = const
represent, respectively, systems of confocal ellipsoids.

The parametrization

Xx = R sin a sin 6 cos ¢,

y = R sin a sin 8 sin ¢, (2.3)
z= R sin a cos 6,
w=bcosa,

of the three-spheroid leads to

do® = (R?cos’ @ + b?sin® a)da?

+ R ?sin® a(d@? + sin® 6 d¢?), 2.4)
as the metric on the three-spheroid. Introducing a new space
variable

r=Rsina, (2.5)
the metric do” on the three-spheroid can be cast into the
form
do* = [1 - K(r*/R*)]1(1 —r*/R?*) ~'dr?

+ r%(df? + sin’ 0dg)?,
where
K=1-b*R2 2.7

It is evident that a spheroidal three-space is essentially
spherically symmetric. Its geometry is governed by two cur-
vature parameters R and XK. The metric (2.6) is regular and
positive definite at all points r <R for K < 1.

In the case K = 1, the spheroidal three-space degener-
ates into a flat three-space and in the case K = 0, it becomes
spherical. The static spherically symmetric space-time of the
metric,

ds= —[1 —K(r¥*R*»](1 —r*R*» " 'dr*—r?dg*

— risin? 8d¢? + e"” dt?, 2.8)
has its associated three space, obtained as hypersurface
t = const, a three-spheroidal space. The metric (2.8) with
K =0and e¢"”? = [4 + B(1 — r?/R ?)'/?]?is the metric of
the Schwarzschild interior solution that is used to construct

relativistic model for a cold, spherical star filled with uni-
form distribution of matter in equilibrium.

(2.6)

lil. MATTER DISTRIBUTION ON SPHERIODAL SPACE-
TIME

We consider spherical distributions of matter in the
form of a perfect fluid represented by the space-time metric
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(2.8) when K <1 and K #0, i.e., when the physical three-
space in (2.8) is spheroidal and not spherical or flat.

The energy-momentum tensor for a perfect fluid is given
by

Ty = (p+p/Puu; — (p/cM)g,, (3.1)

where p and p, respectively, denote matter density and fluid
pressure and u' represents the unit, four-velocity field of the
fluid. For equilibrium configurations with background
space-time metric (2.8)

u' = (0,0,0,e — ). (3.2)
Einstein’s field equations,
R, —iRg; = — (87G /") T, (3.3)
lead to
_ _ 2 2
81er= 3(1—K) [1—(K/3)(r¥*/R?] EYY

i R? [1-K(¥RH])?

87G v o1 rz)( rz)_1 1
(r+ V-V ) L

c* p (r+r2)( R? R? r?

(3.5)

as the relations determining matter density p and fluid pres-
sure p in the distribution, together with the consistency con-
dition implied in the isotropy condition T’ = T3, viz,

r2 rZ)( VIZ Vl)
l——){1—-K— Y —— —
( Rz)( R? v 2 r

2(1 - K)r (1'+_1_)
R? 2 r
2
+ 3(—1R—“2£)— (1 —K %) =0.
Here, and in what follows, a prime indicates a differentiation
with respect to r.

In this approach, the usual equation of state of matter is
replaced by the geometrical requirement that the physical
three-space of the distribution be spheroidal. In the
Schwarzschild interior solution K = 0 and the matter den-
sity is linked directly with the geometric parameter R—the
radius of the spherical three-space. In the present case, the
geometric parameter R and K completely determine the

matter density at all points of the distribution.
Let

(3.6)

m(r) =

4"Gf E2p(E)dE (3.7)
0

2

c

represent the total mass content of the distribution within

the spherical region of radius r. The expression (3.4) for
matter density gives

1 r? (1-K)r
=_—— 3.8
m(r) 2 R?1—-K(r*/R? G8)
The condition
1dp_ _ (p+p/ch) ([m(r) + (4ﬂ'Gp/c4)r3]>
¢t dr r? 1 —-2m(r)/r ’
(3.9)

which ensures the hydrostatic equilibrium of spherically
symmetric distributions of matter, contained in the field
equations (3.4), (3.5), and (3.6), can be written in the form
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_ 1 —K(r*/R? (41err
(1—r%/R? 4

c
Rt )
+ +=])-
2R*[1—-K(r*/R?] P ¢
The matter density g as given by Eq. (3.4) is positive
throughout the distribution. Accordingly, we observe from

(3.10) that if p(#) > O then the pressure gradient is negative
at r and pressure will be decreasing radially outward.

(3.10)

IV. A SOLUTION OF FIELD EQUATIONS

The linear differential equation (3.6) can be expressed
in the convenient form

d’y dy
1—K+KP2)—L —Kz—— + K(K— )¢ =0, 4.1
( + )dz2 z— -+ K( )¢ (4.1)
by adopting ¥ and z defined by

1//=€V/2
and
Z2=(1-r*R?, (4.3)

as new dependent and independent variables, respectively.
Equation (4.1) is found to admit the general closed-
form solution

Y=A(1 — 7 + 7% + Bz(1 — 1), (4.4)

for the particular choice of geometric parameter K = — 7,4
and B being arbitrary constants of integration.

The space-time metric of this solution written out expli-
citly reads

8 — 72
7

(4.2)

ds’ = —

-3 59

dr? — R*(1 —22)(d6? + sin® 0 dg)?

2
7 372712
+Bz(1 —?zz) ] dr?,

where 2 =1—r?/R2
The expressions for matter density and fluid pressure for
the distribution of (4.5) are expressed as

87Gp _ 8 10— 177
2 R’ (8—12)
24 (1+3*/R?
TR (1+7rYR)

(4.5)

(4.6)

and
87Gp

c4

A(— 1422 — 437 —1B2(5 —72) (1 — )"
TR -A)[Bz(1 -+ A1 -2+ 8]
4.7)

The solution (4.5) is a closed-form exact solution of Ein-
stein’s field equations representing a spherical fluid distribu-
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tion at rest. Although it is not obtained on the basis of any
explicit assumption about the interparticle interaction, it is a
logical consequence of the potent geometrical structure as-
sumed for the background space-time. Such closed-form so-
lutions are expected to be of astrophysical interest provided
they satisfy certain general basic requirements expected of
the fluids at ultrahigh densities and pressures.

V. PHYSICAL REQUIREMENTS

In order that the solution (4.5) be physically meaning-
ful one has to study carefully the implications of the follow-
ing requirements it is expected to fulfill in its region of valid-
ity.

(i) The matter density p and fluid pressure p should be
positive everywhere.

(ii) The gradients dp/dr and dp/dr should be negative.

(iii) The speed of sound should be less than the speed of
light.

(iv) The interior metric should be joined continuously
with the exterior Schwarzschild metric,

ds = — (1 —2m/r) ~'dr* — r*(d6* + sin’ 6 d¢*)
+ (1 —=2m/r)dr?, (5.1)

as one crosses the boundary surface » = a of the distribution.
From the expression (4.6) if follows that p > 0 and further
dp/dr <0 throughout the distribution. Accordingly, the flu-
id sphere of the configuration is a regular fluid sphere in the
sense introduced by Buchdahl.?

The equation for hydrostatic equilibrium in the form
(3.10) implies that at all points r<R, if the pressure
p(r) >0, then the pressure gradient dp/dr<0. At the center
r = 0 of the distribution the density and pressure attain val-
ues p, and p, given by

87Gp,/c* = 24/R?, (5.2)
87Gpo _ 32 (2424 +3B) (5.3)
ct R? (—22y24 + 3B)
respectively.

The pressure at the center p, will be positive if the arbi-
trary constants 4 and B comply with either

(a) 3B+ 2{24>0 and 3B — 222450
or
(b) 3B+ 2y24 <0 and 3B — 22424 <0.

We further impose the condition that p — 3p/¢?>0 the
so-called strong energy conditions then at the center
Po — 3p,/c*>0 and subsequently 4 and B should be further
restricted to comply with

(10424 + 3B) /(22424 — 3B)>0.

It is observed that 4 and B should be restricted so that either

A<0, —224<3B< — 1024 (5.4)
or
A>0, —10J24<3B< —224.

Equation (3.10) then implies that the pressure gradient will
be negative in the central region and accordingly pressure
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will be decreasing in the radially outward direction. We
choose the surface » = a@ where the pressure vanishes as the
boundary surface of the distribution.

Across this boundary surface » = a, we join the interior
metric (4.5) with the Schwarzschild exterior metric (5.1),
stipulating the continuity of metric coefficients and also the
continuity of pressure. Continuity of the metric coefficients
give

m=m(a)
AnG [
=228 [ sorag
44°
= 5.5
R3[14+7(d/RYH] (5-3)
and
(1—2m/a)'?=A(1 -1z} +%2)
+ Bz, (1 —322)*?, (5.6)

where 22 = 1 — a*/R™.
The continuity of pressure across » = a requires that
pressure should vanish on the boundary implying that

A(— 142422 —32%)
= 1Bz, (1 — 122)*(5 — 722). (5.7)

Conditions (5.6) and (5.7) determine the arbitrary con-
stants 4 and B in terms of the curvature parameter R and the
boundary radius g as

A= (5-72)(1 =2m/a)"?, (5.8)
172 — 12
B:l_(]_&'ﬁ) (1_1_25)
z, a 8
x(—4+21z§ ——%9—22), (5.9)

where the total mass m is determined by (5.5).

VI. TOTAL MASS AND SIZE
The matter density, given by Eq. (4.6) attains the value

P, given by
87Gp, 24( 7 a a?\?
=—(1+— ) (1 +7 ) , 6.1
¢ R? 3 R? R’ e

on the boundary r = a of the distribution. Let
/1 = p a / Po (62)

denote the ratio of the value of matter density on the bound-
ary surface with its value at the center. Then evidently A < 1

(1+V(1+240))

(%).-

(484 — 1 — y(1+24))(1 + 244 + /(1 + 244) )

since p is a decreasing function of 7, and represents a density-
variation parameter, having the explicit expression

2 2 -2
A= (1+l"—)(1+7“) .
3 R? R?

Equation (6.2) is a biquadratic equation in a/R that deter-
mines a/R in terms of 4 as

a@®/R?=(1—64 + (1 + 241 ))/424, (64)

the algebraic root assigning negative values to a*/R ? being
rejected to ensure that a/R is real and positive.

Equation (5.2) determines geometric parameter R in
terms of surface density p, and density-variation parameter
A.Equation (6.4) determines the boundary radius “a” of the
distribution and subsequently Eq. (5.5) determines the total
mass of the configuration. Thus knowledge of the matter
density on the boundary surface, p,, and its ratio with the
central density is enough to obtain estimates about the size
and mass of the configuration.

In order to ensure that p and p be well behaved through-
out the configuration we impose the restriction dp/dp < c?,
which implies that the speed of sound should not exceed
speed of light ¢ in the distribution.

A straightforward calculation using Egs. (3.4) and
(3.10) leads to

dp _2aGR? [1+7(+*/R)(p+p/S)
dp T (1=r/RH[5+7(r*/R?)]

2
[1+”Gp (1+7L—)R2].
R2

The values of dp/dp range between its value at the center

where the density is the highest and its value near the bound-

ary surface where the density reaches its minimum value p,.
At the center, dp/dp has the value

(gg) R? 87TG( {72_)(877'GP0R2
dp

1120 & I
If we impose the condition p, — 3p,/c* > Oat the center then
it readily follows that

(6.3)

(6.5)

+ 8) (6.6)

?

() <ome
dp /o

on using the expression (5.2) for p,.
At the boundary we have the expression

) =m0 12512 (7 52)
DY — 2GR, (1475 /11 ) (5475
(dp A R’ R’ R’

for dp/dp which can be expressed in the form

(6.7)

(6.9)

using Eqgs. (6.4) and (6.1). It is observed that for models with 0.2<A < 1, (dp/dp), < ¢*. In fact the requirement dp/dp < ¢* is
observed to be satisfied throughout the distribution for models with A > 0.25 and complying with the condition p — p/c*>0,

reported in Table 1.
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Vil. SUPERDENSE STARS

A spherical star begins to contract under the influence
of gravitational interaction of the matter content, when the
thermonuclear sources of energy in its interior are exhaust-
ed. Its mass energy continues to increase and it ends up as a
dense star—white dwarf, neutron star, or a black hole. The
model proposed here describes a superdense star formed
during these last stages of stellar evolution with densities in
the range of 10'*~10"° gcm >,

We take the matter density p, on the boundary r = a of
the star as p, = 2X 10" g cm ~*. Choosing different values
for the density-variation parameter A, for each value of A, we
determine the boundary radius @ of the star and its total mass
m, in accordance with the scheme of Sec. VI. The value of m
obtained is in kilometers. The mass of the star in grams is
obtained using M = mc*/G. The results of these computa-
tions together with the values of the constants 4 and B as
determined by the Eqgs. (5.8) and (5.9) are given in Table 1.

The first 13 values of A in the table, i.e., 1>0.35, give a
set of physically viable models wherein equilibrium radius of
each of these star-models is of the order of the radius of a
neutron star. Both m and a are decreasing functions of A.
The maximum mass of the configuration is obtained at the
equilibrium radius of 17.35 km for 4 = 0.35. This maximum
mass is closer to the limit on the maximum mass of neutron
star imposed by the non-nuclear analysis of Rhodes and Ruf-
fini. All these models comply with the conditions p>0, p>0,
p — 3p/c*>0, dp/dr, dp/dr <0,dp/dp <’ throughout the
configuration. However if we relax these conditions to
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p — p/c*>0, complying with weak energy conditions, we can
go as far as the first 15 values of A in Table I; the model
subsequently permitting higher values for m and a. One can-
not go beyond that because in these models with 4<0.20 the
conditions p — p/c*>0 and dp/dp < ¢* are not fulfilled with-
in their configurations.

For the same values of the density-variation parameter
the star models presented here have lesser values for equilib-
rium radius a and total mass m than the corresponding val-
ues for the star models obtained by Vaidya and Tikekar. The
models presented here also permit more variation of density
in the configuration without violating the physical require-
ments and admit the value for maximum mass that is close to
the limiting value for maximum mass of a neutron star ob-
tained by Rhodes and Ruffini.’
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An initial value formulation for the dust solution with spherical symmetry is given explicitly in
which the initial distributions of dust and its velocity on an initial surface are chosen to be the

initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving
coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are

derived.

I. INTRODUCTION

The general dust solution of spherical symmetry in co-
moving coordinates has been extensively studied'® with the
use of the metric®

ds*=dt? — Y'?(t,r)/[1 — ef2(r)]dr
— Y(t,r)(d* + sin* Odg?), (1.1)
wheree= 41, — 1,0, Y'(t,r) = (3/3r) Y(¢,r) and f(r) is
an arbitrary function of r. The Einstein field equation reads
Y2 —2u(r)/Y= —e€f(r), (1.2)

where ¥ = (3 /9¢) Y(¢,r) and u (7) is another arbitrary func-
tion of r. The evolution of the mass density of the dust is

p(tr) =u'/47Y?Y". (1.3)

The solution of Eq. (1.2) can be expressed in a parametric
form as

Y(t,r) = [u()/fA(r) 1k (),
h(n) = [P /un)]1t—nn], (1.5)

where n(r) is the third arbitrary function of r,
h'(n) = (d/dn)h(n), and h(n) is defined by

(1.4)

7 — sin 7, fore= +1,
h(n) =347, fore=0, (1.6)
sinhn —7, fore= —1.

Equations (1.1)—(1.6) constitute a complete set of ex-
act solutions to the field equations for spherically symmetric
dust in general relativity (with the cosmological constant
A = 0). We see that there are three independent arbitrary
functions w(r), f(r), and n(r) to be determined for a given
physical problem. Although one can, through a suitable spe-
cification for these three functions, produce a meaningful
mass distribution p(t,7), we do not know any general proce-
dure by which the three functions can be determined expli-
citly for a reasonable physical system. The purpose of this
paper is to look for such a procedure.

In Sec. II we treat the dust solution as an initial value
problem. We find that by rescaling the radial coordinate, the
number of independent arbitrary functions in the solution
decreases by one to two. Instead of these two functions we
choose another two functions, the initial distributions of the
dust and its velocity, as initial data, and then we express the
solution in an initial value formulation explicitly. In the fol-
lowing sections we use the general procedure given in Sec. IT
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to discuss some simple examples: the Friedmann universe in
Sec. I11, the Schwarzschild solution in Sec. IV, and a spheri-
cally symmetric and radially inhomogeneous cosmological
model in Sec. V.

Il. INITIAL VALUE FORMULATION

We have noticed that the three arbitrary functions u, f;
and n depend on r solely and do not vary with time. This
reminds us to treat the solution as an initial value problem.

As a first step we take the initial values of the complete
set of field Eqs. (1.2) and (1.3) on an initial surface
t = t; = const, which give

YiP-2u/Y, = —¢f? (2.1)
pi =p/4nY}Y!, (2.2)
where

Y, =Y, (n=Y({,r), ¥, =Y(n=¥au,r,

pi =pi(r)=p(t,r).

Here we get exactly three initial values: Y, Y, and p;- The
first, Y,, is the initial radial coordinate of comoving particles.
The second and third, ¥, and p;, are the initial velocity and
the initial mass density, respectively. Here, ¥, and p, are
physical initial data while Y; are coordinate initial data.
Generally, Y, is a function of 7, therefore the indeterminacy
in ¥, can be removed by rescaling the radial coordinate on
the initial surface so as to make

Y.(r)=ra, (2.3)
where a; is a constant. Let
Y(t,r)y =ra(r), (2.4)

then Eq. (2.3) implies a(¢,,7) = a; = const.
Substituting Eq. (2.4) into Eq. (2.2) and integrating
pn(r), we get

u(r) = 41ra;7f p;riar.
0

Substituting Eqs. (2.1) and (2.4) into Eq. (1.2), we get
a*—2u/ar = al —2u/ar. (2.6)

This is the evolution equation of the scale factor a(z,r).
Equation (1.3) of the evolution of p(¢,r) can be written,
through Eq. (2.5), as

p(t,r) =pala=?*/(ra)'.

(2.5)

(2.7)
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Equations (2.5), (2.6), and (2.7) constitute a complete set
of field equations that can replace the original equations
(1.2) and (1.3). For any given spherical dust system, the
solution can be determined completely by this set of equa-
tions provided the initial data @; and p, are specified on the
initial surface.

Now we should also express the solutions (1.4) and
(1.5) in initial forms. Substituting Eq. (2.4) into Eq. (1.4)
and taking its initial value, we obtain

Sy = (u/a;nh'(n,). (2.8)
Then Eq. (1.4) is reduced to
a(t,ry =a;[h'(q)/h'(n;)]. 2.9)

The arbitrary function n(7) can be determined by taking the
initial value of Eq. (1.5). Then substituting this n(r) and Eq.
(2.8) back into Eq. (1.5), we get

h(n) =h(n,) £ (1/p) [(w/a,n)h' (7)) —1,).
(2.10)

The initial value of the parameter % still needs to be
determined. This can be achieved by differentiating Egs.
(2.9) and (2.10) with respect to ¢ and then taking their ini-
tial values. The result can be written as

ra,al/2u = [h"(9,)1*/2h'(n,)

1(1 +cos 7,), fore= +1,
=11, fore =0, (2.11)
(1 +coshy,), fore= —1.

We see that for the € = 0 case 7, is still undetermined. But in
this case we in fact do not need to know the details of 7,.
Directly from (2.10) we can obtain

7 =n}[1+ (3/2a,r)[Qu/a;r) (t—1,)], fore=0.
Therefore, from (2.9),

a=a. |1+ (3/2a,r)\[2u/a;r) (t —1,)]*?, fore=0.
(2.12)
Thesign “ + " in Egs. (2.10) and (2.12) should be chosen to
meet the direction of the motion of the dust particles.
Thus the initial value formulation for the spherically
symmetric dust solution are completed. We sum up the solu-
tion explicitly in the following equations:

ds?=dt* —aunN{{(0+a'arN?/(1 —kr?)]dr?

+r2(d0* +sin* 0dp?)}, (2.13)

k=2u/a,r —a, u=4na; J‘ piridr, (2.14)
0

& + k= 2u/aP, (2.15)

p=paia=?*/(ra)’, (2.16)

with a; being a constant and k, u, a;, p; depend only on . The
solutions of Eq. (2.15) are as follows.
(i) k>0:

a=a;[(1—cosn)/(1—cosmn,)], (2.17a)
n—siny =1, —siny, + (1/p)[(u/a;r)
X (1 —cosn,)]Y*(t—1¢,), (2.17b)

2460 J. Math. Phys., Vol. 31, No. 10, October 1990

1 +cosm, =p " 'a,ar. (2.17¢)
(ii) k=0:
a=a,[1+ (32a,r)\[u/a;r) (t— 1)) (2.18)
(iii) £ <O:
a=a;[(coshny —1)/(coshn, —1)], (2.19a)
sinhn —n=sinh g, — 9, + (1/p)[(u/a;r)

X (coshy, — 1)]**(t —¢,), (2.19b)
1 + cosh 9, = u~'a;a?r. (2.19¢)

Here the initial time ¢; should be treated as a constant as
usual.

Note that the initial quantities p, and @; can be any phy-
sically reasonable functions of r. So, generally, k and %, are
also functions of 7. In the following sections we discuss some
simple examples for p; and 4,.

{ll. FRIEDMANN UNIVERSE

Suppose

p; =const, @, = const, (3.1
then, from Egs. (2.14),

p=4mpar, k=tmpa;—a, (3.2)

so k is a constant. From Egs. (2.17)-(2.19) we can show
that 7, is also a constant and then a is independent of r. Thus
Egs. (2.15) and (2.16) reduce to

@ +k=%mpaia”’,

p=p.aia >, (3.3)
and the line element (2.13) reduces to

ds* =dt’ — a*(t)[dr/(1 — kr?)

+r?(d8* +sin’ 0de?)].

This is just the Friedmann universe.

(3.4)

IV. SCHWARZSCHILD SOLUTION

For Schwarzschild fields we can construct the comov-
ing coordinates as follows. Imagine that the space is filled up
with a dense cloud of freely falling test particles whose mass
are negligible, and each particle is given a fixed radial coordi-
nate label and carries along a little clock. The space-time
coordinates r and ¢ of any event are defined by taking r as the
radial label of the particle that is just going by when and
where the event occurs, and by taking ¢ as the time then
shown on that particle’s clock. This coordinate system is
useful throughout the region occupied by the particle cloud,
for whatever interval of time in which particle trajectories do
not cross.

In this comoving frame the initial distribution of the
mass density should take the form

(4.1)

where m is the total mass of the point source. Without loss of
generality we set @; = 1, then Eq. (2.14) gives

p:(r) = m&(r),

(4.2)

By properly choosing the initial velocity 4,, we obtain three

p=m.
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particular kinds of comoving coordinates for the Schwarzs-
child solution, which we list below without detailed calcula-
tion.

(i) k> 0. We choose

a,=0, (4.3)
then 5, = 7 and

7 —sinng =17+ (2/r\2m/r(t—t,), (4.42)
ds* =dt?* — }(1 —cos )*{(1 — 2m/r) !

X[l _isinn(n—sinn—ﬂ')]zdr2

2 (1 —cos7)’

+r2(do? +sin*0dp?)}. (4.4b)

(ii) k = 0.

ds=dr* — [1+ (3/2r\2m/r(t —t,)] ~ ¥ dr?
_ [l + (3/2r)ﬁ'n_/;(t_tf)]4/3r2(d62

+sin’ 6dgp?). (4.5)
(iii) £ < 0. We choose
al=4m/r, (4.6)
then
cosh 7, =3, (4.7a)
sinh 9 — 0 =sinh 9, — 7, + (2/PN@m/r) (1 — 2)7’19
(4.7b)

ds® =dt* — (cosh p — 1)*{(1 +2m/r) ="

. . . )
X[l 3 sinh n(sinh 7 — 5 — sinh 7, + 7,) ] i
2 (coshn — 1)
+r3(d? +sin 6dp)}. (4.7¢)
We should point out that there are infinite kinds of co-
moving coordinates for the Schwarzschild solution, corre-
sponding to different choices of the initial velocity &;. This
just reflects a trivial fact that one can use test particles with
different initial velocity to test the Schwarzschild fields. The
work on the relation of these comoving coordinates to the
standard Schwarzschild coordinates is in progress.

V. INHOMOGENEOUS COSMOLOGICAL MODELS

Generally, we can construct any spherically symmetric
and radially inhomogeneous cosmological models. Here is a
simple example.
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Suppose
pi(r)=p.e (5.1
where p, and R are two constants. Then, from Egs. (2.14),
we obtain
u(r) =4mp.a;R*[2 —R ~%e~"R(r*+2Rr+2R?].
(5.2)

—r/R
s

From this equation we find

lim u(r) = 8mp.a;R°. (5.3)

Thus we get a cosmological model in which the total matter
of the universe is finite.

We can take an arbitrary choice for the initial velocity a;
of the dust in the model. For example, we choose

aX(r) = a[2u(r)/a;,r*], a= const, (5.4)

then, from Eqgs. (2.14), the three cases fora>1,a =1, and
a <1 correspond to k<0, k=0, and k>0, respectively.
From Egs. (2.17) and (2.19) we find that %, = constant.
The remaining calculation in Eqgs. (2.13)-(2.19) are not
very difficult.

VI. CONCLUSION

The general dust solution with spherical symmetry in
comoving coordinates contains three arbitrary functions
u(r), f{r), and n(r). It is of great significance to determine
these functions for a given physical system. In this paper we
have decreased the number of free functions from three to
two by rescaling the radial coordinate on the initial surface.
Then we have chosen two physically meaningful quantities,
the initial mass density and the velocity of the dust, as initial
data to reexpress the solution into an initial value formula-
tion. Following this formulation we have derived, as special
cases, the Friedmann universe, the Schwarzschild solution,
and a spherically symmetric and radially inhomogeneous
cosmological model containing finite matter. Some more ap-
plications in cosmology and astrophysics are also possible.
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Starting from the initial value formulation of dust solution given in the preceding paper [J.
Math. Phys. 31, 2459 (1990)] a relativistic perturbation equation and its general solutions in
spherically symmetric universes are derived. It is found that these solutions are in analogy with
the Bonnor-Weinberg results of the Newtonian theory and contain three modes: a growing

mode, a decaying mode, and a constant mode.

I. INTRODUCTION

In the preceding paper' we have expressed the spheri-
cally symmetric dust solution of general relativity into an
initial value formulation that can be summarized in the fol-
lowing.

The line element takes the form

—1_1.1\2
ds = di? — g2y | At 9 @) 4

1—kr?
+r2(d92+sin26dy2)], (1.1)
with
k=2usa,r —a}, (1.2a)
,u=417'a,-3J:p,-r2 dr, (1.2b)

where prime and dot represent partial derivatives with re-
spect to r and ¢, respectively; a,, @;, and p; are the initial
values of the scale factor g, its expanding velocity @, and the
mass density p, respectively; and g; is a constant and a,, p,, 1,
and k depend only on 7. The field equation is

@ + k=2u/ar, (1.3)
and the evolution of the mass density is
p=p.a’a*(ra)'. (1.4)

Suppose the universe is expanding at the initial time ¢,, then
the solutions of Eq. (1.3) are as follows.
(i) k>0:

a=a,[(1 —cosn)/(1—cosn,)], (1.5a)
N —siny =1, —sin 7y, + (1/p) [ (u/a;r)
X (1 —cos 3,)]*?2 (¢t —t,), (1.5b)
1 +cosn, =u'a,a’r. (1.5¢)
(i) £ =0:
a=a,[1+—3—\/—7i‘(t—t,‘)]m. (1.6)
2a;r ar
(iii) £ <O:
a=a,-[(cosh17—1)/(cosh7;,.—1)], (1.7a)
sinh 7 — 7 =sinh 5, — 9, + (1/p) [ (u/a;r)
X (coshy, — 1)]**(t—1¢,), (1.7b)
1+ cosh g, =pu~'a,a,%r. (1.7¢)
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Note that, generally, these solutions can describe any spheri-
cally symmetric cosmological models of dust universes. The
isotropic and homogeneous Friedmann universe is just a
particular model in which the initial velocity @, and mass
density p; are constants.'

One of the most significant problems in cosmology is the
formation of galaxies. The first Newtonian theory on this
problem was proposed in 1902 by Jeans.? His theory uses a
static fluid as the background and therefore does not de-
scribe the actual situation in our universe. The first relativis-
tic theory of the instabilities in an expanding universe was
given in 1946 by Lifshitz,® and an important development of
Newtonian theory in describing an expanding universe was
given in 1957 by Bonnor.* All of these works are well
known, but we have noticed another useful way to think of
the problem. That is, one can also use the spherical dust
solution to study the spherical mode of the perturbation. It

* was shown® that the unperturbed Newtonian equations pro-

posed by Zel’dovich® can be derived from the homogeneous
Friedmann universe. A spherical perturbation will violate
the radial homogeneity of the Friedmann universe but still
has the spherical symmetry. Therefore, we expect that the
spherical perturbation equations may be derived from the
general dust solution. In fact, Lemaitre’ was the first (of
many) to notice that the dust solution is a pleasantly simple
generalization of the usual homogeneous cosmological mod-
el. A detailed discussion for the spherical mode of the pertur-
bation in dust universes was given by Peebles.® Now from
Egs. (1.1)-(1.7) we see that the dust solution has been suc-
cessfully expressed into an initial value formulation with
physically meaningful quantities p,, the initial mass density,
and &;, the initial expanding velocity of the universe, as ini-
tial data on the initial surface ¢ = t; = const. Therefore, we
are now in a position to be able to treat the spherical mode of
the perturbation as an initial value problem, and this is the
purpose of this paper.

Il. PERTURBATION EQUATION

There are three initial quantities a,, a;, and p; on the
initial surface t = ¢, = const, in which g, is a constant and g,
and p; are of physical significance. Now we seek the pertur-
bation equations, by adding initial perturbations 84, and dp;
to the background quantities &; and p; on the initial surface.
Since da, and 8p, are also initial data, so they are functions of
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ronly. Now insert 8p; into Eq. (1.2b), we get a perturbation
S as

Su = 47ra,3f 8p; r*dr,
0
so Sy is also a function of r only. By using Eq. (1.2a) we
rewrite the background equation (1.3) into the form
@ —2u/ar = a* —2u/a,r. (2.2)

Then, to first-order in perturbations 8a, 84, 5u, and 84,, this
equation gives

(2.1)

2.3)

Since a; keeps invariant in the perturbation, so a must satis-
fy the constraint

da(t=t;,r) =6ba; =0. 2.4)
Without loss of generality we suppose
da = (a/3u)béu + ba,, (2.5)

then by substituting this equation into Eq. (2.3) and using
Eq. (2.2) again, we can reduce Eq. (2.3) into a simple form

ada, + (u/a’r)da, = A(r), (2.6a)
where
A(r) =a, 84, —(a + £ ) 5’“ (2.6b)
-

This is the fundamental dlﬁ'erentlal equation that governs
the growth or decay of the perturbations in expanding dust
universes with spherical symmetry. The fractional change in
density can be derived from Eq. (1.4) by keeping only the
first order of perturbations,

Sp _Op. 28a (réa)

p pa (ra)’
Therefore, the density contrast §p/p can be obtained from
this equation if the solution of Eq. (2.6a) is known.

2.7

1. SOLUTIONS

There are two methods to obtain the perturbed solu-
tions. The first is to integrate the perturbation equation
(2.6a) directly. The second is to use the general solutions
(1.5)—(1.7) because the perturbed field still has the spheri-
cal symmetry and still satisfies these equations.

A. Method (1): Integrating the perturbation equation
(2.6a)

We find that the perturbation equation (2.6a) can be
transformed into another form. Differentiating Eq. (2.2)
with respect to ¢, we find

plair = —a. (3.1)
Substituting this equation into Eq. (2.6a) we get
aba, —aba, =A(r), (3.2)
then
ba, =A(r)i1J‘_i—2t. (3.3)
a

Combined with Eq. (2.5), we find
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b _ ‘5“ +AC )—f"’ (34)

a

The scale factor a(¢,r) is given in Egs. (1.5)-(1.7) for
the three cases k>0, k =0, and k <0. Substituting these
expressions of a(z,r) into Eq. (3.4) and integrating it direct-
ly, we obtain the fractional change in scale factor a(z,r) as
follows.

(i) k>0:
ba _ bu a,r’A(r) [~377sin1] 5+ cosy
a 3u pu(l—cosn)l(l—cosn)®> 1—cosy
sin 17
C _ 3.5
+ l(r)(l_cosn)z] (3.5a)
(5+cosn;)(1—cos7,)
C (r) =3y, — 77. 7
sin 7,
1— )38
(1~ cos ;)6 (3.5b)

B 3a,rPA(r)sin gy,
(ii) k= 0:

2/3
ba _ou  ardn [[1+ 3 [ (t—t)]
a 3u Su 2a;r ar
—1
3 [ (t~tf)] ] (3.62)
2a;r ar

+C(r)[l+

C,(r) = — 1 — 58u/3a,PA(r). (3.6b)
(iii) k< 0:
ba _bu a,rA(r) — 37 sinh g
a 3u  p(coshn, —1) L(coshn —1)°
5 4+ cosh +q sinh 7 ] . (3.72)
coshy — 1 (cosh77— 1)2
5 + cosh ;) (cosh 5, — 1
C;(r)=377,-—( 7)( 7 )
sinh 7,
hy, —1)3§
_ (cosh7; — 1)7ou (3.7b)

3q,r°A(r)sinh 7y,

In the above equations, C, (r), C, (r), and C, (#) are con-
stants of integration and are determined by Eq. (2.4), i.e., by
the constraint that on the initial surface we must have
ba=0.

Compared to Eqs. (3.5)-(3.7) with the discussion giv-
en by Weinberg® we find that in all three cases of &, the
fractional change in the scale factor da/a contains three
modes: a growing mode (8a/a),, a decaying mode
(éa/a) _, and a constant mode (éa/a),. The constant
mode is

(i’-) ~OM  forallk, (3.8)
a o 3#
and the other two modes are as follows.
(i) k> 0:
fo) — 3y si
(__2_) - 17sm172+5+cosn’ (3.92)
a/+ (1—cosny) 1 —cosq
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sin

5a)
—_ C (r) —————. 3.9
(a i (1 —cos n)? (399)
(i) k=0:
2/3
(ﬁ‘i) «[1+—3— -2ﬁ(t—t,.)] . (3.10a)
al 2a;r ar
—1
(@_) o:Cz(r)[1+-—:i— /—%H-(t—t,)] .
a/_ 2a;,r a;r
(3.10b)
(iii) k<0:
(é(_z_) « —3ysinhy | 54 coshy ’ (3.112)
al/+ (coshnyp—1)2 coshy—1
&z) sinh
= C(r) ——————. 3.11b
(a _ 5 L (cosh — 1)? ( )

We can see that all these expressions (3.9)-(3.11) are very
analogous to those derived by Weinberg® based on the New-
tonian theory with differences in two aspects. First, in New-
tonian theory given by Bonnor* the growing mode and de-
caying mode are two independent solutions of the
perturbation equation, while in the present theory the three
modes are just different terms of a single solution of the equa-
tion and each has a definite coefficient. Second, in Newtoni-
an theory the background field is the Friedmann universe,
while in the present theory the background field can be any
spherically symmetric dust universes that include the Fried-
mann universe as a special case.

B. Method (2): Using the general solutions (1.5)-(1.7)

Since the perturbed field still satisfies the general solu-
tions (1.5)-(1.7), so we can seek the perturbed solutions by
adding small perturbations 8¢, and 8u directly to these solu-
tions and keeping only the first-order perturbation terms.
The results are listed in the following.

(1) k>0
i sin 7;
50—0[ SNY gy 57,,.], (3.12a)
I —cosy 1 —cos;
5 _l—cosn,[ [ 3sin %, &7, 6/4]
7 1 —cosy "2l —cosy) 2
Xn—smn—n.»+smn,-]’ (3.12b)
1 —cos 7y,
1 [ 6a;
5, = ___t_"ﬂ(zﬁ_fs_#), (3.12)
sin 7, a; u
(i) k=0
—1
éa_zﬁ‘.‘_{l_[u.i_ —zi‘—(t—t,.)] . (3.13)
a 3u 2a;r ar
(iii) £ <O:
inh sinh 7,
Sa—g|_Sithn 5 smhm ] 314
[coshn——l " coshy, — 1 g (-142)

coshy, — 1
577=—-—n—[577,-+[

3 sinh 7,67, ou ]
+ —
coshp — 1

2(coshy, — 1)  2u
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sinh » — % — sinh 7%, 4
Siphm — 75 — sin 17,+17,]’ (3.14)
coshy;, — 1
hy, +1 /[ ba;
5y, =00t 1 (zi_‘S_f‘). (3.14c)
sinh 7, a; 7’

After a straightforward and careful calculation with use
of Egs. (1.5), (1.7), and (2.6b), we obtain precisely the
same results as Egs. (3.5) and (3.7) for k>0 and k<0,
respectively, with expressions C, () and C, (r) being deter-
mined automatically and without using the constraint (2.4).
The result (3.13) of the k = 0 case differs from Egs. (3.6) by
an absence of the growing mode. The reason is that the solu-
tion (1.6) requires precisely a,”> = 2u(a,r’) ' (ie., k =0),
which gives ¢,6a, = (a,r’) ~ '8u, and then A(r) = 0, which
reduce Eqgs. (3.6) into (3.13). Generally, if the unperturbed
universe is of k = 0, then the perturbed universe must be of
k>0 or k <0. Therefore, the general perturbed solution in
k = 0 case should be Egs. (3.6).

IV. DISCUSSION

(i) The interpretation of the density perturbations in
relativistic perturbation theory is a difficulty. While the den-
sity p is a scalar under coordinate transformations, the den-
sity perturbation Jp is not invariant under infinitesimal
coordinate transformations; p is a gauge-dependent quanti-
ty.'® Here, gauge is a choice of a one-to-one correspondence
between points in the background space-time and points in
the perturbed space-time. Different gauge choices can give
different results for p.!' Therefore, we should clarify the
meaning of the density perturbation dp introduced in this
paper. We know that the coordinate system in the dust solu-
tion (1.1)-(1.7) is a comoving proper-time orthogonal sys-
tem in which 7 is the proper time of the dust particle and r is
its radial coordinate label. Furthermore, the density pertur-
bation introduced in Sec. I1 is of the definition

op =p,(t,r) —py(L1), 4.1)

where p, is the density of the perturbed space-time and p,, is
the density of the background space-time, both at the same
proper time ¢ and for dust particles having the same radial
coordinate label r. Imagine that there are two ¢ = const co-
moving hypersurfaces; one is in the perturbed space-time
and the other is in the background space-time. Then the con-
straint (2.4) tells us that at an initial moment these two
hypersurfaces coincide and observers on these two hypersur-
faces synchronize their clocks to read ¢, and are assigned a
same radial coordinate label 7. It should be pointed out that
at a followed moment these two hypersurfaces might be sep-
arated practically. Thus the density perturbation dp intro-
duced in this paper just measures the difference of the mass
densities on these two hypersurfaces at the same proper time.
The interpretation of other perturbation quantities, such as
ba and ba, is in analogy with §p. From the metric (1.1) and
above discussion we can see that the gauge used in this paper
also satisfies the synchronous gauge used in Refs. 8 and 9.
(ii) It is of great interest to compare the relativistic per-
turbation equation (2.6a) derived in Sec. II and the Newto-
nian perturbation equation derived by Bonnor. In order to
do this we set da, = ae in Eq. (2.6a), then differentiate it
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with respect to ¢ and use Eq. (3.1). Then we get
€+ (2a/a)é — Bu/a’r)e =0. (4.2)

If the background space-time is the isotropic and homoge-
neous Friedmann universe, we have'

p=pa’a’, p=inpa’r, (4.3)
so Eq. (4.2) reduces to
€+ (2a/a)é — 4mpe = 0. 4.4)

This is just the Bonnor equation of perturbation based on the
Newtonian theory with the pressure being ignored.*®

(iii) Now we consider the k& = 0 solution (1.6), from
which we find that for particles with radial coordinate label r
the beginning time ¢, corresponds to a(¢,,7) = 0 and can be
solved as

— 2a;r a.r
2u(r)

3
We see that generally ¢, is not a constant but a function of .
Thus we arrive at a conclusion that particles in an inhomo-
geneous dust universe are not “created” at the same time as
in the Friedmann universe. For the Friedmann universe we
have

t (4.5)

5

(4.6)

so, from (4.5), ¢, is a constant for all particles in the universe.
Therefore, we can reset the origin of the time axis so that
t =0 corresponds to the beginning time of the universe.
Then Eq. (1.6) gives @ <z*?, and, from (3.10) and (2.7),

_ 3.3
p=4mp,a;r,
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the perturbation modes in the k = 0 Friedmann universe are
(5_/0) « (ﬁ'_) s,
P/ + a/+
(2) «(2) w0
p/- al/_

as are expected.

Finally, we should point out that if the perturbation
quantities are not small compared to the corresponding
background quantities, we still can use the general solutions
(1.5)—(1.7) to determine the fractional changes of the scale
factor a(t,r) by, for instance, numerical method, and then to
determine the density contrast §p/p through Eq. (2.7).

(4.7a)

(4.7b)
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A necessary and sufficient condition for the stationarity of all time correlation functions
associated with a given globally linear classical dynamical system is rigorously established
from basic principles. Since stationarity of time correlation functions is a physical requirement
that must be satisfied, the necessary and sufficient condition obtained for its realization
represents a universal dynamical constraint on globally linear classical dynamical models
intended to describe the execution of spontaneous fluctuations about a stationary state. This
dynamical constraint is shown to (i) impose restrictions on the symmetry properties of the
transition operator appearing in the global propagator for a system; (ii) represent a universal
operator relation that embodies detailed balance and microscopic reversibility, giving rise to
their traditional formulations; and (iii) imply the existence of certain generalized symmetry
relations for time correlation functions and their Laplace and Fourier transforms. Apart from
elucidating some fundamental symmetries of classical dynamical systems, the reported theory
has the advantage of providing a simple model independent framework for treating classical
time correlation functions via the extraction and utilization of dynamically embedded
information. This is demonstrated in a concrete way by exploiting the mathematical apparatus
of dual Lanczos transformation theory to determine the advanced and retarded components of
the elements of the correlation matrices for first and second moment coordinate and
momentum fluctuations for the Brownian harmonic oscillator. The Laplace transforms of the
retarded components of the time correlation functions and the Fourier transforms of the full-

time correlation functions are also obtained.

I. INTRODUCTION

Recent work undertaken by us on the problem of deter-
mining spectral densities { Fourier transforms] of time cor-
relation functions' via the extraction and utilization of dy-
namically embedded information'? has prompted the
following basic questions. (i) Do there exist constraints on
the formal structure of the global propagator for a system?
(ii) Do there exist symmetry constraints on the transition
operator for a globally linear dynamical model intended to
describe the execution of spontaneous fluctuations about a
stationary state? The existence of such constraints is not only
important from a fundamental point of view but is also im-
portant from the practical point of view in terms of the actual
type of models that may be used to describe real physical
systems.

In this paper, we establish that constraints on the global
dynamics of classical systems do indeed exist. In particular,
a necessary and sufficient condition for the stationarity™* of
all time correlation functions associated with a given global-
ly linear classical dynamical system is rigorously established
from basic principles. Since stationarity is a physical require-
ment that must be satisfied, the necessary and sufficient con-
dition obtained by us for its realization represents a universal
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dynamical constraint on globally linear classical dynamical
models intended to describe the execution of spontaneous
fluctuations about a stationary state. We show that this dy-
namical constraint (i) imposes restrictions on the symmetry
properties of the transition operator appearing in the global
propagator for a system; (ii) represents a universal operator
relation that embodies detailed balance and microscopic re-
versibility, giving rise to their traditional formulations;*>~’
and (iii) implies the existence of certain generalized symme-
try relations for time correlation functions and their Laplace
and Fourier transforms.

Apart from elucidating some fundamental symmetries
of classical dynamical systems, the reported theory has the
advantage of providing a simple model independent frame-
work for treating classical time correlation functions via the
extraction and utilization of dynamically embedded infor-
mation."? This is demonstrated in a concrete way by exploit-
ing the mathematical apparatus of dual Lanczos transforma-
tion theory'>® to determine the advanced and retarded
components of the elements of the correlation matrices for
first and second moment coordinate and momentum fluctu-
ations for the Brownian harmonic oscillator.”#>*° We also
obtain the Laplace transforms®® of the retarded components
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of the time correlations functions and the Fourier trans-
forms' of the full-time correlation functions.

Il. BASIC STRUCTURE OF THE GLOBAL DYNAMICS

In order to determine the spectral density (Fourier
transform) of a time correlatioQ function, it is necessary to
introduce a global propagator U(¢) that bears information
about the time-reversal properties of a system by including
both the forward and backward time evolution."'® The usu-
al propagator exp( — L¢) is insufficient when the transition
operator L possesses broken time-reversal symmetry, ie.,
when L # — L where L is the time- reversed form of L. Of
course, the usual propagator exp( — Lt) is sufficient when
we are dealing with a reversible system, i.e., when the sym-
metry relation Z = — L applies.

On the basis of time-reversal arguments, we can assert
that the backward time evolution of a system is given by
o( — t)exp(Zt), where 6( — ¢) is the Heaviside step func-
tion. Hence, we write the global propagator U(¢) in the form

T =0>@0) + U=, 2.1)
where

U> (1) = 8(t)exp( — L) (2.2)
and

U<() = 6( — exp(Lo). (2.3)

TABLE L. Properties of the classical phase space representation.

In the above, U> (¢) and U< (1), respectively, describe
the retarded (forward in time) and advanced (backwa;\d in
time) dynamics of a system. The global propagator U(¢)
gjven by Egs. (2.1)-(2.3) assumes the usual form
U(t) = exp( — Lt) for reversible systems when the substi-
tution L = — 2 is made.

Note that U (#) possesses the following properties. (i)
U(t) = U> (2) for t>0 and U(t) = U< (1) for 1 <O. (11)
lim, _,- U(Q =lim,_,. U> (=1 and lim,_,- U(t)
=lim,_, U< (¢) = 1. (iii) U(¢) is invariant with respect to
the time-reversal transformation Z,t—»z, -t

Property (iii) of the global propagator U(¢) is common
to both reversible and irreversible systems. Nanetheless, the
transition operator L, in general, possesses broken time-re-
versal symmetry even though the overall dynamics de-
scribed by U(¢) is time-reversal invariant.

The conditional transition probability P(I",z |T’,0) for
the system of interest to pass from the phase point I’ to the
phase point I'" during the time interval ¢ is given by

P(I't|T,0) = U(I",Tr) (2.4a)
= (I*’If/(t) (T), (2.4b)

where (I'’| and |I") are classical phase space state vectors
(see Table I).

Introducing the global propagator [7; (1) into Eq. (2.4b),
we resolve P(I",# |T',0) into advanced and retarded compo-
nents:

Definition of phase functions

A(T) = (T|4), A" () =(T|4")

Orthonormality relation

(M) = 8(T' = T)

Closure relation

T=ys,dr|T)(T]

r
Transition operator L

L= §.,dry, dl"’lF)L(I‘ F’)(F’| where L(I,I"") = (T, |L|I" L(I',I") is real by virtue of the requirement
that p(T;¢) be real. So, Lt=L"

Time-reversal transformation

R=f,drf, dT|T)R(L,I") (|, where R(,I") = 8(T' — I') = &(T — I').

~
operator R

R(ITY)1s real. So, R * R R is a real orthogonal operator satlsfym&R R
R'=R. Alternatively, Risareal unitary operator satisfying R'R =RR ' =

Time-reversal transformations

(4] = (4 ]R and |B) = R |B), where (4 | and |B) are time-reversed dynamical vectors. L = RLR is the time-
reversed transition operator.

Nature of inner products
(A4 |B) and (4 *|B)

(4 |B) isasymmetricinner product,i.e., (4 |B) =
(A°|B) = (B|A") and (4°|B) = (B"|A)".

(B|A4).(A’|B) isasymmetricand Hermitian inner product,i.e.,

Relationship between
vectors

A|=10"(T| =), and |T*) = |T). Also, (4°| = |4)" and (I'’| = [T')* = |I)". The requirement that
(T*| = (T} or |T'*) =|T') follows from self-consistency arguments.

Conservation of probability

(1] = (ljexp( Lo for t>0and (1] = (1{exp(Lt) for <0, where(1| = f,dT(I|. Hence, (0| = (lll’:’“and
(0] = (1|L’+l or {,dIl’ L(I'\[)Y*Y =0 and §,dI" L(I",T)Y*" =0 for all />0 and accessible phase
points {I'}.

Detailed balance

~

=Ll or L) =L L, (L)

™~
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P(I",t|T,0) = P> (I",t|T,0) + P <(I",t|[,0), (2.5)

where

P>(I',t|T,0) = U > (I",I0) (2.6a)
=(I'|U > ()|T) (2.6b)
= 8(1)(I”|exp( — LD|T) (2.6¢)

and

P<(I't|[,0) = U <(I",T3t) (2.7a)
=(I'|U <()|T) (2.7b)
= 0( — t)(T"|exp(LD)|T). (2.7¢)

It should be noted that P(I",t |T',0) = P> (I'",¢ |I',0) for
t>0and P(I',t|T',0) = P< (I'',¢ |I,0) for t <0. Also, note
that P(I",¢ |I',0),P> (I",¢ |I',0), and P=< (I",¢ |I',0) satisfy
the initial conditions

lim P(I",t|I,0) = lim P> (I",t|T,0) (2.82)
-0+ t—-07%
=6(I'-T) (2.8b)
and
lim P(I",t{T,0) = lim P <(I",t|TI,0) (2.9a)
-0~ —0°
=§I"-T) (2.9b)
by virtue of the orthonormality relation (I'|T")

=8(I" —T') (see Table I).

Assuming that we are working with a closed system,
(It |T,0),P> (I',t|T,0), and P< (I",¢|I',0) are properly
normalized,i.e.,

f dT' P(I",t|T,0) = 1
2

for all ¢, (2.10)
J) dT'P>(I"t|T,0) =1
for t;O, (2.11)
and
J) dT'P<(I't|[,0) =1
for t%O, (2.12)

where the integration over I' is restricted to the accessible
phase space 2. The above may be readily established from
the conservation of probability relations

J dT(T|exp( — L) =f dT(T)
R 24

for t>0and

f dT(T|exp(Lt) =f dI(T|
2 2

for t <0 (see TableI).

It follows from Eqs. (2.6c) and (2.7c) [also, see Table
I.] that the retarded and advanced components of the condi-
tional transition probability P(I",¢ |I',0) satisfy the symme-
try relations
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P>(I',t|T,0) = P <(I", — t|T,0)
and
P<(I"t|T,0) = P> (I, — ¢ T,0), (2.14)

where ' = ( — p,q) is the time-reversed phase point corre-
sponding to the phase point I' = (p,q), with p and q, respec-
tively, denoting the collective momentum and collective co-
ordinate vectors for the particles of interest.

Making use of Egs. (2.5), (2.13), and (2.14), we find
that the conditional transition probability P(I",¢ |I',0) pos-
sesses the symmetry

P(I",t|T',0) = P(T", — ¢ |T,0). (2.15)

It should be noted that this symmetry relation and those
given by Egs. (2.13) and (2.14) apply independent of
whether or not the transition operator L possesses broken
time-reversal symmetry. The symmetry property given by
Eq. (2.15) is usually associated only with globally reversible
systems.'!

(2.13)

Il. NECESSARY AND SUFFICIENT CONDITION FOR
STATIONARITY

Consider the equilibrium averaged time correlation
function C, ; (¢) characterizing the correlation between the
classical dynamical variables A(I") and B(I") for a closed
classical system for all time ¢, including £ <0 and > 0. We
define C, ; () by?

Ci3() = ({4(1)B(0)))gq (3.1a)
=f dI‘J dT" A(I')P(I",t T,0)
i 2
X B(I)pgq (), (3.1b)

where pgq (I') is the equilibrium probability density at the
phase point I'. The double bracket notation in Eq. (3.1a) has
been used to indicate that the time correlation function
<A(t)B(0) > g describes fluctuations in both the forward
and backward directions of time.

With the resolution given by Eq. (2.5), we can resolve
the time correlation function C,, ; (¢) into retarded and ad-
vanced components:

Cp(1)=C35(t) +C5p(0), (3.2)
where
Cistn = [ ar[ araaip-@.eiro
2 2
XB(I)peq (I (3.3)
and
Cis=[ ar[ A@)pairo
2 2
X B(T)pge (). (3.4)

Making use of the inner products (4 [I") = A(I") and
(T'|Bpgg) = B(F)peo (') and the closure relation 7
= (,dT|T)(T| (see Table I), we cast C, ;(),C ;5(2),
and C {(?) into the following forms:
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Cas (1) = (4| U(1)|Bpeq) (3.52)

= 0()(A |exp( — Lt)|Bpgo)
+ 6( — 1)(4 |exp(Lt)|Bpgo), (3.5b)
C35(1) =410 (0)|Bpgq) (3.6a)
= 0()(A lexp( — Lt)|Bpgo), (3.6b)

and

C 55 (1) = (4|U (1) | Bpeq) (3.7a)
= 6( — 1)(4 |exp(Lt)|Bpgo)- (3.7b)

Let us make use of Eq. (3.5b) to establish that the sym-
metry relation

L=LL (3.8)
is a necessary and sufficient condition for the time correla-

tion function C, ;4 (?) to be stationary, as embodied in the
relation™*

Cip(1) =Cp(~0) (3.9)

or

<<A(Z)B(O)>)EQ = ((B( - t)A(O)))EQf
for all dynamical variables 4 and B.

The operator L , appearing in Eq. (3.8) is the trans-
pose of the transformed transition operator

Erg =50 T5r0,
where the operators SEQ and S o are defined insuch a way
that SEQ |4) = |4peq ). SEQ [Apeq) = IA), (4 LSEQ

= (Apgq,|, and (Apgq [S Q= (A |. Also, SEQ and S gq

possess the properties SEQS o = =5 EQ‘SF_Q =7 S
= Sm, and (SE‘Q‘) = S

Making use of the transformatlon given by Eq (3.11)

and the properties of the operators SEQ and S & Eq» We write
Eq.(3.5b) in the form

(3.10)

(3.11)

C,5(t) = 0(t)(Apgq exp( — EQt)IB)
+ 6( — )(4pgq |exp(LEQt) | B). (3.12)
This equation may be rewritten as
Con(t) = 0(8)(B lexp( — L 1y1)|4pgq)
+ 6( — 1)(B |exp(L Ly1)|Aprg).  (3.13)
It is clear from Eq. (3.5b) that
Cp (—1) = 0()(B |exp( — Lt)|Apg,)
+0( — (B lexp(Ln)|dpsy).  (3.14)

Upon comparing this equation with Eq. (3.13), we conclude
that the symmetry relation given by Eq. (3.8) is a necessary
and sufficient condition for the time correlation function
C, 5(2) to be stationary, as embodied in Eq. (3.9), for all
dynamical variables 4 and B.

Since the stationarity condition given by Eq. (3.9) or
(3.10) is a physical requirement that must be satisfied, it is
clear that the necessary and sufficient condition given by Eq.
(3.8) for its realization represents a universal dynamical
constraint on globally linear classical dynamical models in-
tended to describe the execution of spontaneous fluctuations
about a stationary state. If this constraint is not satisfied,
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stationarity will be violated for some or perhaps all dynami-
cal variables. R

Since the transition operator L must conform to Eq.
(3.8), Eq. (3.5b) may be cast into the form

Cs(1) = 0D |exp( — L1)|Bogo)

+ 8( — 0)(B |exp(Lt) |4pgo). (3.15)
In writing Eq. (3.15), we have made use of the fact that the
advanced component C § 5 (f) [see Egs. (3.2), (3.5b), and
(3.7b)] of C,, x (¥) may be written

Ci5(t) =0( — t)(Blexp(Lt)|Apeo) (3.16)
by virtue of Eq. (3.8).

Note that the universal dynamical constraint given by
Eq. (3.8) has allowed us to write both the retarded and ad-
vanced components of the time correlation function C, ; (¢)
in terms of matrix elements of the usual propagator
exp( — Lt) Apart from the Heaviside step function, the ma-
trix element (4 |exp( — Lt) |Bpgg) is simply the equilibri-
um-averaged time correlation function {4 (¢) B(0) )EQ char-
acterizing the correlation between the dynamical variables 4
and B in the forward direction of time. Making use of this
identification, we write C, 5 (1), C 7 5 (£),and C § 5 (¢) inthe
more transparent forms

Cap (1) = 8(1){A()B(0)) g

+6( — )(A( = DB(0))zq (3.17a)
=0 {A()B(0))gq
+ 8( — D {B( — 1)A(0))gq, (3.17b)
Ca(t) =6()(A(1)B(0))gq, (3.18)
and
C5s(t) =0(—1)(A(— DB(0))gq (3.19a)
=60(—1){(B(—1)A4(0))gqo- (3.19b)

The tilde in Eqs. (3.17a) and (3.19a) indicates that 4 and B
are time-reversed dynamical variables, i.e., A =4
and B(I') = B(T).

One can easily see from Egs. (3.15) and (3.17b) that the
time correlation function C, ;(#) does indeed conform to
the stationarity condition given by Eq. (3.9). Nonetheless,
the time correlation functions  {(A4(?)B(0))gq,
(A (— t)B(O) ) gQ, and (B( — 1)A(0) )EQ appearing in Egs.
(3.17a )A( 3. 19t3) are not stationary unlgss the symmetry re-
lations Lo = L [see Eq. (3.8)] and L = — L apply, i.e,
the underlying dynamics is reversible. In fact, one can easily
use our operator langugge to establish that the symmetry
relations Ly, = L and L = — L represent a necessary and
sufficient condition for the time correlation function
(A(2)B(0))gq to be stationary for all dynamical variables 4
and B. For such cases, we have

C.5(1) = (A()B(0))gq
= (B(— 1)A4(0) ) gq-

(3.20a)
(3.20b)
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IV. CONSEQUENCES OF THE UNIVERSAL DYNAMICAL
CONSTRAINT

Now that we have established that Eq. (3.8) is a univer-
sal dynamical constraint on globally linear classical dynami-
cal models, let us proceed to explore its consequences.

A. Stationary property of the equilibrium probability
density

_It is obvious from the properties of SEQ and S5 o that
(0|SEQ (0] and (1|SEQ = ( prq |- Making use of these re-
lations, the conservation of probability relation (1|L = (0|
(see Table I), and the dynamical constraint given by Eq.
(3.8), we find that (pEQIL = (0| or L|pEQ) =10).
Hence, the state vector | pgq ) is stationary with respect to
the retarded dynamics [see Eq. (2. 2)1

Now making use of the identity L | pgo ) = RL | PEQ)

see Table I], the conservation of probability relation
LT|1) = |0), see Table I, and the dynamxcal constraint giv-
enby Eq. (3.8), weobtain L |pEQ) =|0)orL | peo) = 10).
Hence, the state vector | pgq ) is stationary with respect to
the advanced dynamics [see Eq. (2.3)]. Combining this re-
sult with the result of the preceeding paragraph, we conclude
that the universal dynamical constraint given by Eq. (3.8)
and the conservation of probability ensure that | ggg, ) is sta-
tionary with respect to the global dynamics, i.e., U(?)| pgq )
= | prq) [see Egs. (2.1)-(2.3)].

B. Detailed balance and microscopic reversibility

The dynamical constraint given by Eq. (3.8) assumes
the following form in the classical phase space representa-

tion (see Table I):

L(TT) =LI, (), (4.1)
where
Lo (T,T) = peg! (T L(L,TY) pgo (T). (4.2)

Introducing Eq. (4.2) into Eq. (4.1), we obtain the fol-
lowing version of the principle of detailed balance for the
matrix elements {L(T,I"")} of the transition operator L

L(r,r')PEQ(I") =L(FI,F)PEQ (r), (4.3a)
= peo (DL T(T,I), (4.3b)

where the equality pg,, () = Peo (T) is assumed.
Examples of globally linear classical dynamical models
conforming to Egs. (4.3a) and (4.3b) are displayed in Table

II for the case of 1-D systems. In defining the transpose
L ™(T',I'") in Table II, we have made use of the relation

f dT| dT" $(T)L(T,T)x(I")

=j dI‘J dI’ y(T)LT(T,T)y(I™) (4.4)

and assumed that the phase functions ¢(I") and y (I") are of
such a character that the surface contributions may be ne-
glected. This assumption is equivalent to asserting that we
are dealing with a closed classical dynamical system and that
the phase functions #(T') and y(T') satisfy the appropriate
boundary conditions for ensuring the conservation of proba-
bility.'?

In writing Eqs. (4.3a) and (4.3b), we have allowed for
the use of both local and nonlocal dynamical models in the

PN A
TABLE II. Matrix elements of the dimensionless operators L, Lg,,. and L " in the classical phase space representation for “single particle, 1-D classical
systems” described by Liouville, Fokker-Planck, Smoluchowski, and BGK dynamics.

Dynamics Matrix elements of Z, L, and L "<

Liouville

L(p,ﬁﬁ,?z ) = [P(3/35) + €F(3) (8 /p)18(p —

P)6a—7q)

Leo (P9 7,§) = [p(8/3%) + €F(§)(3/Ip)16(p —F )G —F)
L7(pgp,q) = —p(3/3) — eF(§)(3/p)18(G—7)

Fokker-Planck

L(p,t7,[7',¢7 Y ={[p(3/3g) + €F(§)(3/p)] — n(8/3p) B + (3/3p) 1}6(F — F)6(G—F)
EQ (7.gF.¢) = {[p(3/33) + €F(§)(3/3p)] + n[p(3/3p) —

(3%/3F)1}6(p—P)6(g—7)

L7(p,gp.,§) = —p(3/3g) — eF(§)(3/p)] + n[p(3/Ip) — (3*/Ip)1}6(p —F)6(F — @)
BGK E(ﬁ,ﬁ;ﬁ’ﬁ') ={[p(3/99) + eF(§)(3/Fp)16(p — F') — &{Pree P) — 6B —F)}6(F—§
£EQ (p.gp.q) =1l —p(asog) —EF(q)(c?/c?ﬁ)]zS(p 7)) —g[Psee(P) — 6B —PF)118(G—7)
L"(p.gP.q) ={l —p(3/39) — eF(§)(3/3p))8(F — F') — 8o (F) —8(F —F) 1383 —7)
Smoluchowski Z(Tlﬁ') = —(1/7)(3/09)[(3/3g) — eF(@)18(F— 7T

Leo(38) = — (/337 + F@)(3/39)16(G - 7)
L7(G7) = — (I/m[(8*/5G") + eF(§)(3/316(7 — ')

“€ = (€s/kg T), where € is the energy scale, £ is Boltzmann’s constant, and T'is the equilibrium temperature. 7 =

(mB}qs/ky )" = (q5ky T/mD?)'"

and g = (mf2¢5/ky )"/, where B, is the friction coefficient in Fokker—Planck dynamics, D is the diffusion coefficient in Smoluchowski dynamics, £, is the
collisional frequency in BGK dynamics, m is the mass of the particle of interest, and g, is the length scale. g is the dimensionless coordinateg = g/¢ and pis

the dimensionless momentum p = p/ps, wWhere pg =
Ulg) = e, U(9). L ISL where ts = (mq5/ky T)'? is the time scale.

___.,

(mky T)'*. The dimensionless force F(g) =

— (d /dg)TU(g) has been introduced by writing

l’éand P in the symbol L(5,g;5',') is suppressed for the case of Smoluchowski dynamics.

¢ Lyo (P,@;P',q') has been determined by using the dimensionless canonical equilibrium probability density gg, (5,9) = Z

Z = fdpfdgexp[ — (P — €U ].
4 For the case of BGK dynamics, p; g0 (P)
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~lexp[ — (VP — U@ }, where

=Z; Vexpl — (Dp*), where Z, = fdpexp[ — (1) ']
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system phase space. For local models, such as Liouville and
Fokker-Planck dynamics, L(I,I")=L(I)é(I —-I"),
where L(I') is a differential operator (see Table II). For
such cases, Eq. (4.3b) assumed the differential form

L(D) [8(T — I")pgqo (I ] = pio (D) [L (DT —T)].
(4.5)

The above form is similar to the version of detailed balance
discussed by Haken,* Risken,*>®® and Stillman and
Freed® for generalized Fokker—Planck systems in detailed
balance. An account of the implications of the results of
these investigators is given at the end of this section.

The results given by Egs. (4.3b) and (4.5) reveal that
the universal dynamical constraint given by Eq. (3.8) is a
universal operator relation that embodies detailed balance
for both local and nonlocal globally linear classical dynami-
cal models. In essence, we have shown that the above ver-
sions of detailed balance may be derived from the necessary
and sufficient condition given by Eq. (3.8) for the stationar-
ity of classical time correlation functions. To our knowledge,
the concept of detailed balance has not been shown to
emerge in such a fundamental way from basic principles.
Usually detailed balance is simply a statement of commonly
held intuitive notions about the behavior of a system in the
state of equilibrium. Our results reveal that detailed balance
is much more fundamental. Given this observation, it is our
opinion that detailed balance should be regarded as a univer-
sal dynamical constraint as embodied in Eq. (3.8). Hence,
we shall refer to Eq. (3.8) as the universal operator formula-
tion of detailed balance.

If the transition operator L is invariant under the trans-
formation given by Eq. (3.11), i.e., Ly, = L, the universal
formulation of detailed balance given by Eq. (3.8) reduces to
the operator relation '

I=L" (4.6)

In the classical phase space representation, the above sym-
metry relation assumes the form of a version of microscopic
reversibility:

L(LT) =L 7(,I) (4.7a)
=L("I). (4.7b)

The above results reveal that microscopic reversibility is also
embodied in Eq. (3.8) and that it is a special case of detailed
balance. Henceforth, we shall refer to Eq. (4.6) as the uni-
versal operator formulation of microscopic reversibility.

_ For the case of Liouville dynamics, Ly, =L and
£ - L (see Table II). Hence, the symmetry relation
L 7= — T must be satisfied in order for Liouville dynamics
to be consistent with microscopic reversibility and more gen-
erally detailed balance As we indicated earlier, the symme-
try relation L7= -1 applies for Liouville dynamics only
when we are dealing with a closed system.

If Eq. (4.6) does indeed represent a universal operator
formulation of microscopic reversibility, we should be able
to use this symmetry relation to establish the usual formula-
tions given in terms of conditional transition probabilities.’
Making use of the relations

(I'|exp( — Lt)|T) = (Tlexp( — L T)|T")
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and
(T’ |exp(L1)|T) = (C|exp(L N |T)

and the formal expressions given by Eqgs. (2.6¢) and (2.7¢),
we find with the aid of Eq. (4.6) that

P>(I',t|T,0) = P> (L, |T,0)
and
P<(I',t|I,0) = P <(T ,:|T0). (4.9)

It follows from Eqgs. (2.5), (4.8), and (4.9) that the
conditional transition probability P(I",t|T,0) satisfies the
symmetry relation

(4.8)

P(I",t|T,0) = P(T',t |T",0). (4.10)
Combining this result with Eq. (2.15), we obtain
P(I",t|T,0) = P(T, — ¢ |T",0). (4.11)

The usual approach?® for establishing microscopic rever-
sibility as described by Eqs. (4.10) and (4.11) is to employ
complicated arguments based on causality and the time-re-
versal invariance of Hamilton’s equations. Although this ap-
proach is useful, it only establishes sufficient conditions for
the realization of microscopic reversibility as described by
Eqgs. (4.10) and (4.11). In sharp contrast to the usual ap-
proaches, we have established Egs. (4.10) and (4.11) in a
rather trivial fashion without appealing to any dynamical
model and demonstrated that they are simply a consequence
of a special case of the universal dynamical constraint given
by Eq. (3.8). To our knowledge, Eqgs. (4.10) and (4.11)
have not been established before in such a simple and elegant
fashion based solely on universal symmetry principles.

Now let us show that the universal dynamical constraint
given by Eq. (3.8) leads to the formulation of detailed bal-
ance given in terms of joint probabilities, i.e.,>>"

P(L,t |T",0)pgq (I) = P(I",t |T,0)pgo (T),
where the equality pgq ()
of  the _ initial
= O(" — T)pgq ().

Making use of Egs. (2.6¢) and (2.7c), we can write the

retarded and advanced components of the joint probability
P(T,t |I",0)pgo (I) as

(4.12)

= pge (I') is required by virtue
condition (I —T")pge (I'M)

P> (Lt [T',0)pgq (I') = B(t)(TJexp( — Lt) [Tpgo)
(4.13)
and
P <(I,t T",0)pgq (I) = 6( — 1)(T|exp(Lt) |Tpgo)s
- (4.14)

where the components of the dynamical vector [I"pg, ) are
given by (I'|I'pgq) =8(T — I")pgq (I') in the classical
phase space representation (see TableI).

With Egs. (4.13) and (4.14) at our disposal, we can
make use of the transformation given by Eq. (3.11) and the
universal dynamical constraint given by Eq. (3.8) to write

P> (T,t [T',0)peq (I') = P> (", |T,0) pge (1)

(4.15)
and
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P <(T,t|T",0)pgq (T') = P < (I",¢ |T,0)pgq (T).
(4.16)

The version of detailed balance given by Eq. (4.12) follows
from the above symmetry relations and Eq. (2.5).
Making use of the conservation of probability relations

J dT(Tlexp( — L) =f dT(T)
2 2
for £>0and

f dT'(T|exp(Lt) =J dr(r|

2 R

for 1<0 (see Table I), the relations L |Peq) =1|0) and

L |pgo) = |0) obtained in Sec. IV A, and Egs. (4.13) and
(4.14), one can very easily establish that

J dT P> (It |I",0)pge (') = pgo (I') 4.17
and
f dT' P> (It |I",0)pgo (I') = peqo (I)
2
for t>0, and (4.18)
f dT' P < (It |T",0)pgo () = pgo (T7) (4.19)
2
and
J dI’ P <(L,t |I",0)pgq (I') = pgqo (I)
2
for t<0. (4.20)

It follows from Egs. (2.5) and (4.17)—(4.20) that the
joint probability P(T,t |I",0)pgq (I'') possesses the proper-
ties

f} dT P(L,t |T",0)pgo (I') = pgo (T) (4.21)

and

f} dI" P(T,t |T7,0)pgo (T') = pgo (). (4.22)

The results given by Egs. (4.12), (4.21), and (4.22)
resemble the properties of the joint probabilities for so-called
“coarse-grained” variables in the de Groot-Mazur treat-
ment of detailed balance in their formulation of the statisti-
cal foundations of nonequilibrium thermodynamics.** The
de Groot—-Mazur treatment of this problem is quite compli-
cated, relies on the use of Hamilton’s equations, and applies
only to “coarse-grained” microcanonical ensembles de-
scribed by reversible dynamics. In sharp contrast to the de
Groot-Mazur treatment, we have established Egs. (4.12),
(4.21) and (4.22) in a rather trivial fashion without any
reference to a specific dynamical model other than requiring
that the dynamics conform to the universal operator rela-
tions embodying detailed balance and conservation of prob-
ability.

Starting with the argument that detailed balance is a
physical property common to systems in thermal equilibri-
um and to those in more general stationary states described
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by a potential function, Graham and Haken® used a version
of detailed balance identical in form to Eq. (4.12) to derive a
set of restrictive conditions (called potential conditions) on
the drift and diffusion coefficients in generalized Fokker—
Planck equations. They showed that this set of conditions
ensure that a Fokker—Planck equation satisfies detailed bal-
ance and guarantee that it is always possible to explicitly
determine the stationary solution of a Fokker—Planck equa-
tion by quadratures.

The results of Graham and Haken®*® were further elu-
cidated by Risken.’®®® More specifically, Risken®® estab-
lished that a version of detailed balance, identical in form to
Eq. (4.5) represents a necessary and sufficient condition for
detailed balance as described by Eq. (4.12) for the case of
local generalized Fokker-Planck systems. Furthermore,
Risken®® showed that this localized version of detailed bal-
ance provides a simple starting point for deriving the above-
mentioned Graham—Haken potential conditions.

The utility of the Graham-Haken—Risken treatment®
of detailed balance in stochastic modeling has been demon-
strated by Stillman and Freed.® In particular, these investi-
gators showed that the Graham-Haken potential condi-
tions® could be employed as a vehicle for correcting Fokker—
Planck equations® that fail to describe relaxation to the cor-
rect stationary state due to their violation of detailed bal-
ance.

C. Generalized symmetry relations

Now let us show that the universal dynamical constraint
given by Eq. (3.8) implies the existence of certain general-
ized symmetry relations for C,5(2),C;5(2),C;,(2),
¢ ;.5(2) [Laplace transform of C;;(#)], and €7 ; (iw)
[Fourier transform of C, 5 (¢) ].

The symmetry properties of the retarded and advanced
components of the time correlation function C, , (#) may be
established by starting with Egs. (3.6b) and (3.7b) and
adopting a procedure similar to the one used for establishing
Egs. (4.15) and (4.16). Taking this approach, we obtain

Cis()y=C35(D (4.23)
and

Cig(t)=Cz53(0. (4.24)
It follows from the above relations and Eq. (3.2) that the
time correlation function C, 5 (f) possesses the symmetry

Cas(t) =Cy;(0). (4.25)

Equations (3.2), (3.6b), and (3.7b) imply the follow-
ing additional symmetries for C;;(), Cj5,(¢), and
C.p(t):

Cis()=Ciz(—1), (4.26)

Cip()=C33(—=1), (4.27)
and

Cia()=C55(—0. (4.28)

Note that the symmetries given by Egs. (4.25) and (4.28)
are consistent with the stationarity condition given by Eq.
(3.9).

Itis evident from Eq. (4.23) that the Laplace transform
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% ;5 (2) of the retarded component C ] ; (¢) of the time cor-
relation function C, ; () satisfies the symmetry relation

C18(2) =%F32(2). (4.29)

The stationarity condition given by Eq. (3.9) and the
symmetry relation given by Eq. (4.25) may be used to estab-
lish the following symmetry relations for the Fourier trans-
form €% g (iw) of the time correlation function C, 5 (2):

¢ hplio) = €55 (iw) (4.30)
and
Chpliv) =C5 . (—iw). (4.31)
Clearly,
palio) = €5, ( —iv). (4.32)

It should be evident that all of the symmetry relations
given by Egs. (4.23)—-(4.32) are a consequence of the univer-
sal dynamical constraint given by Eq. (3.8). Hence, they
have universal applicability for all acceptable globally linear
classical dynamical models. Clearly, the violation of these
symmetry relations is a symptom of the use of an unaccepta-
ble model that violates Eq. (3.8). If this is indeed the case,
the stationarity condition given by Eq. (3.9) is also violated.

For cases in which the dynamical variables 4 and B pos-
sess definite time-reversal parity, the generalized symmetry
relations given by Eqgs. (4.25), (4.29), (4.30), and (4.32)
assume the well-known forms'?

Cip(1) =A,45Cp 4 (1), (4.33)

%ZB(Z) =/1A/?'B%E,A (2), (4.34)

Gt oliv) = A, A, €5 , (i), (4.35)
and

Chalin) =A,A,€ % p( — iw) (4.36)

usually associated with globally reversible systems, where
A4[A3s] is the time-reversal parity of 4[ B].

Of course, the reader should realize that the symmetry
relations given by Egs. (4.33)-(4.36) and the generalized
symmetry relations given by Eqs. (4.23)-(4.32) apply to
both reversible and irreversible systems. A number of exam-
ples that conform to these symmetry relations may be found
in our papers on dual Lanczos transformation theory."%2

Usual approaches'® for establishing the symmetry rela-
tions given by Eqs. (4.33)-(4.36) for the case of reversible
systems either rely on traditional time-reversal transforma-
tion methods, such as those utilizing arguments based on the
time-reversal invariance of Hamilton’s equations, or appeal
to. the formulation of microscopic reversibility or detailed
balance given by Eqs. (4.10)—(4.12). For the case of irre-
versible systems, the symmetry relations given by Egs.
(4.33) and (4.34) have been established by making use ot;

CO = (<Aq(t)Aq(0)>EQ <Aq(t)Ap(0)>EQ)
<Ap(1)Ag(0) > <AP(H)AP(0)>gq
and
<AF(DAG(0)> e <AG (1) Agp(0)> g
CO(r) =| <Ap(DAF(0)>r, <Agp(1)Agp(0)>gq
<A (AP (0)>eq  <AP (1) Agp(0) > g
2473 J. Math. Phys., Vol. 31, No. 10, October 1990

the version of detailed balance given by Eq. (4.12).”
Although the aforementioned approaches for establish-
ing Eqgs. (4.33)-(4.36) have been useful, they are generally
complicated and model dependent. Moreover, these ap-
proaches have only led to sufficient conditions for the appli-
cability of Egs. (4.33)—(4.36). In sharp contrast to these
approaches, we have established the generalized symmetry
relations given by Eqgs. (4.23)-(4.32), which include Egs.
(4.33)-(4.36) as special cases, in a rather trivial fashion
without any reference to a specific model and shown them to
be simply a consequence of the universal dynamical con-
straint given by Eq. (3.8). Also, we have already shown that
the versions of microscopic reversibility and detailed balance
that have actually served as a starting point in the proof of
Eqgs. (4.33)-(4.36) are also consequences of Eq. (3.8).

V. AN ILLUSTRATIVE APPLICATION

Apart from elucidating some fundamental symmetries
of classical dynamical systems, the theory given in the pre-
ceding sections has the advantage of providing a simple
model independent framework for treating classical time
correlation functions via the extraction and utilization of
dynamically embedded information."*> Let us proceed to
demonstrate this by exploiting the mathematical apparatus
of dual Lanczos transformation theory"*®*'? to determine
the retarded and advanced components of the elements of
the correlation matrices for first and second moment coordi-
nate and momentum fluctuations for the Brownian harmon-
ic oscillator."®*>® Also, we wish to obtain the Laplace
transforms®® of the retarded components of the time correla-
tion functions and the Fourier transforms' of the full corre-
lation functions.

As we have demonstrated elsewhere,®® the correlation
matrices for first and second moment coordinate and mo-
mentum fluctuations are important not only for pedagogical
reasons but also because they have an important bearing on
problems in nonlinear dynamics and represent the spontane-
ous fluctuations that drive the temporal evolution of the
noise filtered dynamical variables Ag(z), Ap(t), Ag*(¢),
Agp(1), and Ap’(¢) for the Brownian harmonic oscillator,
where AA(r) = A(t) — (4 ), and p and g denote the mo-
mentum and coordinate, respectively. It should be evident
that the dynamical variables Ap(¢) and Ag(¢) characterize
the temporal evolution of the noise filtered trajectory
[p(2),q(2)], while the dynamical variables Ag*(¢), Agp(t),
and Ap®(¢) characterize the noise filtered square displace-
ments of the Brownian harmonic oscillator and its energy
relaxation.

The correlation matrices for first and second moment
coordinate and momentum fluctuations for the Brownian
harmonic oscillator are as follows:*®

(5.1)
<A (AP (0)> kg
<Agp(H AP (0) > g | (5.2)
<AP2(I)AP2(O) > ko
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TABLE III. Retarded components of the elements of the correlation matrix for first moment coordinate and momentum fluctuations for the Brownian

harmonic oscillator.

Retarded Type of
component C J z (¢) eigenvalues™® Explicit form
Clang(t) = 2 distinct 6(expl — (/)¢ Heosh[ (DO — 9] + [/ — &) sinh[ (D) (" — 4?1 1}
() {(Ag(HAg(0))gq 1of () (1 + tyexp( — 1)
multiplicity 2
CZuap(t) = 2 distinct e [2/(* — )" )exp[ — (17/2)t]sinh[(%)(n2—4)'/zt]
0(1){Aq(1)Ap(0))gq 1of 8(1)texp( — £)
multiplicity 2
Cioag () = 2 distinct — 00 [2/ (5 — 4)']expl — (n/2)t Isinh [ (}) (7* —4)"¢ ]
() {Ap()2q(0)) g 1of —6(ttexp(—1)
multiplicity 2
Clrap(t) = 2 distinct 6(tyexp[ — (/2)1 H{cosh[ () (9 — 4)'21 ] — [/ (5" — 4)'*]sinh[ (1) (o — 4)""*¢ 1}
() (Ap()Ap(0)) g 1 of () (1 — nexp(—1)
multiplicity 2

* 7 is the dimensionless friction coefficient defined in Ref. 8(b).

® 552 for the case of two distinct eigenvalues. 7 = 2 for the case of 1 eigenvalue of multiplicity 2. See Ref. 8(b).

In Egs. (5.1) and (5.2) p and g are the dimensionless
momentum and coordinate, respectively, for the Brownian
harmonic oscillator. The time ¢ is also dimensionless. Here-
after, it should be understood that we are working in dimen-
sionless units. For additional details, see Ref. 8(b).

The double bracket notation €4 (¢)B(0)> g, in Egs.
(5.1) and (5.2) for the time correlation functions has been

used to indicate that these time correlation functions are of
the type discussed in Sec. III for which the propagation of
the fluctuations is described in both the forward and back-
ward time directions. The reader should not confuse
<A(1)B(0)> o with {(4(#)B(0))gq. The formal connec-
tion between these time correlation functions is given by Egs.
(3.17a) and (3.17b).

TABLE 1IV. Advanced components of the elements of the correlation matrix for first moment coordinate and momentum fluctuations for the Brownian

harmonic oscillator.

Advanced Type of
component C 55 (#) eigenvalues*® Explicit form
Clong () = 2 distinct 6(nyexpl(n/2)t [{cosh[ (D) (% — )1} — [9/ (5 — 4} ]sinh [ () (7% — 42 ]}
6( — 1){Aq( — 1) Aq(0))gq 1of G( — (1 — texp(?)
muitiplicity 2
Cinp(t) = 2 distinct é( —t)[2/(772—4)'/2]exp[(1]/2)t]sinh[(g)(nz—4)"21]
—0(—{Agq( — )ApP(0)) o 1 of 0( — tyrexp(s)
multiplicity 2
C g = 2 distinct —8(—D12/(9> — 4)]expl (1/2) Isinh [ (}) (% — 4)'"*t ]
—6(—){Ap( — 1)Aq(0))gq 1of — 6( — t)rexp(?)
multiplicity 2
Clrnp(t) = 2 distinct 8( — nexpi(9/2)t Y{cosh[ () (" — )%t ] + [0/ (o — &) 1sinh [ () (7 —4) 1 |}
0 —1){Ap( — ) Ap(0))gq 1of a9 — 0 (1 + t)exp(2)
multiplicity 2

* 7 is the dimensionless friction coefficient defined in Ref. 8(b).

®n#2 for the case of two distinct eigenvalues, 57 = 2 for the case of 1 eigenvalue of multiplicity 2. See Ref. 8(b).
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TABLE V. Retarded components of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian
harmonic oscillator.

Retarded Type of
component C ; ,(¢) = eigenvalues™® Explicit form
Cirag()= 3 distinct 20(nexp( — g {[(9* — 2)/ (7 — 4) Jcosh[ (7% — 4)'7*¢ ]
+ [9/(* — )P sinh[ (97 — 4)'2t ] — [2/(7 — )]}
(AP (NAF(0)) g 1of 20(0) (1 + 1)%exp( — 2¢)
multiplicity 3
Clinp®D= 3 distinct 20(n)exp( — n){[n/(n* — 4)Jcosh[ (%> — 4)"*t]
+ [1/( = &) 2]sinh[ (9> — 4)'2 ] — [/ (o — ]}
8y (A (1) Agp(0) ) xq 1of 20()2(1 + tyexp( — 21)
multiplicity 3
Cloap) = 3 distinct () [4/(p* — 4) Jexp( — ) { — 1 + cosh[ (7% — 4)"% 1}
O (AF (D AP (0)) o 1of 20(1)12 exp( — 21)
multiplicity 3
Clopap(D) = 3 distinct —20(exp( — pt){[5/ (9 — 4)]cosh[ (7 — 4)' %]
+ [1/(o — 4)]sinh[ (* — 4)'?t ]
— /(7 =91}
(1) (Agp(HAGF(0)) eo 1of —20()t(1 + tyexp( — 2t)
multiplicity 3
Clupag (D) = 3 distinct 6ty [1/(n* — 4) Jexp( — ) {m? — 4 cosh[ (2 — 4)""%¢ 1}
8(1){Agp(1)Agp(0)) o 1 of 6(2) (1 — 2%)exp( — 21)
multiplicity 3
Clpap D= 3 distinct —20(tyexp( — ) {[n/(° — 4) Jcosh[(7* — 4)' %t ]
— [1/( — 4)"?Ysinh[ (9> — 4)"*t ] — [9/(* — $)1}
(1) {Agp(1)Ap*(0))gq Iof 20(0)1(1 — t)exp( — 21)
multiplicity 3
Claas ()= 3 distinct 0 [4/(* — d)]exp( — p){ — 1 4 cosh[(n* — 4)'*¢ 1}
B (AP (DAF(0)) gq 1of 20(t)t exp( — 2t)
multiplicity 3
Clisp(®= 3 distinct 20(nyexp( — ) {[5/(n* — 4)1cosh[ (% — 4)"*¢ ]
— [V/(* = 4)1sinh[ (7 =)'t ] — [0/ (" — 4) 1}
8() (AP (1) Agp(0) ) o 1of —26(1)1(1 — nexp( — 2¢)
multiplicity 3
Closys ()= 3 distinct 20()exp( — g){[(7* — 2)/(5* — 4) Jcosh[ (7* — 4)"/*t ]
— [/ (7 —4)*]sinh[ (7 —4)"’t ] — [2/(* = $) ]}
() (AP (AP (0)) 5o 1of 20(8) (1 — t)%exp( — 21)
multiplicity 3

* 77 is the dimensionless friction coefficient defined in Ref. 8(b).
712 for the case of 3 distinct eigenvalues. % = 2 for the case of 1 eigenvalue of multiplicity 3. See Ref. 8(b).

One can readily determine the retarded [advanced] extraction and utilization of dynamically embedded infor-
component C ;5 (2)[C 55 ( — )] of each time correlation ~ mation'? from dual Lanczos transformation theory.'?®
function C, 5 (¢) in Egs. (5.1) and (5.2) for >0 by first C 15 () is obtained from C S, ( — t) by simply replacing ¢
casting C ;5 (£)[C $5( — t)] into the form of Eq. (3.6b)  with — . The results for the retarded and advanced compo-
[Eq. (3.7b) ] and subsequently making use of the concept of  nents obtained by this procedure are summarized in Tables
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TABLE VI. Advanced components of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian

harmonic oscillator.

Advanced Type of
component C 7 () eigenvalues™® Explicit form
ClpagD = 3 distinct 20( — Dexp(g){[(n* — 2)/ (% — 4) Jeosh[ (7" — 4)'/%¢ ]
— [/ =) 21sinh[ (o — )] — [2/( — D) ]}
O( — (A (— DAF(D)) g 1of 260( — 1) (1 — 1)%exp(2¢)
multiplicity 3
Clrap®= 3 distinct —20( — Nexp(q){[n/ (" — 4]cosh[ (> — 4)"1 ]
—[1/(5* — 4)"]sinh[ (9 —~ )t} - [/ (0 = )]}
—0(— t)<qu( - I)AGP(O)>EQ 1of 20( — 01(1 — nexp(21)

multiplicity 3

(1) = 3 distinct

A(( A;:

B8 — 1) [4/(7* — ) lexp(gt){ — 1 4 cosh[(5* — 4)'*t 1}

1 of
multiplicity 3

0( — D(AF(— AP (0))go

20( — )t exp(21)

Crpag(D= 3 distinct 26( — Dexp(q){[n/(n* — 4)Icosh[ (> — 4)'/?t ]
— [/ — &)1 Psink[(f — )"t ] — [/ (7" — D]}
— 68(— O {Agp( — HAF(0)) o 1 of —26( — D1 — t)exp(28)

multiplicity 3

Clopag () = 3 distinct 0( — 0 [1/(n* — 4) lexp(nty{n* — 4 cosh[ (n* — 4)'*¢ 1}
8( — 1) {Agp( — N Agp(0) ) o 1 of 0( — (1 — 2t Y)yexp(2s)
multiplicity 3
Crmar D= 3 distinct 20( — Nexp(a){[n/ (7 — 4)Jcosh[ (7" — 4)'*¢ ]
+ [1/(* — 4)'?1sinh[ (77 — )"t ] — [9/ (9> — 4) ]}
—0(— 1 {(Agp( — AP (0))gq 1 of 20(2)t(1 + t)exp(2t)

multiplicity 3

Clrap= 3 distinct 8 — 1) [4/(* — ) 1exp(y){ — 1 + cosh[ (o2 ~ 4)'"%1 1}
6( - t)(APZ( - t)AqZ(O))EQ 1of 29( — t)texp(2t)

multiplicity 3

Coran®= 3 distinct —20( — Dexp(yn){[7/(5* — 4))cosh[ (77" — 4)"/*1 ]
+ [1/( — 42 sinh[ (9% ~ $)'2) — [/ (o — )1}
—6( —n{ap*( — )Agp(0))gq 1of —26( — D1 + Dexp(2t)

multiplicity 3

Croap(D= 3 distinct 26( — nexp(y){[ (4 — 2)/ (5 — 4)]cosh[(n* — 4)"%t ]
+ [77/(172—4)”2]Sinh[(1]2~—4)Vzt] _ [2/(772__4)]}
8 — ) (AP (— AP (0))gq 1 of 20( — (1 + £)* exp(22)

multiplicity 3

* 1 is the dimensionless friction coefficient defined in Ref. 8(b).

®77#2 for the case of 3 distinct eigenvalues. 77 = 2 for the case of 1 eigenvalue of multiplicity 3. See Ref. 8(b).

III-VL'* The full time correlation function C, ;(¢) is ob-
tained by simply adding the retarded and advanced compo-
nents [see Eq. (3.2)] in these tables. Note that the results
displayed in Tables III-VI conform to the symmetry rela-
tions given by Egs. (4.23), (4.24), (4.26), and (4.27).
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Moreover, the full time correlation functions assembled
from these results conform to the symmetry relations given
by Egs. (3.9), (4.25), and (4.28) [see Eq. (3.2)].

The Laplace transform [see Eq. (3.6b)]

25(2) = (4 (I + L) ~'|Bpgo) (5.3)
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TABLE VII. Laplace transforms of the retarded components of the ele-
ments of the correlation matrix for first moment coordinate and momentum
fluctuations for the Brownian harmonic oscillator.

TABLE IX. Fourier transforms of the elements of the correlation matrix
for first moment coordinate and momentum fluctuations for the Brownian
harmonic oscillator.

Laplace transform

Fourier transform

% ;al2) Explicit form* €l g liw) Explicit form*
E Zone(2) ago(2) E hoag (00) /(1 — %) + ']
€ Rgan(2) —z[ag,(z) — (1/2)] E £ pap (i) — 0 {2, (i0)
C Zpay (2) z[a50(2) — (1/2)] C Ly (i) i0F § g (i)
C Zpan (2 —2[a5,(2) — (1/2)] C knap (i) D*C g0 (i)

2az,(2) = [(z4 9)/(2 + 9z + 1)], where 5 is the dimensionless friction
coefficient defined in Ref. 8(b).

of the retarded component C  ; (¢) of each of the time corre-
lation functions in Eqgs. (5.1) and (5.2) may also be readily
determined via the extraction and utilization of dynamically
embedded information.'? Following such a procedure, we
are led to the results displayed in Tables VII and VIII.'®
Note that these results conform to the symmetry relation
given by Eq. (4.29).

Finally, the Fourier transform ¢ iﬂ (iw) of each time
correlation function C, ; (¢) in Egs. (5.1) and (5.2) may be
determined by writing €% ;(iw) in the form [see Eg.
(3.5b)]

@45 i0) = lim {(4|[Go + T+ L1"|Bpgy)

€0

+(Z [[( —1'(0+€)/1\+/L\ ] _IIFPEQ)}

(54)

# 7 is the dimensionless friction coefficient defined in Ref. 8(b).

and subsequently exploiting the concept of extraction and
utilization of dynamically embedded information.'? Such a
procedure leads to the results displayed in Tables IX and
X.!® Note that these results conform to the symmetry rela-
tions given by Eqgs. (4.30)-(4.32).

V1. CONCLUDING REMARKS

We rigorously established from basic principles a uni-
versal dynamical constraint for globally linear classical dy-
namical models intended to describe the execution of spon-
taneous fluctuations about a stationary state. It was shown
that this constraint arises from the requirement of stationar-
ity and represents a necessary and sufficient condition for its
realization for all time correlation functions associated with
a given globally linear classical dynamical system. Since sta-
tionarity is a physical requirement that must be satisfied, the
constraint is of universal character with applicability to all
globally linear classical dynamical models. If the constraint

TABLE VIII. Laplace transforms of the retarded components of the elements of the correlation matrix for second moment coordinate and momentum

fluctuations for the Brownian harmonic oscillator.

Laplace transform

€ 8(2) Explicit form*
C 2 ong(2) 2a3,(2)
LIEIMC) —z[ag(2) — (1/2)]
Cipan(@ (Z+ 52+ 2) [a5,(2) — 2+ /(2 + 52+ 2)]
Sapae (D) z[a30(2) — (1/2)]
C Ropsgp (2 —(2/2)[830(2) = (1/2)]
Clpar (D WG + 92 +22) [a54(2) — (2 + /(2 + 2+ D]}
C lag (@ (Z+ 9z +2)[650(2) — (2 + /(2 + 52+ 2) ]
LIEIWAC) — W{(Z 4+ 92 +22) [a50(2) — (z+ M/ (2 + 3z +2) ]}
€ iran(? W(Z + 712+ 2)[a50(2) — Z+ /(2 + 72+ 2) ]

2agy(z) = [Z2 4+ 3pz+ 2072 + 1) 1/[2° + 392 + 2(%* + 2)z + 4], where 7 is the dimensionless friction coefficient defined in Ref. 8(b).
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TABLE X. Fourier transforms of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian

harmonic oscillator.

Fourier transform

€4 plim) Explicit form®
b & pag l@) 87{[@? + 4(7* + DA (4 - 30" + *[2(7* + 2) — 0?17}
L (i) — (/)6 L, 2 i)
C g a2 (i) {(4 - 3?)/[40(7P + 1) + P 1}E L, , 2 (i0)
 qanae (19 )
C hanago (1) (W/8)CE, , . (i0)
€ papap (19) {iw(4 — 30 /{21 + 4072 + DINEL . (i)
C L rng (i) {4 =30 /147 + D + &’ 1}E . , 2 (i)
G s gy (1) —{io(4 —30")/{2[? + 407 + DINEL, . (0)
C L (i) {[(4 = 30") + *(&® + P/ [ + 407 + DI}CL 2 (i0)

* 77 is the dimensionless friction coefficient defined in Ref. 8(b).

is not satisfied, stationarity and other symmetries arising
from it will be violated for some or perhaps all dynamical
variables.

It was shown that the universal dynamical constraint
obtained by us (i) imposes restrictions on the symmetry of
the transition operator appearing in the global propagator

for a system; (ii) coupled with the conservation of probabili-

ty implies that the equilibrium distribution is stationary with
respect to the global dynamics, i.e., both the retarded and
advanced dynamics of a system; (iil) represents a universal
operator relation that embodies detailed balance and micro-
scopic reversibility, giving rise to their traditional formuia-
tions for both local and nonlocal dynamical models; and (iv)
implies the existence of certain generalized symmetry rela-
tions for time correlation functions and their Laplace and
Fourier transforms that are applicable to both reversible and
irreversible dynamical systems.

Apart from elucidating some fundamental symmetries
of classical dynamical systems, the reported theory has the
advantage of providing a simple model independent frame-
work for treating classical time correlation functions via the
extraction and utilization of dynamically embedded infor-
mation.'? This was demonstrated in a concrete way by ex-
ploiting the mathematical apparatus of dual Lanczos trans-
formation theory'*®'> to determine the advanced and
retarded components of the elements of the correlation ma-
trices for the first and second moment coordinate and mo-
mentum fluctuations for the Brownian harmonic oscilla-
tor."*>? We also obtained the Laplace transforms®® of the
retarded components of the time correlations functions and
the Fourier transforms’ of the full time correlations func-
tions. The results obtained were shown to conform to the
symmetry relations implied by the universal operator formu-
lation of detailed balance. This is a consequence of the fact
that dual Lanczos transformation theory">%'? works with
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dynamically invariant subspaces embedded with all of the
pertinent dynamical information in spite of the use of a sub-
dynamics of the global dynamics.?

Before concluding, we should remark that none of the
approaches given by Mori,'” Diestler,'® Dupuis,'® Lado,*
Grigolini,?' and Freed®? are able to handle the problem of
determining all of the results displayed in Tables I1I-X. As
we have discussed at length many times before’>*!? all of
these approaches suffer from different intrinsic limitations
and represent special limiting cases of dual Lanczos trans-
formation theory. The applicability of the approaches of
Mori,!” Diestler,'® Dupuis,"” Lado,” Grigolini,>' and
Freed® is at best limited to the determination of a single
autocorrelation function for a restricted class of dynamical
systems. Even for the problem of determining the Fourier
transform of an autocorrelation function for an irreversible
system and a cross-correlation function for a reversible or
irreversible system these approaches have difficulties as a
result of their intrinsic limitations and lack of a proper treat-
ment of the retarded and advanced dynamics of a system.

Given that the Brownian harmonic oscillator has served
and continues to serve as a prototype model system in non-
equilibrium statistical mechanics,it is our opinion that any
approach intended to provide an adequate framework for
treating and understanding spectral and temporal properties
of dynamical systems must at the very minimum be able to
deal with the spectral and temporal properties of the Brow-
nian harmonic oscillator. In this respect, all of the ap-

- proaches given by Mori,"” Diestler,'® Dupuis,'® Lado,*®

Grigolini,?' and Freed®* fail. In sharp contrast, the theory
reported in this paper coupled with dual Lanczos transfor-
mation theory**'? is able to deal with the Brownian har-
monic oscillator analytically in a rather trivial way and
shows much promise in being able to handle more compli-
cated systems.'?
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Infrared singularities and breaking of the Poincaré group: The massless
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A four-dimensional quantum field theory model is studied that exhibits infrared singularities
expected to occur in realistic models of confinement. The Fock-Hilbert-Krein structure
associated with the model in a local and covariant formulation is constructed and its
unconventional features, like the existence of translationally invariant field operators and states
(other than the vacuum), the implementation of the symmetries, etc., are discussed. Also, a
canonical quantization of the model which improves the existing ones is derived. Finally, it is
shown that the infrared singularities are responsible of the breaking of the Poincaré group in
every nontrivial physical space; two explicit examples of possible physical spaces are
constructed and it is shown that they have the same gauge invariant content.

|. INTRODUCTION

The aim of the present paper is to provide a rigorous
treatment of the dipole field model, that is a Hermitian scalar
field satisfying the equation

[’¢=0, O=3%d,. (L1)

The motivations for such analysis are several. This model
attracted the interest of theoretical physicists already in the
1950s under the influence of the debated paper of Killen and
Pauli on the Lee model.'™ A revival of interest in the model
came with the advent of gauge theories and this because the
Fourier transform of the two-point function of the dipole
field has a §'(p?) singularity, p* = pp,,. This singularity is
the quantum field theory (QFT) version of the linearly
growing potential believed a crucial feature of the quark—
antiquark interaction.* Besides, it has been shown that the
breaking of the gauge symmetry in the Abelian Higgs model
requires, in local gauges, this kind of singularity.>® Other
classes of models that have a dipole field as a building block
are the purely gauge QED,’ the conformally invariant mod-
els,®® and the supersymmetric models. From a general point
of view, the model can be regarded as a simple prototype of a
four-dimensional quantum field theory exhibiting infrared
singularities of the confining type,'® which are not compati-
ble with the axiom of positivity.'' Since the lack of positivity
is an unavoidable feature of gauge quantum field theories
when treated in local renormalizable gauges,'? a rigorous
treatment of this model will shed light on those general
mathematical structures characterizing nonpositive QFT’s
in the Wightman framework.

Finally, a further motivation for a revisitation of this
model is that the previous treatments are not completely
satisfactory. The main open problems are: (1) a clear identi-
fication of the Hilbert space of states associated to the
Wightman functions of this model; (2) the existence of
translationally invariant states other than the vacuum state
(i.e., the essential uniqueness of the vacuum); (3) the sym-
metry breaking problem in the model; (4) the possible iden-
tification of the physical space and the physical interpreta-
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tion of the model; and (5) the justification of a canonical
quantization of the field in a positive space.

As we will see, our results will significantly improve
(actually in most of the cases correct) the previous treat-
ments. The point is that, as emphasized in Refs. 10 and 13,
the structural questions concerning an indefinite metric
QFT cannot be correctly posed and answered without mak-
ing reference to a Hilbert space realization of the model.

The starting point of the following discussion of the di-
pole field is a set of local and covariant Wightman functions
that satisfy the weak spectral condition. The lack of positi-
vity implies that the reconstruction theorem'®!! yields only
a linear space & endowed with a sesquilinear form {, ). To
obtain a Hilbert space, it is necessary to introduce in & a
Hilbert topology compatible with the intrinsic indefinite
product (, ). There are, of course, many possible ways to
introduce a Hilbert structure in &, but the most interesting
cases are given by those structures that are maximal, i.e., not
properly contained in any other compatible Hilbert struc-
ture. In this case, the metric operator, 7, which represents
the sesquilinear form ( . ), has the property that 7> = 1 and
the corresponding Hilbert space is a Krein space.'*

In Sec. II, we will construct a Hilbert-Krein structure
associated with the dipole field; we will show that the Hilbert

" representation space K of the theory contains vectors (dif-

ferent from the vacuum) that are invariant under the Poin-
caré group (infrared states); the vacuum is, however, essen-
tially unique,'’ i.e., there is no strictly positive (with respect
to (, ) subspace of K invariant under translations, whose
dimension is greater than 1. The infrared states have an in-
teresting counterpart in the strong closure of the local field
algebra: Indeed, this closure includes operators that are in-
variant under the Poincaré group (infrared operators). This
property has been already noticed for the massless scalar
two-dimensional field,’> and appears naturally when the
confining infrared singularities are controlled by a maximal
Hilbert structure. In Sec. III, we turn our attention to the
symmetries of the model; their treatment has unconvention-
al features due to the indefiniteness of the theory. The equa-
tions of motion are invariant under the group & of local
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gauge transformations ¢ — ¢ + a, where a is a smooth real
solution of the equation Oa = 0. The subgroup of global
gauge transformations a = const is not broken in K and its
generator is constructed using the infrared operators. Also,
the scale transformations are implementable in the space K
and, in fact, the translationally invariant operator, which
was introduced as a new dynamical variable to account for
the scale transformations of ¢ (Refs. 8 and 9) is here an
intrinsic element of the theory and is exactly the infinitely
delocalized limit of ¢. In Sec. IV, we reconsider the problem
of the quantization of the dipole field using the canonical
formalism.

Finally, in Sec. V, we discuss the physical interpretation
of the model. Our proposal is very different from those of
Refs. 6,7, 16, and 17. The authors of Ref. 6 obtain a Poincaré
invariant Hilbert space with positive metric but they repre-
sent the field by a non-Hermitian operator and give up the
relation between the Wightman functions and the scalar
product in the physical space (from this point of view their
solution has essentially changed the terms of the problem!).
On the other hand, a rigid application of the requests of
gauge invariance of the fields and Poincaré invariance of the
physical space forces the authors of Ref. 7, 16, and 17 to
conclude that the theory has a trivial content. On the con-
trary, we will show that the model may have a nontrivial
physical meaning; we will prove that the severe singularities
of the theory imply that the Poincaré group must be broken
in every nontrivial physical space (mechanism of confine-
ment); in particular, we will construct two positive quanti-
zations of the dipole; in the first one, the time translations are
broken while the space translations are an exact symmetry
and the contrary happens in the second one. However, it is
possible to define a vacuum sector that is the same for the
two quantizations and with the property that the whole
translation group is implementable on it.

I1. THE HILBERT-KREIN STRUCTURE ASSOCIATED TO
THE DIPOLE FIELD

A local and covariant quantization of the dipole field is
characterized by a set of Wightman functions { %", } satisfy-
ing the following axioms.

A. Temperedness

Here, 77", is a distribution belonging to .’ (R*"), the
dual of the Schwartz space of the rapidly decreasing func-
tions.'®

B. Covariance

For any Poincaré transformation {a, A} the n-point
functions are invariant:
W (Ax, +a,.,Ax, +a) =W, (x,...X,). (2.1)
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C. Locality
Ifx, — x;, ., =&, is spacelike, then

W (X s XX 4 100X ) = 0 (X pgeeesXip 1 5XipenesXy )
2.2)

D. Weak spectral condition

The Fourier transforms W(k,,....k, _ 1 ) of the distribu-
tions W, (£,,...6,_ ) = ¥ ,(x,,...,x,, ), have support con-
tained in the cones

C 7 ={(k)*(k,),>0,(k,)o>0}. (23)

The Fourier transforms of test functions and distributions
are defined by the following formulas:

flkyynk,) = (2m) ““Jexp(ik,x, + oo+ ik, x,)

X f(XqseensX, )X, 2 dx,, (2.4)
T(f)=T(f), (2.5)

where kx is the Lorentz invariant product, fe.* (R*") and
Te.#'(R*). These axioms and the equation of motion (1.1)
lead us to the following two-point function:

Wy (x,%,) = W(E) = — (167%) ~'In( — £2 + ief,).
(2.6)

We assume that the one-point function and all the truncated
n-point functions vanish. As shown in Ref. 10 these Wight-
man functions define only a representation of the dipole field
that is an operator-valued distribution on a linear space &
(the local states): Indeed, one considers the Borchers alge-
bra %, which is the set of finite sequences f = (fy,....f},...)
with foeC, fe” (R¥); in 4, one defines the following inner
product:

(fg) =, 7, (f*Xe),,

where (£X8), = 24, 1= nfi80 L (X1peX,) = F( X, 10e0X))
and the bar means complex conjugation.

Then, & is defined to be #/.7; .# is the Wightman
ideal:

S = {fe ({f,g) =0,Vge A} 2.8)

(it is an ideal of % with respect to the product x). Elements
of & are denoted by the symbol [f]. By construction the
inner product (2.7) is nondegenerate on &. We may define
the field operator on & as follows:

o(NH gl = [fxel, (2.9)

where a representative for f is (0,£,0,...). It is clear that the
vacuum vector ¥,,, whose representative is (1,0,...), is cyclic
with respect to .¥ , the polynomial algebra generated by the
fields ¢(f). There is a linear representation of the Poincaré
group on &, defined by

U(a,A) [f] = [fraay ] (2.10)

where f, A} (x) =f(A~'(x — a)). The covariance of the
Wightman functions implies that the operators U(a,A) pre-
serve the inner product (2.7) (#-unitary operators).

In the following, we will shortly denote by the same
symbol £ the test function entering in the field #(f) and the

(2.7)
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corresponding vector obtained by applying that field to the
vacuum.

A supplement of information is now necessary if one
wants to get a Hilbert space which represents the theory. The
following condition'® replaces the standard axiom of positi-
vity.!!

E. Hilbert space structure condition

There exists a set of Hilbert seminorms {p,}, p, de-
fined on .¥ (R*") and .% continuous, such that

| Y s m (fEXEn VP S )P (&) (2.11)

Without loss of generality we may assume in addition that
these seminorms vanish on .# . Using standard methods, we
may now complete & with respect to the topology induced
by the seminorms {p, } and get a Hilbert space H. The more,
we can extend the inner product (2.7) to the whole H and
there exists a bounded and self-adjoint operator 5 such
that'®

(VLW,) = (¥,,7¥,), VYV ,V,eH, (2.12)

where ( , ) is the Hilbert scalar product in H, defined by the
seminorms {p, }. It is worth it to point out again that differ-
ent choices of the seminorms give rise to different Hilbert
spaces and whereas in the standard case the Wightman func-
tions uniquely fix the closure of &, in the indefinite metric
case different closures are available corresponding to differ-
ent topologies.

In our case, the factorization of the n-point functions
(free-field theory) implies that a possible set of seminorms
may be constructed using a single seminorm p defined on
< (R*). We denote the inner product induced in . (R*) by
the definition (2.7) by the same symbol { , ). It is possible to
choose a ye.” (R*) such that ¥(0) = 1and (y,y) = 0 (Ref.
7). Then one has that?®

(fig) = %ﬁf{u — DY (g (k) + FOF(K)go(k)

+ 2O ()1}, 0~ 'd%, (2.13)

with fo(k) = f(k) —F (0)y(k), Df (k) = kod /Ko (K),
and w®> = k? + k2 + k%. We now define a Hilbert product
in £ (R*) as follows:

(£g) =%ﬂf [F,(k)G,(k) + F,(k)G,(k)]o~*d’k
+ () (rg) +F(0)3(0), (2.14)
with
Fi(k) = [(1 —D)fy(k)]|., and Fy(k) = [Df(K)]|., -
(2.15)

Itiseasy toseethat |{£,g)|<|If|| |lg]l, with |[f||> = (f,/). Now
we have that the vectors

Vi o= ()" VRe(f) ()W,

generate & . The symbol : : denotes the Wick-ordered prod-
uct defined in terms of Wightman functions.?' It follows that

(2.16)
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<\P2.-~~ﬁ.’wg g,,,>

,,,,,

= (nl)~ 15,,’,,, z,(ﬁ’gi,>"’<fn:gi,,)’

where 2 denotes the sum over all the permutations. We
may now define a Hilbert product in & simply by

(2.17)

(\Ijj"".,‘..‘f,,’wz ..... L0 ) =(nl)~ 15n,m Z‘n’ (fl’gi, ) sgi,,)-
(2.18)
Denoting by K the Hilbert completion of & with respect to
the topology induced by the (2.18), it follows that
=0,K"”, K"W=g"K®, (2.19)

where K " is the Hilbert completion of . (R*) and ®,
denotes the symmetric tensor product. Therefore, the study
of K ¥ completely fixes the Hilbert space of the theory. The
main result of this section consists in the proof that X is a
Krein space. To prove this, we need to study in advance the
space H "', which is the completion of the space

Fo(RY) = {5 (R*):/(0) =0} (2.20)

with respect to the Hilbert topology induced by the scalar
product

1 - —
/gl = TWJ‘[FI(k)G,(k) + F,(K)G, (k) o~ * d °k.
(2.21)
Lemma 2.1: Tt is possible to extend the product (2.13)

to the whole H'" and there exists a bounded and self-adjoint
operator 7, such that

(fg) = [fimegl, YfgeH?, (2.22)
and besides
() =1; (2.23)

i.e., H™ is a Krein space.

Proof: The first part of the lemma follows from standard
theorems of functional analysis.'® We need only to show the
(2.23). To this end, we consider the space ¥, (R *) ® C*en-
dowed with the products

{F,G}, =%wf[7’,(k)gl(k)

+ HOBLI e, 0 2d%  (2.24)
and amap U: #4(R*) > 5 ((R*) @ C? defined by
-~_[(1—D)f
Uf= [ DF (2.25)

It is obvious that we may extend the operator U to an opera-
tor U defined on H V with values in the Hilbert completion
of ran( U) with respect to the topology induced by the prod-
uct{,}, , which we denote by R(U). The operator U has
the following properties:

{TrUg}, =1rgl, {ULTg_ = (fg), (2.26)
Vf,geH'" . Besides, one has that
{U/Ug} _ ={Ufo,Ug} ., (2.27)

with (o3),; = 6,;( — 1)'* . Therefore, it follows that
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{TfUnog} . = fimogl

= (f&) ={UUg} . ={Ufo;0s} .,
(2.28)

Vf,geH™ . It is now possible to show that o5 maps R(U)
into itself; this implies that we may apply Eq. (2.28) twice
and obtain that

(1)’ ={Uf,(03)°TUg} , ={UfTg}, = fgl
(2.29)
This relation is valid Vf,geH ‘" and this implies (2.23).

The fact that D is a differential operator nontangential
to the future cone C implies that R(U) is isomorphic to
the Hilbert space L *(C, — {0},w ~* d3k) ® C?, which we
briefly denote L 2 ® C2. The use of the operator U makes pos-
sible the proof of the following.

Corollary 2.2: H'V is isomorphic to L ?® C?, which is
the space of two complex component functions, defined on
{C, —{0}}, square integrable with respect to the measure
o ¥ dk

We are now in a position to state and prove the main
theorem of this section.

Theorem 2.3: It is possible to extend the inner product
(2.13) to the whole X ‘"’ and there exists a bounded and self-
adjoint operator 7"’ such that V/f,geK ‘", it happens that

fg) = Um'Vg), (2.30)
(n")?=1. (2.31)

Proof: As in precedence we need only to show Eq.
(2.31). Let us define from K " the following functional:

X)) =N, (2.32)

This functional is continuous because | X (/) |<||f]|; actually
it is possible to show that its norm is exactly one: Indeed, if
we take the sequence of elements of . (R*) defined by

Fxk) =3, () k), (2.33)

with #(¢) an infinitely differentiable nondecreasing real
function, which is zero for <0 and is one for >1, and
4, (t) = F(nt), we find that

XUV = 1

The Riesz lemma implies that there exists a vector v €K ¢V
such that (v*,0*) = 1 and VfeK ¥

(2.34)

(X;f) = (v+’f)- (235)
It is not difficult to show that the sequence
vt = ((0fE)) "% (2.36)

converges tov™ in K V. We may think to K ¢ as decom-
posed into orthogonal subspaces

KO=KPeV*eX (2.37)
where 