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Properties of gauge transformations for singular Lagrangians are investigated to classify types 
of gauge groups. A general method of the classification is proposed based on properties of 
structure functions of the Poisson brackets (or the commutators) of first class constraints. A 
remarkable result is that the algebraic structure of the gauge group is essentially determined by 
the first class constraints of the final step of constraint series which are required successively 
from the stationarity conditions of the constraints. Owing to this consequence, the 
classification of gauge groups is made simple and transparent. The structure and property of 
the gauge group can be characterized in terms of the algebraic structure functions among the 
final step constraints and the number of the steps of the constraints series. The formulation 
proposed will give a clue to find new types of gauge groups. 

I. INTRODUCTION 

Gauge invariant systems will become more important in 
particle physics. The concept of gauge in variance will be­
come one offundamental principles offield theory. The gen­
eral method to get a local gauge theory from a global symme­
try theory was given by Yang-Mills l and Utiyama.2 On the 
other hand, it will be significant to investigate gauge proper­
ties of singular Lagrangians. 

Since the gauge transformations (GT) are the opera­
tions preserving an action invariant, they make a group. It 
would be interesting to consider the structure of the gauge 
groups and to classify their types in terms oftheir generators. 
Furthermore, it is expected that the result will give a clue to 
finding new types of gauge theories. 

The generator G ofGT leaving the action invariant can 
be expressed in terms of a linear combination of first class 
constraints (FCC) appearing in its dynamical system. 3

,4 It 
is therefore obvious that the algebraic structure and the 
properties of the gauge group are determined by the struc­
ture functions (in general, functions of dynamical variables) 
of Poisson brackets (or commutators) of FCCs, But the al­
gebraic structure of the gauge group is, in essential, deter­
mined by the FCCs of the final step of the constraint series 
which appear successively under stationarity conditions of 
the constraints. This fact is the most significant result in this 
paper, 

In Sec. II, we will give a relation of the FCCs and the 
generator G, Next, general properties of G and the GT gener­
ated by G will be discussed. In Sec. III, characteristic proper­
ties and various relations for the algebraic structure func­
tions of Poisson brackets among FCCs and Hamiltonian will 
be derived from the conditions required for G. 

By using the results in Sec, II and III, it will be shown in 
Sec. IV that the algebraic structure of the gauge group is 
essentially given by the FCCs of the final step of the station-

.. , Present address: Hiroshima Prefectural University, Shobara-Shi, Hiro­
shima 727 Japan. 

arity conditions, Owing to this important property, the clas­
sification of the gauge groups can be made simple and trans­
parent. Section V will be devoted to discussion. 

II. FIRST CLASS CONSTRAINTS AND GENERATOR OF 
GAUGE TRANSFORMATION 

For the sake of simplicity, we consider a dynamical sys­
tem with finite degrees of freedom, described by a Lagran­
gian L(q,q) with dynamical variables qi and qi=dqildt 
(i = 1 ~ N). If L is singular and the rank of the Hessian 
matrix 

a2L 
A.=-­

Ij aqiaij 
is N - A, then there exist A primary constraints 

rfJ;(q,p)=O (a=l~A), 

(2,1) 

(2.2) 

In this paper, we assume all constraints to be first class for 
simplicity. Systems including second class constraints 
(SCCs) can be treated in a similar way by using the formal­
ism of Ref. 5, if the first class constraints and the Hamilto­
nian are in involution. But for illustration of the essential 
part of our analysis, we are sufficient with such systems. 

In order for this system to have a consistent solution, rfJ; 
must be stationary. Following Dirac,6 we introduce second­
ary constraints in phase space. The total Hamiltonian H T is 
given by 

HT = H(q,p) + varfJ; (q,p), (2.3) 

where a multiplier ~ is an arbitrary function of t and H is a 
canonical Hamiltonian. The summation convention is em­
ployed for dummy indices. In order to avoid complexity due 
to quantum anomaly and operator ordering, we consider 
classical theory here. 

Let us define recurrently the series of constraints as 

rfJ~ + 1 ={rfJ~,H} (k = I ~K - I), 

{rfJ!,H}=C~krfJ~, 

(2.4 ) 

(2,5) 
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with the stationarity conditions, where the symbol { , } de­
notes the Poisson bracket. These rp~ satisfy the involutive 
relation 

{rp~,rp~} = C~?;,mrp;, (2.6) 

(a,(J,y = I-A, k,l,m = 1-K). 

We can express (2.4)-(2.6) as 

{rpA>H} = C!rpB' {rpA,rpB} = C~BrpD' 
where rpA = {rp~,rp!, ... ,rp~}, but the definitions of (2.4)­
(2.6) are convenient to the following argument. The maxi­
mal number K of rp~ will, in general, depend on a and should 
be written as K a , but we omit the suffix a for the sake of 
simplicity. 

Since the system has only FCCs, the set of rp~ defined in 
terms of H T in place of H is equivalent to the set of rp~ of 
(2.4) and (2.5) (Ref. 4). 

We observe in (2.4)-(2.6) that rp~ and Hare in involu­
tion. Then, the generator G of the gauge transformation 
(GT) can be expressed as3.4 

G = ~rp~, (2.7) 

and should satisfy the conditions 

aG + {G,H} =0 mod(rp~), 
at 

{G,rp~}=O mod(rp1). 

(2.8) 

(2.9) 

Equations (2.8) and (2.9) are necessary and sufficient con­
ditions for G to be the generator of GT leaving the action 
invariant. Equation (2.8) is nothing but the stationarity con­
dition of G. It is crucial in this formulation that rp ~ identical­
ly vanishes in velocity phase space (qi,i/); 

rp~ [q,p(q,q)] =0. (2.10) 

Here, G thus defined contains A arbitrary infinitesimal func­
tions E"'(t) (a = I-A), which are gauge functions. The re­
lation between E'" (t) and ~ will be presented in Sec. III. The 
GT is given by 

8qi = {qi,G}, 

"'i d{ iG} uq=-q, , 
dt 

and we obtain4 

8L = !!....(Pi aG - G) . 
dt api 

Inversely, if a variation of L is expressed as 

8L = !!....F(q,q,E), 
dt 

under the transformation 
K-I (k) 

8qi = L E a(t)f~a (q,q), 

with 
k=O 

(k) dk 
E a(t) =- E"'(t) (a = I-A), 

dt k 

(2.11) 

(2.12) 

(2.13 ) 

(2.14 ) 

where E"'(t) is an arbitrary gauge function, we obtain 

(2.15) 
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from identities derived from (2.13) and (2.14). Hence, this 
L is singular and the rank of Aij is N - A. The kemelf~ _ la 

of Aij is related to the primary constraint rp~ by3 

i arp~ 
fK-Ia =-a . 

'Pi 

Further, it is shown that the generator yielding the GT of 
(2.14) is given by the above G. The characteristic property 
of the gauge group, therefore, can be ascribed to G. 

Now let us denote the generators of GTs parametrized 
in terms of gauge functions c(1) (t) and c(2) (t) by G(E(1) ) 
and G(E(2) ), respectively. Then, the third generator 

G(E(3» ={G(E(1) ),G(E(2)} (2.16) 

satisfies (2.8) and (2.9), owing to the Jacobi identity. Here, 
G (E (3) ) is also a linear combination of rp~; that is, 

(2.17) 

since all rp~ are in involution. It may happen for c(3)k to 
depend on rp~. Even for this case, we call (2.17) a linear 
combination of rp~. Hence, G(E(3) ) is also the generator of 
GT and comprises A-gauge functions c(3)' which are ex­
pressed in terms of c(1) (t), c(2) (t), C~k' and C~?;,m' Since 
the essential part of the gauge property is decided by (2.16), 
types of the gauge groups can be classified by functional 
forms of 

c(3) = ga(etl) ,et2»C~k,C~~m)' (2.18) 

If C ~?;,m and/or C ~k depend on q and P (Refs. 7 and 8), c(3) 
also is q and p dependent and the structure of the gauge 
groups will be complex. In the case of ~=O, G(E(3) ) = 0 
and then the gauge group is inferred to be Abelian. If G(E), 
however, involves powers of p higher than quadratic, we 
need careful consideration. For, the GT (2.11) in velocity 
phase space is not equivalent to the GT in phase space: 

" i _ { i G} _ aG li i {p G} aG (2.19) uq - q, - -a ' up = i> = 
'Pi aqi 

if 

~i=0. 
api apj 

(2.20) 

In fact, 8p i corresponding to (2.11) can be written as 

(2.21 ) 

and we obtain 

8Pi -bpi =Aij a~2~k (Pk - :~). (2.22) 

Hence, both transformations accord under the equation of 
motion, namely, they are not equivalent for a transformation 
between two points off trajectories of motion. It means that 
though the equations of motion are invariant under both 
transformations, the action 

s = J L(q,q)dt (2.23 ) 

is not necessarily invariant under the transformation (2.19). 
Although the algebraic structure of G T in phase space is 

completely determined by (2.16) and (2.18), for the alge-
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braic structure in velocity phase space, a further considera­
tion is required. Since the generator of GT in velocity phase 
space is given, with (2.11), by 

X = Dqi ~ + Dq'i ~ (2.24) 
aqi ai/' 

we should examine the structure of the commutator 
[XI ,X2 ], where Xa denotes the generator associated with 
G(E(a) ). It should be noticed that if G contains higher pow­
ers of p, Dq depends on q and Dq on q, so that the commuta­
tors of X 's do not close within themselves. Hence, we should 
employ the generator 

X E = t (ddt: Dqi) ~) (2.25) 
T~O aq' 

in an infinite dimensional vector space, in order for the com­
mutator algebra of X to close. This corresponds to the fact 

(T) 

that higher derivatives q successively appear in new trans-

formed Lagrangians, through d T (Dq) I dt T, by repeatedly ap­
plying GTs, since L(q,q) turns out to be 

L '(q,q,q) = L(q,q) + DL(q,q,q), (2.26) 

where 

DL = !!...- (Pi aG - G) =!!...- J, 
dt api dt 

under the GT generated by G. 
If G is at most linear in p,Jis a function of only q, and L I 

does not depend on q. In this case the commutators of X's 
given by (2.24) close within a 2N-dimensional vector space. 
Denoting the GT generated by Xa in terms of Da (a = 1,2), 
we obtain 

with 

F=(Pi ~ - 1){G(E(\) ),G(E(2)} 
api 

= (Pi ~ - I)G(E(3) ), 
api 

_ _ a2G(E(\» 
F = (D2Pi - D2Pi )Pj ----'-'-­

api apj 

_ a 2G(E(2) 
- (DIPi - DIPi )Pj ----'-­

api apj 

(2.27) 

(2.28) 

(2.29) 

As seen from (2.28) and (2.29),F= Ofora 2G lapi apj = 0, 
and then the expressions of F and 8L of (2.12) indicate the 
consistency between the transformations (2.11) and (2.19). 

From the above, we observe that when F #0, the gauge 
group is not necessarily Abelian, even if G(E(3) ) =0 in 
(2.16). If [XI ,X2 ] is not equivalent to {G(E(\) ),G(E(2) )}, 
the difference of [XI ,X2 ] and X3 associated with G(E(3) ) 
seems at a glance to yield another independent GT. If so, 
there would exist a new GT which cannot be expressed in 
terms ofG(E) alone. In order to examine it, put 

(2.30) 

and 

D\2qi=~ {G(E(\) ),G(E(2) )}. 
api 

(2.31 ) 

We find 

r;:, i_A i £ i_ Bij(· aL) ul2q =al2q - u 12 q - Pj - aq , (2.32) 

where 

(2.33 ) 

and the new GT D;2qi produces 

r;:, L d ( r;:, i) (. aL)£I i U\2 = - PiUl2q - Pi - -. ul2q. 
dt aq' 

(2.34) 

By substituting (2.32) into (2.34), the second term vanishes 
due to B ij = - Bji. For an arbitrary B ij = - Bji, the trans­
formation of the form (2.32) always makes the action invar­
iant. Then, p;lj;2qi is a conserved quantity, but the Noether 
charge vanishes owing to D;2 qi = 0 under the equations of 
motion. Hence, D;2 qi is trivial transformation and we may 
suppose the GT to be essentially determined by G(E) and 
their Poisson bracket. 

Since GT always has the ambiguity by B ij 
(Pj - aL I aqj) that is trivial, we define the equivalent class 
of GTs with respect to the ambiguity. In what follows, we 
will consider the equivalent class of GTs (disregarding the 
ambiguity). We, however, should keep in mind thatthe alge­
braic property of GT cannot be completely determined only 
by the Poisson bracket of G(E), if a 2G lap; apj #0. 

III. RELATIONS AMONG STRUCTURE FUNCTIONS 
C !:I,m AND C ~k 

In order to see the algebraic structure of the gauge 
group, we must obtain relations of €k to C ~k' from the re­
quirement that 

G(E) = €k¢~ (3.1) 

should satisfy (2.8) and (2.9). With the help of (2.4) and 
(2.5), the substitution of (3.1) into (2.8) leads to 

Ek + €k~ I + C'Pk~ = 0 (2<;k<;K), 

where 

. a€f { } Ek =-+ €f,B . at 

(3.2) 

(3.3 ) 

Equation (3.2) is the recurrence formula to decide 
€f (k < K) by giving ~. Since ~ can be arbitrarily chosen, it 
might be, in general, a function of q, P, and t. Then, we put 

~=~(t)p'P(q,p), (3.4) 

where ~(t) is an arbitrary function of t ({3 = 1 ~ A). But G 
should also satisfy (2.9) by which the form of p'P(q,p) is 
restricted. The simplest form is p'; = D'; and €;, = ~(t). 
This form is always allowed by adjusting a multicative func­
tion of ¢~. 

Here, it should be noticed that even if we take in (2.16) 
as 

(3.5) 
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E(3)K turns to depend on q and p, if C ~~m and C ~k are de­
pendent of q andp. Here, G(E(3) ) defined by (2.16) is guar­
anteed to satisfy (2.8) and (2.9), as already seen, owing to 

the Jacobi identity, even if E(3)K is dependent of q and p. 
Now let us derive e~plicit forms of E't (k <K) using 

(3.2). By iteration, we successively find 

[(/) (/~I) {(I-I). }(/~2) {(I-I)" (/-2). }(/~3) 
~ ~ I = ( - ) I E a + C PK E P + 1 C PK - C PK ~ I E P + 2 C PK - 1 C PK ~ I + C PK ~ 2 E P 

+ {C ~ I)CpK - C ~ 2)CPK~ I + C ~ 3)CPK~2 - CPK~3 r~4)p + ... + r'Cl)PK - (/C2)PK~ I 

+ ... + (- )/~2CPK~/+2 + (- )/~ICPK~/+I }~], (3.6) 

(/) (/) 

where E ~ and C Pk are defined by repeatedly applying (3.3) 

and 

. a _ aC pk {a } C Pk =--+ Cpk,H. at 
(3.7) 

From the Jacobi identity for ¢>~, ¢>~, and H, and using 
(2.4) and (2.5), it follows that 
Ckll> + Ckly Cl> _ C k+ l/l> + cl+ 1M ap.m ~ I ap,K ym ap,m pa.m 

- 8~ (C~nC;:'m + {C~m'¢>~}) + 8k (CbnC;~~m 

+ {C%m'¢>~}) - {H,C~~m} = D ~~~n¢>=' (3.8) 

with 
Dkl& DkIEl> 

af3.mn = - af3.nm , (3.9) 

which is an unknown function of q and p. The antisymmetry 
of D with respect to (8,m) and (E,n) is due to the even 
Grassmann parity of ¢>~. For ¢>~ with the odd Grassmann 
parity, D is symmetry. The Jacobi identity among ¢>~, ¢>~, 
and ¢>; yields 

C kll> cnmE + {CkIE ,,/,m} + (I' kim ) ap,n l>y,s ap,s''i'y cyc IC sum on a.p.y 

D klmEl> ,,/,n 
= apy,sn'i'l>' 

From (2.9), we obtain 

etC~"I.1 + {¢>~,En =E~:t",¢>,; 
with 

(1)2), 

(3.10) 

(3.11 ) 

( 3.12) 

Equations (3.8), (3.10), and (3.11) are the conditions 
that should be satisfied by C ~~m and C ~k' 

Equations (3.8) and (3.11) play important roles. First, 
we determine C ~"I.I with the help of (3.11). Since ~ is arbi­
trary, put 

~=~(t). (3.13 ) 

Then, (3.11) fori = K gives 

etc ~"I.K =E ~:tcm¢>'; (K~2). (3.14) 

This relation is valid for K>2, due to 1>2 in (3.11). Now, we 
assume E't to be independent of ¢>~ [note that E't may be 
dependent of q and p owing to (3.6), even EK = ~(t)]. 
Then, from (3.14), we are led to 
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C1k'Y _C1kyl> ,,/,m ap,K - ap,Km'i'l>' 

If C ~~m is linear homogeneous in ¢>~, the right-hand side 
(rhs) of (2.6) takes theform C~~~n ¢>;¢>'b that is symmetric 
with respect to (y,m) and (8,n). Since the antisymmetric 
part of C ~~~n plays no role, it can be omitted. Thus we may 
put 

(3.15) 

and 

etC~"I.K=O (K>2). (3.16 ) 

The substitution of (3.6) into (3.16) leads to 
~CIKy _ (fI3+ cP ~)CIK~ Iy ap,K l>K aP.K 

+ (Efi+~CP + "·)CIK~2y ... l>K a.p.K 
(K~ I) (K~2) 

+ ( _1)K~I( E p+ E l>CP + "')C11y -0 l>K ap,K - . 

(3.17) 
(k) 

Since ~(t) is arbitrary, all E a(t) can be regarded as inde­
(K~I) 

pendent. In (3.17), E P appears only in the last term, 

hence, 

C~lK =0. 

In this way, we obtain, successively, 

C~"I.K =0 (K>k>1 and K~2). (3.18) 

Next, putting 1= K - 1 in (3.11) and using the first 
equation of (3.6), we find 

etc ~"I.K~ 1 - {¢>~,CbK}~ = E ~:tc~ Im¢>'; (K>3). 
( 3.19) 

From the substitution of (3.6) into (3.19), it follows that, 
for K>3, 

C~"I.K~l=O (k<X-1), (3.20) 

C~~,~ 1 - {¢>~,CbK}:::::O. (3.21) 

In (3.21), the weak equality ::::: indicates the contribution 
from the rhs of (3.19). The strong equality of (3.20) is due 
to the same reason as in (3.16). Similar relations are ob­
tained by putting I = K - 2, K - 3 and so on. Summarizing 
them, we obtain 
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e Iky - 0 (h:;,,/,r~2), a13,1 - (3.22) 

e IK-m+ly_{",1 ey }-O af3,K - m 'Pa' 13K -
(m = 1,2, ... ,K - 2;K>3), (3.23 ) 

and 

e IK-m+ly efj elK-my a13,K - m - I - 13K afj,K - m - I 

+ {t/J~,mC~K - e~K_Ih::o, 
(m = 1,2, ... ,K - 3;K>4). (3.24) 

The relation (3.22) indicates that the stationarity conditions 
of t/J; using HT of (2.3) yield no second class constraint, 
since the stationarity condition 

~k _ ",k+ 1_ vaelky ",I -0 'P13 - 'P13 a13,I'Py-

leads to t/J;+ 1;:::0 owing to (3.22). This result is consistent 
with the starting assumption that all constraints are first 
class. Based on these relations and (3.8), more general ex­
pressions of e ~~m are derived. A detail of the derivation is 
shown in the Appendix. 

We have proved in the Appendix that 

e k1y - 0 (k or I <K), (3.25) a13.K -

at least for K <4, namely, only e !%.k is non vanishing among 
e ~~K' For K> 5, the proof is so complicated that we have 
not yet succeeded, although (3.25) seems, in general, to 
hold. We will then conjecture that (3.25) is true for all K. 
[For a practical use, (3.25) is sufficient with K<4.J 

The condition (3.25) leads us to the very important con­
clusion that the structure of the gauge group is almost deter­
mined only by e !%.k. 

IV. ALGEBRAIC STRUCTURES OF GAUGE GROUPS 
AND THEIR CLASSIFICATION 

Since the generator G (E (3) ) defined by (2.16) satisfies 
(2.8) and (2.9), E(3)k also satisfies (3.2). Hence, all E(3)k are 
expressed in terms of E(3)K and G(E(3) ) can be determined 
by E(3)K' From (2.16) and (2.17), it follows that 

E(3)kt/J~ = {E(I)kt/J~,E12)1t/J~} 

= E(1)kE12)1e~~mt/J'; + E(l)k {t/J~,E12)1}t/J~ 

+ E12)/{E(I)k,t/J~}t/J~ + {E(l)k,E12)/}t/J~t/J~· 
(4.1 ) 

As all t/J~ are independent, E(3)K can be obtained by identify­
ing the coefficients of t/J! in both sides of (4.1). Here, let 
E(I)K and E12)K be functions of t alone and assume {€I:,t/J~} 
and {E(\)k ,E12)1}to contain no t/J~. This assumption would be 
reasonable except for very special cases, as seen from the 
expressions (3.6) for €I:. In the rhs of (4.1), t/J! remains only 
in the first term and we have 

y -" J1 e k1y (42) E(3)K = e(1)kt:'(2)1 a13,K' . 

In extracting (4.2) from (4.1), there may be an antisymme­
tric term similar to D ::: t/J in (3.8) or E ::: t/J in (3.11). Since 
such a term, however, disappears in constructing 

y k h 'd' G(E(3) ) = E(3)kt/Jy, we ave omItte It. 
Owing to (3.25), (4.2) reduces to 
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y -" J1 eKKy E(3)K = e(1) t:'(2) a13,K' (4.3) 

with 

E(a) =E(a)KU) (a = 1,2). 

Equation (4.3) is the very remarkable result to indicate that 
the structure of GT for parametrization ~ can be specified 
only by e !%.k. In other words, the algebraic structure of the 
gauge group is determined by the final step t/J! in the con­
straint series (2.4). 

Further relations for e ~~m and e ~k can be derived 
from coefficients of t/J! - I, t/J! - 2 and so on in (4.1) (see the 
Appendix). 

On the basis of the above observation, we can conclude 
that the types of the gauge groups can be classified in terms 
of (i) e !%.k and (ii) the number of the constraint step K. 

In the first classification (i), we have three types. 
(1) The case of e!%.k = O. 
In this case, E(3) = 0, namely, G(E(3) ) = 0, so that the 

gauge group is Abelian. Hence, the gauge theory with a sin­
gle gauge degree of freedom (a = {3 = 1) is Abelian. The 
model in which all gauge degrees are completely isolated 
belongs to this type. 

(2) The case of all e!%.k = constant:;fO. 
Since E(3) also is a function of t alone owing to (4.3), 

G(E(3) has the same form with G(E(a»' Here G(E)'S close 
with respect to the Poisson bracket. The Yang-Mills theory I 
is of this type, 

(3) The case of e !%.k being dependent of q and/or p. 
Even E(a) (a = 1,2) are functions of only t, E(3) depends 

on q and/orp. Then G(E) is not the generator ofa Lie group 
(for t fixed). 8 G (E) 's do not close with respect to the Poisson 
brackets. By repeatation of the GT, new forms of 8qi appear 
successively, that is G(E(3) ) has a different form from the 
one ofG(E(a»' The generator X E given by (2.25) is an ex­
ample of this type. Though the calculation of the commuta­
tor of X E is tedious, the Poisson bracket (2.16) for G is rath­
er simple. Hence, we can regard G as a "generator" of the 
generator X E' 

For the case of e!%.k being dependent of q and/or p, a 
further classification would be needed, basing on a detailed 
observation. For instance, there would be an essential differ­
ence according to whether e !%.k contains p or not. 

A typical example of the case (3) is the relativistic mem­
brane with n ( > 2) spatial dimensions. 9 

In the classification (ii) in terms of K, the number of the 
constraint steps, we can derive more precise conclusion with 
the help of informations concerning e ~k (the structure 
functions of {t/J! ,H}). 

(1) The case of K = 1. 
No specific consequence is derived in the case where 

only the primary constraints appear, since the relations ob­
tained in Sec. IIi and the Appendix are available for the case 
ofK>2. 

(2) The case of K = 2. 
Most of gauge field theories (e.g., electromagnetic, 

Yang-Mills, and gravitational fields, etc.) belong to the 
type. As shown in (A40), we have 

e~}{I=e~"I.2=0 (k=1,2), (4.4) 
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and 

2C~z;,2 = - {t,6~,C~2} + {t,61,C~2} 
= 2C~z;,1 - 2{t,6~,C~2}. 

From (4.7), we obtain 

C~z;,2 = 0, 

if 

Then, the gauge group is Abelian. Further, if 

C~I = C~2 = constant, 

all 

(4.5) 

(4.6) 

(4.7) 

(4.S) 

(4.9) 

(4.10) 

ck1r - 0 (4.11) af3,m - . 

These are remarkable results. 
In the Yang-Mills theory where (4.9) is not satisfied 

and C~2 =/~rA l;(x), we have [except for the factor 
8(x - y)] 

C ~z;,2 = laf3 l' (the structure constant of the group) 
(4.12) 

and all other C ~~m = O. Equations (4.4 )-( 4. 7) suggest the 
possibility of 

C~z;,1 =1=0 or C~z;,1 =1=0, (4.13) 

which is a type different from the Yang-Mills theory. Fur­
thermore, even for the Abelian case C ~z;,2 = 0, we cannot 
exclude the case of ( 4.13); i.e., 

C~z;,1 =1=0 or C~z;,1 =1=0. 

(3) The case of K = 3. 
Omitting the derivation, we present only useful rela­

tions; 

and 

C ~z;,k = C 1;:'k (k = 1,2), 
c I2r _ c 31 r af3,1 - - af3,2' 

C 33r C23r {,/..2 cr } af3,3 = af3,2 - 'f'a' f33 

(4.14) 

(4.15 ) 

_ 1 C 221' 1 {,/..2 C r} 1 {,/..2 C l' } - -2 af3,1 -2 'f'a' f33 +2 'f'f3' a3 • 

(4.16) 

It is observed in (4.16) that C!}l3 =1=0, that is, non-Abelian 
even if C ~3 = constant. This is contrast to the case of K = 2. 

v. DISCUSSION 

In this paper, we have shown that the algebraic struc­
ture and the property of the gauge group is essentially deter­
mined by FCCs of the final step of constraint series appear­
ing in their stationarity conditions. The classification of the 
gauge groups can be made in terms of the property of C ::''k 
and the number of the constraint steps K, as shown in Sec. 
IV. Here, we emphasize that our definition (2.4) and (2.5) 
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of the constraint series are crucial in order to obtain such a 
simple conclusion. The consequences obtained will be useful 
for analysis of the properties of gauge groups. 

Remained problems are as follows: (i) to prove (3.25) 
for K;;. 5, (ii) to apply our formulation to physically interest­
ing models, (iii) to find new types of gauge theories, and (iv) 
to remove the assumption for {E1:,t,61} and {E'(I)k,E12)/} to 
contain no t,6~. 

APPENDIX: RELATIONS HOLDING AMONG C!i.m'S 
ANDC~k'S. 

First of all, we will derive (3.25). From (3.S) for 
m = K, k = 1 and (3.1S), it follows that 

C 1/6 C 216 D 1/6E ,/..m 0 af3,K - I - af3,K = af3.Km 'f' E::::: • 

Owing to (3.20), (Al) reduces to 

(Al) 

C~h_I=C;:;'K=O (kK), (A2) 

where the exact equality is due to the reason same with those 
for (3.15) and (3.16). By putting m = 1= K and k = 1 in 
(3.S), we have 

C ~~,ic-I - C~~,ic + {C~K't,6~}:::::O, 
which yields, with the help of (3.21), 

C~~~ = 0 (K;;.3). 

Combining (3.1S), (A2) and (A4), we obtain 

(A3) 

(A4) 

C~'IlK=C~'IlK=O (k=I-K,K;;.3). (AS) 

Thus only C!'IlK can be nonzero for K;;.3. 
Next, let us prove for K;;.4 

C!~,ic = o. (A6) 

Equation (3.S) reduces to, for m = K - 1, k = 2, and I <K, 

C~~K_I :::::C!~K (kK), 

owing to (AS) and C~~m = - C1":.m. From 
m = K - 1, k = 1, I <K, and (3.1S), we find 

C 1/1' c 2Ir C 1/+ 11' 0 af3,K - 2 - af3,K - I - af3,K - I ::::: 

(A7) 

(3,S), for 

(AS) 

in which for 1<..K - 2, the first and the third terms vanish 
due to (3.1S). Further, for I=K - 1, the first and third 
terms in (AS) cancel each other, owing to the relation 

C~~,K!..r2 -C~~,ic_I:::::O (K;;.4) , (A9) 

which is obtained from (3.23). Consequently, we get 

C~~K_I = 0 (kK,K;;'4). (A1O) 

Equations (A7) and (A1O) give 

C~;'K = 0 (kK,K;;.4). (All) 

In order to obtain (All) for 1= K, we put m = K - 1, 
k= l,andl=Kin (3.S) to get 

C ~~~-2 - C~~~_I + C~KC~a~~_1 + {C~K_I ,t,6~} 
- {H,C ~~~K- I }:::::O. (AI2) 

The last term of (1¥12) turns out to be - {H, [t,6~,C~K ]} by 
using (3.23). On the other hand, with the help of (3.23), 
(3.24) for m = 1 becomes 

C~~~_2 - C~KC~~~_I + {C~K_I ,t,6~} 
+ {t,6~, [C~K,H] }:::::O. (A13) 
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Hence, (A12) and (A13) yield 

C~~~_I ;:::: - {C~K' [tP~H]} = - {C~K'tP~} (K>4). 
(A14) 

In the above derivation, the Jacobi identity and (2.4) have 
been used. Again, putting m = 1= K and k = 2 in (3.8), we 
obtain 

C 2Ky C 3Ky + {cy ,/,2 }-O (A15) afJ.K-I - afJ.K fJK,'{JK - . 
From (A14) and (A15), (A6) follows. Thus (A6) and 
(A 11) are combined to give 

C!"l.K =0 (k= l-K,K>4). (A16) 

Consequently, only C!%;'k can be nonvanishing among 
C~~K for K<4. 

For K>5, the proof is so complicated that we have not 
succeeded in it. But we conjecture, for any K 

C~~K = 0 (k or kK). (A17) 

By the way, the substitution of (A17) into (3.10) with 
S = K gives 

{C!%;'k,tP~};::::O (/ <K), 

{C KK8 CKKE} {CKKE ,/,K}_O afJ.K' 8y.K + afJ.K''{Jy - . 
(AI8) 

From (4.1), other expressions of C ~~m for m =/:K can 
be derived. From the coefficient of tP! - 1 in (4.1 ), the follow­
ing relation is derived: 

€i3)K - 1 = €'[\)kit2)IC~~K - 1 + €'[I)k {tP~,€i2)K - I} 

+ it2lk {€iI)K - 1 ,tP~} + {€iI)K - 1 ,i(2)/}tP~ 

+ {€'[l)k,€h)K - 1 }tP~· (A19) 

Due to the first equation of (3.6), (A19) reduces to 

- Eb) - C~Ki(3) = €'tl)kit2)IC~~K-I 

- {€'tl)ktP~,C~K}it2) 

+ {€'[2)k,tP~,C~K}itl)' (A20) 

where €'to) =€'ta)K (a = 1,2) are put to be independent of q 
and p. By substituting the expressions of (3.6) into E"k in 

(A.20), there appear (K€~k),(K-€:-I), ... , while in the left-

I 

hand side (lhs) only the first-order time derivative of 

€'tl) i(2) exist, owing to (4.3). In the rhs of (A20), the coef-
(r) (.f) 

ficients of €(l) €m (r,s> 1) should then vanish; 

C~~K_I = 0 (both k and I<K - 1;K>2). (A2l) 

Hence, only C ~~.~ _ 1 can survive. 
(K - I)" 

Since the highest derivative €( I) comes out from 

€'tI)l , we have for the coefficient of i(2) in (A20) 

C~~~_I -{tP~,C~k}=O (K>3). (A22) 

(K- 2)" 

Since the term €(l) appears from €'tl) 1 and €'(1)2' the fol-

lowing relation holds: 
C 8 CIKy C 2Ky {C{j ,/,1 cy } uK {jfJ.K - 1 - afJ.K - 1 - uK '{J{j , fJK 

+ {tP~,C~K} = 0 (K>4). (A23) 

With the help of (A22), (A23) reduces to 

C~~.~_ 1 + {C~K,C~K}tP1- {tP~,C~K} = O. (A24) 

Also, from (AI5) and (A24), it follows that 

{C{j Cl' },/,I - D 2Kl'{j,/,1n (K'4), uK' fJK '{J{j - afJ.Km'{J{j ? (A25) 

hence, 

{C {j Cl'} D 2Ky{j aK' fJK = afJ.K 1 (K>4), 
c 2Ky {,/,2 cy } _ D 2Kl'{j,/,1 afJ.K-I - '{Ja' fJK - - aP.KI'{J{j· (A26) 

From the coefficient of tP! - 2 in (4.1), we find 

Ckll' = 0 ( k<K - 1, I<K - 2) . 
a13.K - 2 or k<K - 2, I<K - 1 (A27) 

Since it is so tedious to obtain further relations for arbi­
trary K, we will apply the above method to the case of K = 2 
and find useful relations. Now, we have 

€i3) = C ~7J.2 €'tl) i(2)' 

The substitution of 

€'t)1 = - E't.) - C{32it.) 

into (AI9) for K = 2 yields 

(A28) 

- C ~7J.2 €'tl) i(2) - C ~7J.2 (E'tl) itl) + €'tl) E't2) ) - C ~2 C ~7f.2 €'tl) i(2) 

= [C~7J.I - {tP~,C~2} + {tP~,C~2} + {C~2,C~2tPn - {C~2,C~2tPn - C~2C~7J.I + C~2C1~~'I] 
X €'tl) i(2) + [ - C ~~:I + {tP~ ,C ~2} ] E'tl) ~ + [C ~~:I - {tP~ ,C ~2} ] itl) E't2) . (A29) 

The coefficient of E'tl) i(2) in (A29) yields 

C~7J.2 =C~7J.I -{tP~,C~2}' (A30) 

and from the antisymmetric part of €'tl) i(2) with respect to a 
and {3, it follows that 

C~7J.2 + C~C~7f.2 = - C~7J.I + C~2C1~:1 - C~2C1~:1 

+ {tP~,C~2} - {tP~,C~2} 

+ {C~2,C~2tPn - {C~2,C~2tPn· 
(A3l) 

With the use of (A30), (A31) turns out to be 
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C 22py + cy C 228 + C 22y C 8 C 22y + C 8 C 22y a ,2 82 ap,2 ap,l - a2 8P,2 13 2 l>a,2 

- {tP~,C~2} + {tP~,C~2} + ({C~2,C~2} 
- {C~2,C~2})tP1 = o. (A32) 

On the other hand, (3,8) with k = 1= m = 2 becomes 

C~7J.I + C~7f.2 C~2 - C~2 C~1i + C%2 C~~:2 
- {C~2,tP1} + {C~2'tP~} + C~7J.2 ;:::0. (A33) 

Then from (A32) and (A33), it follows that 

(A34) 
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Again putting k = 1= m = 1 in (3.8) and using (3.22), we 
obtain 

e 211i e211i ap,1 = pa,I' (A35) 

The a, /3 antisymmetric part of (A30) reduces to 

2e~7f.2 = - {¢~,e%2} + {¢~,e~2} (A36) 

with the help of (A35), and the a, /3 symmetric part to 

2e~7J.1 = {¢~,e~2} + {¢~,e~2}. (A37) 

Equation (3.8) with k = m = 1 and I = 2, turns out to be 

- e~7f.1 + e~2e~~~1 + {e%I'¢~} + C~}£\ :::::0. 
(A38) 

The a, /3 antisymmetric part of (A38) gives 

2e~7f.I::::: - e~2e~~1 + e~2e~~~1 

2344 

- {¢~,e%l} + {¢~,e~I}' (A39) 

Summarizing all results obtained for K = 2, we have 

e 11r elkr 0 ap,1 = ap,2 = , 

2e~7J.1 = 2e~~1 = {¢~,e~2} + {¢~,e~2}' 
2e 22r eli e 12r eli e 12r ap,l::::: a2 PIi,I - P2 ali,l 
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and 

2e~7J.2 = - {¢~,e~2} + {¢~,e~2} 
= 2e~7J.1 - 2{¢~,e~2}' 

{e~2 ,e%2}:::::{e~2,e~2}' 

(A40) 

The weak equality ::::: means the existence of a contribution 
from the D¢ or E¢ term as in (3.8) or (3.12). 
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Symmetrized powers of the fundamental irrep of E6 
B. G. Wybourne 
Physics Department, University o/Canterbury, Christchurch, New Zealand 

(Received 9 March 1990; accepted for publication 16 May 1990) 

The resolution of all possible antisymmetrically symmetrized powers of the fundamental irrep 
(27) is given. This reduces the problem ofplethysms of the fundamental irrep to the evaluation 
of ordinary Kronecker products of E6 irreps. 

I. INTRODUCTION 

The group E6 has been of considerable interest to parti­
cle model builders] and more recently we2 have found it 
relevant to interacting boson models (IBM) involving s, d, g, 
ibosons. In each case, the 27-dimensional fundamental irrep 
of E6 plays a key role. In the case of the IBM, the resolution 
of symmetrized powers of the fundamental irrep is required. 
This problem is equivalent to the evaluation of the branching 
rules for SU27 ->E6 where the vector irrep {I} reduces as 
{l}- (27). 

II. THEORY 

The irreps of E6 may be variously labeled. In much of 
the physics literature, the irreps have been simply labeled by 
quoting their dimensions and using primes (') to distinguish 
distinct irreps of the same dimension and underlines and 
overbars to distinguish an irrep and its conjugate,] e.g., (27) 

and ( 27). More precise labeling comes from the use of the 
corresponding labels based ony the maximal SU 2 X SU 6 sub­
group of E6, the so-called natural labeling. 3-5 In that scheme 
the irreps of E6 are labeled as (S:A) where s is an integerlabel 
for SU 2 and A is a constrained partition such that 

s;>A] +A2 +,13 -,14 -As 

and the weight of A is even. The labels (S:A) are related to the 
corresponding Dynkin labels (a] a2a3a4a5a6) by4 

s = a] + 2a2 + 3a3 + 2a4 + as + 2a6, 
A] = a] + a2 +a3 +a4 + as, 
,12 a2 +a3 +a4 + as, 
,13 a3 +a4 + as, 
,14 a4 +as, 

As as· 

In terms of the natural labeling the fundamental irrep of E6 
is designated as (1: 1) and its conjugate irrep as ( 1: 11111 ). 

Using the earlier results of Wybourne and Bowick3 to­
gether with King's method6 for evaluating E6 Kronecker 
products it was possible to adapt the program SCHUR to com­
pute and verify SU27 -E6 branching rules given in Table I. 

The characters of SU27 can be represented in terms of 
Schur functions in the roots of the defining group elements 
and hence there is a one-to-one correspondence between the 
partitions that label an SU 27 irrep and those labeling the 
appropriate Schur function. Furthermore, any Schur func­
tion {A} can be expanded as a sum of products of Schur 

TABLE I. Antisymmetric powers of the fundametal irrep ( I: I) of En' 

Dimension 

I 
27 
351 
2925 
17550 
80730 
296010 
888030 
2220075 
4686825 
8436285 
13037895 
17383860 
20058300 

{o} 
{J} 
{12} 
{I'} 
{14} 
{I'} 
{In} 
{I'} 
{IH} 
{)"} 
{IIO} 
{I"} 
{1'2} 
{I"} 

(0:0) 
(\:\) 
(2:11 ) 
(3:111 ) 
(4:1111) 
(5:11111) + (4:2222) 
(6:0) + (5:22221) 
(6:1111) + (5:33322) 
(6:22211) + (5:44333) 
(6:33222) + (6:222) + (5:54444) 
(6:43333) + (6:33211) + (5:55555) 
(6:44444) + (6:43322) + (6:3311) 
(6:44433) + (6:43221) + (6:33) 
(6:44332) + (6:43111) + (6:4222) 

functions {I x} and hence Table I permits every plethysm of 
the fundamental irrep of E6 to be reduced to the evaluation 
of Kronecker products of the E6 irreps that occur in Table I. 
These can be readily evaluated using King's algorithm6 and 
the E6 - SU 2 X SU 6 branchings that are all known. Thus we 
have a complete and systematic procedure for constructing 
arbitrary plethysms of the fundamental irrep of E6 . 

Given that 7 (A ® B) ® C = A ® (B ® C) it follows that 
any irrep of E6 that can be expressed as a sum of products of 
plethysms of the fundamental irrep can be readily evaluated. 
For example, since (1: 1) ® {12} = (2: 11) it follows that 
(2:11) ® {A} = « 1:1) ® {1 2

}) ® {A} 
= (1:1) ® ({1 2}®{A}). 

Thus we conclude that a complete and systematic meth­
od is available for determining arbitrary plethysms of the 
fundamental irrep of E6 and furthermore can simplify other 
E6 plethysms. We have used the above results to readily 
evaluate the plethysms of the fundamental irrep of E6 for all 
partitions of weight < 8. 

I R. Siansky, Phys. Rep. 79, I (1981). 
2 I. N. Morrison, P.W. Pieruschka, and B. G. Wybourne, to be published. 
'B. G. Wybourne and M. J. Bowick, Austr. J. Phys. 30, 259 (1977). 
4R. C. King and A. H. A. AI-Qubanchi, J. Phys. A: Math. Gen. 14, 15 

(\98\). 
'R. C. King and A. H. A. AI-Qubanchi, J. Phys. A: Math. Gen. 14, 51 

(1981). 
hR. C. King, J. Phys. A: Math. Gen. 14, 77 (1981). 
7 D. E. Littlewood, The Theory a/Group Characters (Oxford U. P., Oxford, 

England, 1950), 2nd ed. 
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Algebras for the two-sphere and the three-sphere groups of compact simple 
Lie groups 

s. K. Bose and S. A. Bruce 
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 

(Received 21 November 1989; accepted for publication 6 June 1990) 

The infinite-dimensional Lie algebras corresponding to the Lie groups of smooth maps from 
two and three spheres to compact simple Lie groups are studied. The problem of their central 
extension is solved. The problem of the existence of semidirect sum algebras containing these 
and the algebras of the groups of diffeomorphisms on the two and three spheres is treated. 

I. INTRODUCTION 

Some time ago, Bars I studied the structure of the two­
sphere algebra associated with a Lie group. Homotopically 
trivial smooth maps from a two-sphere S 2 to a Lie group G 
form a certain infinite parameter group under point-wise 
multiplication. The corresponding infinite-dimensional Lie 
algebra is the two-sphere algebra associated with G. The con­
cept of the two-sphere algebra is an extension of the idea of 
the loop algebra-the algebra of the group of homotopic ally 
trivial smooth maps from a circle to a Lie group. The central 
extension ofthe loop algebra is the Kac-Moody algebra. 2

,3 

The latter has found wide applications in physics.4 Groups 
of maps from d-spheres S d to compact Lie groups and their 
associated algebras are expected to find useful physical ap­
plications. For one thing, these structures appear naturally 
in the study of current algebras. Indeed, it is motivated by 
considerations of current algebras that Mickelsson and Ra­
jeev5 were led to the problem of constructing highest weight 
representations of d-sphere groups. Moreover, sphere 
groups and algebras are expected to prove useful in the de­
scription of spatially extended objects with extension in 
more than one spatial dimension (membrane theories). This 
is in analogy with the role of the Kac-Moody algebras in 
string theories. For all these reasons, as also for the sake of its 
intrinsic merit, it appears worthwhile to pursue the study of 
these structures as a purely mathematical enterprise. 

This paper is addressed to several features of sphere al­
gebras. First, we shall write down the commutation relations 
of the three-sphere algebra-the Lie algebra of maps: 
S 3 -+ G, S 3 a three-sphere, G a Lie group. This task, of 
course, is absolutely straightforward. Secondly, and this is 
the main result of this paper, we shall carry out the central 
extension of the two-sphere and three-sphere algebras of a 
compact, simple Lie group G. Finally, we shall make some 
comments on the structure of these algebras. 

As far as the two-sphere algebra is concerned, Bars I has 
already considered the problem of its central extension. But 
his treatment is incomplete. He wrote down a two-term cen­
tral extension, whereas it will be shown in the sequel that the 
algebra has an infinite number of central extensions. This, 
indeed, must be the case according to a general theorem 
proved by F eigin. 6 Let us recall the F eigin result. Let M be a 
manifold and G a compact Lie group with g the correspond­
ing Lie algebra. Let gM denote the Lie algebra of the group of 
maps: M -+ G. By a standard procedure7 one constructs an 

algebraic complex associated with gM, which is contained in 
the de Rham complex of the corresponding group, Let H 2 

(gM) denote the second cohomology group of gM. Then the 
Feigin result states that H 2 (gM) is infinite dimensional 
whenever the manifold M has a dimension greater than 1. 
Since the space H2 (gM) has the interpretation as a set of 
classes of one-dimensional central extensions of gM, the im­
plication is that the algebra gM possesses an infinite number 
of independent central extensions whenever the dimension 
of the manifold M is greater than 1. The set of solutions for 
the central extensions that we obtain is found to contain one 
of the two terms written down by Bars. I The other term, 
upon closer scrutiny, will be found to be unacceptable. 

This paper is organized as follows. In Sec. II we write 
the basic commutation relations of the three-sphere algebra. 
In Sec. III, the problem of central extensions of the two and 
three-sphere algebras is solved. The significance of the re­
sults obtained is next analyzed in terms of the anomalies in 
the current algebra in Sec. IV. The final Sec. V contains 
discussions and comments. 

II. ALGEBRAS 

Let G be a Lie group, g the Lie algebras of G, TO the 
elements of a basis for g, andf°bc the corresponding structure 
constants [a, b, c run from 1 to dim (g) ]. We denote by gM 
the Lie algebra of the group of (homotopically trivial, 
smooth) maps: M -+ G. Here, our interest is confined to the 
two cases M = S 2 and M = S 3. A basis for gM is provided by 
operators of the form TL 0. When M = S2, L stands for the 
ordered pair (I,m), 1 is a non-negative integer and allowed 
values of m range from - 1 to + I, changing in steps of one. 
For the case M = S3, L stands for the ordered triple 
(I,m,m'), and here both m and m' separately have the same 
spectrum as in the previous case but 1 is now a non-negative 
integer or half-integer. We shall also be making use of the 
subscript notation; thus TL , ° would stand for TO/,m, or 
T\m,m', depending on the context. 

For the two-sphere algebra the basic commutation rela­
tions is! 

(1) 

where 
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C(L\>L2;L) = (II m\>/2m21Im) (II 0,/20110) 

X [(211 + 1) (2/2 + 1 )/41T(21 + 1)] 112 (2) 

and terms in brackets that appear above are the standard 
Clebsch-Gordan coefficients. Equation (2) is derivable 
from the "defining representation" T1 == Tay/m, where 
Y/m «(),cp) are the spherical harmonics that provide a com­
plete set of basis functions for any L 2 integrable function on 
the two-sphere. Furthermore, 

Y/,m, «(),cp) Y/2m2 «(),cp) = C(L I ,L2;L) Y/m «(),cp) (3) 

is the expansion of a product into a sum. It should be noted 
that there is a summation over the dummy index L, that is, 
over I and m in Eq. (1), with the range of summation being 
restricted by the non-vanishing properties of the coefficient 
function given by Eq. (2). Actually, a repeated index will 
always imply an appropriate summation. 

The analog ofEq. (1) for the three-sphere algebra may 
now be obtained. The manifold S 3 is parametrized by the 
Euler angles a, {J, y, the rotation matrices D ~m' (a,{J,y) 
provide a complete basis for functions on S 3 (from the Pe­
ter-Weyl theorem) and the analog ofEq. (3) for the product 
of the two rotation matrices is given by the celebrated 
Clebsch-Gordan expansion for the group SU(2). Thus we 
find that in the present instance the basic commutation rela­
tion can still be written formally, exactly as Eq. (1); only this 
time the coefficient function is different and is given by 

C(L I,L2;L) = (/Iml,l2m21Im)(/lm;,l2m~llmt), (4) 

where the brackets, once again, are Clebsch-Gordan coeffi­
cients. 

III. CENTRAL EXTENSIONS 

We shall now treat the problem of central extension of 
the two algebras that we have considered in the preceding 
section. Let us write the basic commutation relations for the 
centrally extended algebra in the form 

[ TLa ,TLb ] =rbcC(LI,L2;L)T~ +d1bL KA (5) 
1 2 I- 2(.4) 

where K A are the central generators that commute with each 
other and with all the T1 generators: 

[KA,KB] =0, [K A,T1] =0. (6) 

In the above, A is an index that labels the independent cen­
tral elements; the precise nature of this index will be made 
clear in the sequel. We shall often suppress this index on the 
term d 1b L for the sake of notational convenience. The Ja-,. , 
cobi identity as applied to the commutator Eq. (5) leads to 

rbdC(L I ,L2;L)d f~L, + jbcdC(L2 ,L3;L)d f~L, 

+ r adC(L3,L) ;L)df~L2 = 0, (7) 

where a summation over the dummy indices d and L is un­
derstood. Notice that the range of L summation is different 
for each of the three terms in Eq. (7), and is controlled by the 
nonvanishin,g properties of the coefficient functions. Equa­
tion (7) is the cocycle condition, its solutions will yield the 
desired central extensions. However, some of these are tri­
vial in the sense of being coboundaries. These can be elimin­
ated by a suitable change of basis. We seek nontrivial solu-
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tions of Eq. (7). It is clear that such solutions form a vector 
space. This is the second cohomology vector space of the 
sphere algebra. 

At this stage, we restrict our Lie group G to be compact 
and simple. We can now choose the basis for g in which the 
structure constants are completely antisymmetric and obey 

jabcjabd = {jcd. (8) 

Combining Eqs. (7) and (8), we have 

C(L) ,L2;L)d1~L, + r djdbeC(L2,L3;L)d"i,L, 

+jdca'jbdeC(L L 'L)d ec - 0 (9) 3' 1, L,L2 - • 

Taking now, L2 = 0, L3 = 0 in Eq. (9) and utilizing the 
Jacobi relations for the structure constantsjabc of g and the 
antisymmetry property d 1b L = - d to L , we derive 

I' 2 2- I 

dab =jab"fcedd ce 
L,.O L"O' ( 10) 

On the other hand, Eq. (7) is unchanged under the transfor­
mation 

T1--T1 +51.AKA, (11) 

under which the central terms behave as 

d1~.L2(A) --d1~.L2(A) - rbcC(L) ,L2;L)5~.A' (12) 

where 51.A are certain functions. Using Eq. (12) we can set 
d 1~.0 to zero, for such a and b for whichjabc does not vanish 
identically. In the eventrbc does vanish, Eq. (10) says that 
d 1~.0 vanish also. Thus, quite generally, we can set 

(13) 

Thus Tg generate a subalgebra isomorphic with the original 
Lie algebra g and the T1 transform as the adjoint represen­
tation of g, for each L. This conclusion follows from Eq. (5). 
Taking now L2 = 0 in Eq. (7) and using Eq. (l3) and the 
fact C(O,L) ;L) = C(L) ,O;L) -{jL,.L we get: 

(14) 

which is recognized to be the condition that d 1~.L, is an iso­
tropic tensor under the action of g. From this, it follows that 
the dependence on the indices a and b must be of the form 
{jab. This is exactly as it happens4 with the loop algebra. Thus 
we set 

and Eq. (7) reduces to 

C(L) ,L2;L)dL.LJ + C(L2,L3;L)dL.L, 

+ C(LpL) ;L)dL'L2 = O. 

(15) 

(16) 

The above equation plus antisymmetry d L,.L, = - d L2.L, de­
termine the central extension terms. We proceed to con­
struct solutions to Eq. (16). 

Let us first treat the case of the two-sphere algebra. The 
coefficient function C(L) ,L2;L) is here given by Eq. (2). 
Consider the derivative of the product of three spherical har­
monics: 

ai{yL, «(),cp) YL, «(),cp) YL, «(),cp)} 

= C(LI ,L2;L) YL «(),cp)aiYLJ «(),cp) 
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wherei = 1,2;al =.a la(J and a2 =.a laz and z = cos e. In de­
riving the above result, Eq. (3) has been used. From Eq. 

+ C(L2,L3;L)Yde,(J)a;YL, (e,(J) 

+ C(L3,LI ;L) YL (e,(J)a; YL2 (e,(J), (17) (17) we obtain 

(a2 Y£, )al (YL, YL2 YL ) - (al Y£, )a2 (YL, YL2 YL ) = C(LI ,L2;L) YL [(a2 Y£, )(al YL ) - (al Y£, )(a2 YL )] 

+ C(L2,L3;L) YL [(a2 Y£, )(al YL,) - (al Y£, )(a2 YL,)] 

+ C(L3,LI ;L) YL [(a2 YL') (al YL2 ) - (al Y£, )(a2 YL2 )]. (18) 

Now for any pair (L', L) it is true, as is easily verified, that 

f [(a2 Y£, )(al YL ) - cal Y£, )(a2 YL )]dll = 0, (19) 

where dll = dz d(J/41T. Since we can express the product of 
three Y's as a linear combination of Y's, it now follows that if 
we integrate both sides of ( 18) over the two-sphere then the 
left-hand side must vanish. The resulting equation is then 
compared with Eq. (16) to obtain the desired central ele­
ments. We thus arrive at 

(20) 

where 

DL =.D1m = (a;~m ) :(J - (a;~m )~. (21) 

The independent central extensions are labeled by L and as 
before z = cos e. In writing the above equations, we reverted 
back to a more conventional notation. It is instructive to note 
the central terms for I = 1; these are 

(22) 

dL"L,(I,± 1) = (-1)m'~II(l1 + 1) - ml(m l ± 1) 

X 8m, + m, ± 1,081,,1, (23) 

Let us now solve Eq. (16) for the case of the three-sphere 
algebra, i.e., when the coefficient function C(L I,L2;L) is giv­
en by Eq. (4). The derivation of the central terms proceeds 
much the same way as in the previous case and it, therefore, 
seems quite pointless to keep on writing the messy algebraic 
expressions that arise in this exercise. The essential point is 
this. There are now three variables a, p, and y in contrast to 
two of the earlier case. Correspondingly, we can write three 
distinct relations analogous to Eq. (18), by taking the pair­
ings (a, z), (z, y), and (y, a); herez = cos p. Consequently, 
we shall obtain a triply infinite set of solutions to Eq. (16). 
These are found to be 

d LL,(L) = f D ~,m; (a,p,y)D ~D ~,mi (a,p,y)dll, 

(24) 

where dll is the Haar measure on S 3 and 

I =.DI ,= (aD~m')i._ (aD~m')~ 
D L Imm ay az az ay , 

D 2 =D2 ,= (aD~m')~_ (aD~m')~ 
L - Imm aa ay ay aa' 
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3 _ 3 _ (aD~m') a (aD~m') a DL=D 1mm, - --- --- ----. 
az aa aa az 

(25) 

Here z = cos p and independent central terms are labeled by 
i( = 1,2,3) and L = (I,m,m'). We should note that the cen­
tral elements given by Eqs. (20) and (24) satisfy Eq. (13), 
which is necessary for consistency. 

IV. CURRENT ALGEBRAS 

Let us construct "currents" via 

Ta(e,(J) = I T~ YL (e,(J). (26) 
L 

The above is for the two-sphere; for the three-sphere replace 
the spherical harmonics by the rotation matrix element 
D ~m' (a,p,y). The commutation relation Eq. (1) gets con­
verted into the current algebra commutation relations for 
the currents Ta (e,(J) or Ta (a,p,y), whereas the central 
extension terms [Eq. (5) ] become anomalies. Thus the basic 
commutator relations have the structure 

[Ta(x),Tb(x')] =rbC8(x - x')TC(x') + anomaly. 
(27) 

What is the anomaly corresponding to the central terms that 
we found in the preceeding section? Let us investigate this 
question for the two cases separately; first, for the two­
sphere. For this case let us write the anomaly in Eq. (27) in 
the following form: 

8ab [II (e,(J )8(z - z')8'«(J - (J') 

+ ];(e,(J)8'(z - z')8«(J - (J')], (28) 

where,11 and]; are two functions on S2,Z = cos e and the 
delta prime 8' is the derivative of the Dirac delta function 8. 
Indeed, the Jacobi identity, as applied to Eqs. (27) and (28), 
is easily shown to lead to the condition 

all + a/2 =0. 
a(J az 

(29) 

The solution of the above, on S2, is 

a a 
II(e,(J) =-h(e,(J), ];(e,(J) = --h(e,(J), (30) 

az a(J 

whereh(e,(J) isan arbitrary functiononS 2
• UsingEqs. (26) 

and (27) if we now compute the central term dL"L, arising 
out of the expressions in Eq. (30), by expanding h(e,(J) into 
spherical harmonics we then find for dL"L, exactly the 
expression in Eqs. (20) and (21). The infinite number of 
central elements thus correspond to the infinite number of 
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components of the function h (O,</J) on the Y1m (O,</J) basis. 
The foregoing discussion is extended to the three-sphere 

algebra as follows. The anomaly term in this case is written 
in the following form: 

8ab [/18(z - z')8(y - y')8'(a - a') + h8'(z - z') 

X8(y-y')8(a-a') +!;8(z-z') 

X8'(y - y')8(a - a')], (31) 

wherell , 12' and!; are certain functions on S3. The Jacobi 
relation now leads to the condition 

(32) 

The solution of Eq. (32), on S3, is given by a set of three 
functions hi' h2, and h3, as follows 

a a II =-h3 --h2, 
az ay 

a a 
h=-h l --h3, (33) 

ay aa 

a a 
!;=-h2 --h l • 

aa az 

In the above, z = cos {3 and a, {3, yare the Euler angles. Ifwe 
now, using the above, construct the central terms, we find 
precisely the expression given in Eqs. (24) and (25). 

At this stage we should compare our results with that of 
Bars. I He wrote down an expression for the anomaly that 
corresponds to the choice II (O,</J) = a and 12 (O,</J) = b in 
expression (28); here a and b are two constants. The term 
II (O,</J) = a corresponds to our Eq. (22) and to this extent 
our results agree. However, the other term h (O,</J) = b 
should not be there, since this term, despite its appearance to 
the contrary, is not properly antisymmetric and b must be set 
equal to zero. To see this, let us calculate the central element 
corresponding to the term h ( (},</J) = b . We obtain 

(34) 

where P'f' is the associated Legendre polynomial. Consider 
now the special case m I = 0 and the integral in Eq. (34) is 
not necessarily antisymmetric with respect to the exchange 
11++/2 , since 

fl d fl d dz PI (z) - PI (z) + dz PI (z) - PI (z) 
-I 2 dz I -I I dz 2 

= 1 _ ( _ 1) II + 12 (35) 

and antisymmetry fails to be true if II + 12 = odd. The point 
is this: The delta prime (generalized) function is really the 
derivative operator. The representation of this operator fails 
to be properly antisymmetric since it acts on functions PI 
that do not necessarily enjoy the property 
PI ( + 1) = PI ( - 1). 
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V.REMARKS 

Consider the question of inclusions; if the three-sphere 
algebra, Eqs. (I) and (4), contains the two-sphere algebra, 
Eqs. (1) and (2), and ifthe latter contains the loop algebra 
(the Kac-Moody algebra modulo its center)? From inspec­
tion of Eqs. (2) and (4), it is immediate that the answer to 
the first question is in the affirmative. Indeed, generators T1 
with L of the form L = (/,m,O) and L = (/,O,m') separately 
span two isomorphic copies of the two-sphere algebra. As 
regards the second question, we note that operators T1 with 
L = (1,1) lead to the commutation relation 

[Tf
"

T7,] =rbcr~I+12' 
Tf = [41TI(21 + 1 )!] 1/2l!TfI' (36) 

as is easy to verify from Eqs. (1) and (2). The above is only 
one-half the loop algebra, since I here is restricted to a non­
negative spectrum, 1'>0. Note also, that T1 with 
L = (I, - I) generate an isomorphic copy of Eq. (36) but 
these two isomorphic subalgebras do not commute with each 
other. 

Do the foregoing conclusions continue to be true for the 
corresponding centrally extended algebras? The answer to 
this question turns out to be in the negative. The central 
elements in the commutators for the set T1, with 
L = (I,m,o), of operators, computed from Eq. (25), is found 
not to coincide with the desired central elements [Eq. (20)] 
for the extended two-sphere algebra. To settle the remaining 
issue, we compute using Eqs. (20) and (21), the central 
elements d ll ,L2(L) with LI = (11,11 ), L2 = (12,/2 ) and find 
that these vanish for each L. Thus the commutator of opera­
tors T1 == Tfl continues to be given by Eq. (36). 

Another question that should be entertained concerns 
the existence of grading operators. While these for the in­
dices m and m' in Tfm and Tfmm' can obviously be construct­
ed, none exists for the index I. It is essentially for this reason 
that it is not possible to give a description of these algebras in 
terms of a finite-dimensional root vector space. This is a 
point of significant distinction between these algebras and 
the Kac-Moody algebra. 

The final point of enquiry is based on an analogy. In the 
case of mapping of a circle, one has two structures: the Kac­
Moody and the Virasoro algebra. It is further known that 
these two can be combined into a larger Lie algebra with the 
structure of a semidirect sum in which the Kac-Moody alge­
bra appears as an ideal. Is a similar construction possible in 
the present instance? Now, for the spheres S2 and s3, the 
analog of the Virasoro algebra are,8-1O respectively, diff(S2) 
and diff (S 3 ) -the algebras of the group of diffeomorphisms 
of S 2 and S 3. Let us consider the case S 2 in some detail. The 
algebra diff(S2) is generated by 

L ==L = (aYlm) ~ _ (aYlm)!... (37) 
L 1m az a</J a</J az ' 

that satisfy 

[LL I ,LL2] =It,L2LL' (38) 

In the above, z = cos () and expressions for the structure con­
stants/LL2 have been given by Hoppe. II For our purpose it 
is useful to take note of the relation 
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{YL 'YL } =ff L YL, (39) 
I 2 l' 2 

where the left-hand side of the above denotes a Poisson 
bracket (with respect to z and t,b). Using Eqs. (37) and (39) 
and the "defining representation" T1 == Tayt. == Taylm , we 
obtain the commutator 

[LL"T1,] =ft,L,T1, (40) 

which clearly shows the semidirect sum structure. The only 
question that now remains is the one of consistency, i.e., if all 
the relevant Jacobi identities are satisfied. It is obvious from 
Eqs. (38) and (40) that the Jacobi relation for the triple 
(LL"T1"LL,) is indeed fulfilled. What about the triple 
(LL"T1"Tt,)? Using Eqs. (5) and (40), plus the condi­
tion 

[KA,Ld =0, 
we compute 

[[ LL, ,T'i,] ,Tt,] + [[ T1"Tt,] ,LL,] 

+ [[ Tt"LL, ] ,T1,] 

=rbcX(L\L2L 3L ')T~, 

+ oabY(L\L2L 3L ')K L', 

where 

(41 ) 

(42) 

X(L\L2L 3L') =ft,L,C(L,L3;L') - ff;,LC(L2,L3;L) 

(43) 

and 

Y(L\L2L 3L') =ft,L,dL,L)(L') + ff"L,dL,L,(L')' (44) 

Applying the operator LL, to the product YL, YL, and using 
Eq. (3), it is easily shown that 

X(L\L2 L 3L') = O. (45) 

On the other hand, Y(L\L2L3L) is, in general, nonvanish­
ing. We can easily convince ourselves of this by computing 
oneparticularcase;sayL\ = (1,1).L\,\ is\2 (up to an ines­
sential constant) the conventional angular momentum rais­
ing operator L + and the expression for the structure con­
stant in Eq. (40) is now very simple. We can now 
immediately see that the corresponding Y is nonzero. Thus 
the conclusion is that there does not exist a larger algebra 
containing diff(S2) and the centrally extended two-sphere 
algebra. However, such a structure does exist for diff(S2) 
and the noncentrally extended two-sphere algebra. This con­
clusion can be extended to the case where the three-sphere 
algebra (or its central extension) is combined with the alge­
bra diff(S3) whose structure has been elucidated in Ref. 10. 
The proof runs parallel to that of the foregoing example and 
will, therefore, be omitted. Our last conclusion, it should be 
noted, is stable with respect to any possible central extension 
ofdiff(S3) [diff(S2) is known not to admit any central ex­
tension \3 ]. Because of the semidirect sum structure, Eq. 
( 40), any possible central element in the commutator of two 
L operators never enters the Jacobi identity. 

It has been brought to our attention by the Referee that a 
general result concerning the classification of central exten­
sions ofthe algebragM of the group of maps has been given by 
Pressley and Segal. \4 Let M be a compact manifold with 
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dim(M) > 1, let Gbeacompact, simple Lie group andgM the 
Lie algebra of the group of smooth maps: M ...... G. The result 
of Pressley and Segal is this: central extensions correspond to 

1 0 

the elements of the space !lld!l of one-forms on M modulo 

exact one-forms. To understand how our results relate to 
this general theorem, we proceed as follows. First, we note 
that a general one-form on M can be, by the Hodge decom­
position theorem, written uniquely as a sum of an exact, a 
coexact, and a harmonic one-form. There are no harmonic 
one-forms on a sphere S n (n > 1), and thus for these cases 
the decomposition reduces to a sum of an exact and a coexact 
piece. It follows that each equivalence class of one-forms 
modulo exact one-forms contains a unique coexact represen­
tative. Thus the result of Pressley and Segal may be para­
phrased to read that central extensions are labeled by coexact 
one-forms on M in the case where M is a sphere. The connec­
tion of this result with our work is most transparent if we 
look at the expressions for the anomaly in our current alge­
bra. The functions/; that appear in Eqs. (28) and (31) can 
be identified with the components, in a local system of co­
ordinates, ofa one-form! Equations (30) and (33) corre­
spond to the statement thatfis coexact. For instance, Eq. 
(30) may be written as f= o{3 where 
f=/t (1 - r)dt,b + f2 (1 -r)-\ dz and {3= h dt,bl\dz. 
Note also that Eqs. (29) and (32) mean thatfis coclosed, 
of = 0, which is true. Thus our result is in complete agree­
ment with that stated by Pressley and Segal. We may develop 
this theme further in order to gain additional insight. Thus 
our anomaly is the Lie derivative of the delta function with 
respect to the vector field 

a 
x= I/; -a i' 

i X 

here Xi are local coordinates such as t,b and z on S 2 or a, z and 
ron S 3. The corresponding expression for the Kac-Moody 
current algebra is d I dt, where t denotes the coordinate on a 
circle. The vector field X can always be interpreted as the 
push forward of d I dt by a certain smooth map ct>:S 1 ...... M 
given by t-+xi, with dxildt =/;. 
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Perturbative techniques are used to derive a renormalization group equation for a free scalar 
field in a domain with rough boundaries and mixed boundary conditions. It is found that to 
second order in the surface height the boundary conditions scale not only as the perturbed 
area, but also with a nonlinear term that arises from matching orders of surface height in the 
perturbation series for the field amplitude. 

I. INTRODUCTION 

Oflate, many papers have been published on the subject 
of fractal-like surfaces. Experimental evidence for fractal­
like surfaces such as sandstone, other geological and biologi­
cal objects has been observed by use of absorption,I x-ray,2 
and NMR3 techniques. But the more general question of 
how the introduction of a rough (fractal-like) surface affects 
a scalar field, has not been fully addressed. 

Our approach is to solve Laplace's and Helmholtz's 
equation in the presence of a rough surface. The scalar field 
is assumed to obey mixed boundary conditions 

[noV,p+fo(S),p]s = [a,p +fo,p] =go(S). (Ll) 
an 5 

The cases go (S) = 0 and fo (S) = fo, independent of S is 
used for the bulk of this work. The process can be thought of 
as absorption, reflection, or any process described sufficient­
ly by a scalar field. In this case, S will be the real physical 
surface and will be modeled in Sec. II as a "cutoff fractal." 
But it is also assumed that in the vicinity of S, there exists 
another surface So such that So EC 00 and as S - So the prob­
lem is completely solvable. 

We start here at So, the unperturbed boundary and by 
the methods outlined in Secs. II and III, we let So -S. A 
redefinition offo is obtained, i.e.,fo-/(S), where/(S) is 
some undetermined surface parameter. An average over all 
possible samples gives a new boundary condition of the en­
semble averaged field so that 

[a(,p) +/(,p)] =0. 
ano 5" 

( 1.2a) 

In essence, we solve the boundary value problem at So with 
the constraint 

[.E!L + fo ,p] = o. 
ano 5 

(1.2b) 

A differential equation for the transformation fo -/ is 
found. This renormalization group equation (RGE) and its 
solution in terms of averaged surface parameters is the focus 
of this and subsequent papers. 

A priori one expects three scenarios, as the surface 
changes from a smooth (C 00) surface to a fractal (Co) one. 

Scenario 1:/-+0. The boundary conditions become von 
Neumann at So and the average behavior of the field can be 
solved as such. 

Scenario 2: /-+ 00. In this case the averaged fields obey 
Dirichlet conditions. 

Scenario 3: The renormalization proceeds to some value 
of fo, possibly indeterminate, and the boundary conditions 
remain mixed if a fixed point is found. In the case of an 
indeterminate value for J, the problem under consideration 
may, in fact, be ill-posed. This very point will be the topic of 
future papers and is probably the most interesting possibil­
ity, for this would imply that no solution could be found for a 
true fractal boundary value problem as the cut-off is re­
moved. 

In Sec. II we introduce the concept of a cutoff fractal, 
the average or covariance and how they relate to the Haus­
dorf dimension. Section III describes in detail the perturba­
tion techniques used to find the RGE. Sections IV and V are 
calculations of the solutions to second order in E in both 
semiinfinite and the closed systems. These calculations pro­
vide some evidence that the basic form of the RGE may, in 
fact, be universal. Section VI provides a rough guess of the 
scale of the renormalization for the case of hydrodynamic 
diffusion in sandstone, along with discussion offuture goals. 

II. SURFACES AND STATISTICS 

In many physical problems one encounters the concept 
of boundary conditions. In general, the actual shape of the 
boundary is idealized to be some regular geometrical object, 
usually taken to be a plane, cylinder, sphere, or some combi­
nation of the three. The operative word here is, "idealized," 
since in most physical applications real surfaces are rough. 
Our aim is to determine the behavior of systems when the 
boundary shape is not idealic. 

Suppose the surfaces S, So ex N (X N some embedding 
space) are defined as follows [XII == (x t ,x2 , ... ,XN _ t )]. 

Definition I-Boundaries So and S: 

So = {xEXNlx = (x t ,x2, .. ·,XN_ t ,h(xt ,x2' .. ·'XN_ t » 

such that Eh(xlI ) = const}, 

s= {xEXNlx = (Xt,X2, ... ,XN_t,h(xt,X2, .. ,XN_t »}. 

For concreteness, the definitions of self-similar scale trans­
formation (SSST) and scale-invariant surface (SIS) are the 
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following definitions.4 

Definition 2-Self-similar scale transformation (SSST): 
An SSST is a mapping of r:S - rS, such that if xES, then 

r:x-rx, rER, by the rule rx = (rx\ , ... ,rxN ). 

Definition 3-Scale-invariance: A surface is SIS if V 
continuous A CS 3rER such that rA ~S. 

Intuitively, Definition 3 states that one cannot distin­
guish between being on A or S, because with finite resolution 
both A and S exhibit the same characteristics. And by the 
same token this is what makes the surface non-Riemannian, 
because given any point xES there will be some scale, possi­
bly infinite, at which the tangent space at x (TSx ) is not 
uniquely defined. Stated more simply, it would be impossible 
to smooth out all wiggles, bumps, overhangs, and depres­
sions. In this sense a true fractal is infinitely rough. The sim­
ple act of limiting the scales of invariance will allow us to 
limit these points to a set of measure zero, i.e., given 
xEBCS 13 TSx ' then,u(B) = O. Thush(xlI) isC \ for xES IB 
one can define the tangent plane to S at point 
(x\, ... ,xN_\,h(x\, ... ,xN_\» in a natural way, as just the 
projection map cp: 

cp:S-TSx~RN-\, cp(x) =xlI' 

Obviously this would be absurd to have a scale-invariant 
surface as a boundary, since one does not observe this sort of 
behavior at scales smaller than say a few A, nor larger than 
the system under consideration. It is then reasonable to con­
sider the system "cutoff' from these scales, and coin the 
term cutoff-fractal to describe this sort of surface. 

Considering only those functions h(xil ) in Definition 1, 
such that, h(x il )E.2"2 we proceed by defining the Fourier 
transform of h(x il ): 

h(x ll ) = f dN-\qlle-iqll'Xllli(qll)' 

h-() 1 f d N - \ iqll'xllh ( ) qll = x11e xII' 
(217')N-\ 

(2.1) 

Easily stated, we expect that h (xII)' and hence S can be ade­
quately described by a two-point correlation function, or the 
covariance. The h 's are assumed to be governed by Gaussian 
statistics, with zero mean height. Lastly, demanding transla­
tional invariance requires the covariance to be only a func­
tion of distance and not direction, while at the same time, 
maintaining the constant volume. These restrictions require 

(h(xlI» = 0 and (h(xil )h(YII» = 5'(lx ll - YIII), 
(2.2) 

where 5', the "correlation function," is some function of the 
absolute value of the difference of position vectors XII and YII' 
This has an important effect on the type of systems we may 
consider by requiring [1, the corresponding Fourier trans­
formed averages, the power spectrum, to be an even function 
in q space. The transformed averages are then given by 

(li(qll»=0, and (li(qll)li(qil»=t5(qll +qil)[1(qll)' 
(2.3 ) 

where to cut off the scales of the surface [1 is assumed to 
have the form 
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(2.4 ) 

Under the assumptions X N =R3
, the system scale is un­

bounded and [1 has the form, [1 (qll) = constx Iq 11 1-f3, 
Pfeiffer5 has shown that the Hausdorf dimension of the sur­
face is given by 

(2.5) 

This is important because it provides the connection between 
the work presented in this paper and the popular fractal con­
cept. It must be stressed here that this dimension is the Haus­
dorf dimension and not the Euclidian dimension. The two 
only coincide when D H E Z, otherwise it does not have a very 
good physical interpretation as a physical dimension. The 
only real meaning that can be attached to the Hausdorf di­
mension is that the surface is self-similar and scales as 
( const)f3. 

III. PERTURBATIVE TECHNIQUES 

There is a great difference between perturbing the shape 
of the surface upon which a boundary condition is made, and 
perturbing the potential of the Hamiltonian. Of course, one 
can always express the boundary conditions in such a way 
that they add to the potential in some natural way. For the 
case of a boundary between two different media this would 
be done by the addition of terms proportional to 
t9(z - h(x», to the potential. This requirement will produce 
a mathematical nightmare when one actually tries to calcu­
late interesting quantities, since any mathematical treatment 
of the theta function will contain singularities in its deriva­
tives. This constraint forces one to work with perturbations 
that are well behaved. 

After adding these terms to the potential, the procedure 
continues with finding the Green's function and ends with 
the method of successive approximation. But, the Green's 
function must satisfy the boundary conditions on the per­
turbed surface, as well as the Hamiltonian equation. For a 
rough surface there is no hope of finding a Green's function 
that satisfies the boundary conditions exactly. Thus, one 
must use the method of successive approximation on the 
Green's function as well. It is here that one runs into diffi­
culty, because solving the necessary integral equation pro­
duces a logarithmically divergent series.6 The Green's func­
tion method tacitly assumes that the integral over the 
boundary is well defined when, in fact, the power law behav­
ior assumed for rough surface covariance, produces singular 
solutions as the boundary conditions approach Dirichlet 
boundary conditions. Abandoning this approach will re­
quire a direct construction of the the perturbed solution. It is 
unclear as to whether this approach can be extended to all 
systems ofPDEs with "rough" boundaries, but it is expected 
that in principle one could carry out this procedure on any 
separable system. 

Let the system under consideration be 

H'i' = E'i', 'i'(x) some field, and xEX N, (3.1a) 
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and satisfy the boundary conditions 

[a'i' +/o'i'] =go(S), S as given from Definition 1, an on S 

with normal derivative 

a 
an 

(3.1b) 

Further suppose 'i' and E can be represented as a power 
series in E, where E is given as some small parameter deter­
mining the surface height in Definition I: 

00 

'i' = L En'i'n :::::'i'o + E'i'l + C'i'2 + &(E3
), 

n=O 

00 

E = L EnEn :::::Eo + EEl + CE2 + &(E3
), (3.2) 

n=O 

where'i'o is known to satisfy 

[
a'i'o ] H'i'o = Eo'i'o and -- + 10 'i'o = go (So), 
aXl on s" 

(3.3 ) 

Then (3.lb) is expanded about Xl = Oin a Taylor series, and 
equating powers of E produces perturbed boundary condi­
tions. The solutions 'i'l , 'i' 2' EI , and E2 define a new bound­
ary condition defined as 

[( a'i') +/(So) ('i')] =g(So)' ano on s" 
(3.4 ) 

Where the averages are to be performed as outlined in Sec. 
II. 

For the semiinfinite case with g(S) = 0 in (3.1 b) 1 will 
be given by the ratio, 

(3.5) 

Under our averaging procedure, all first-order dependency 
vanishes. So, 

1:::::/0 - c( «(a'i'2 /ax
l )(So) -/0 ('i'2 (So)) . 

'i'o(So) 'i'o(So) 
(3.6) 

The solutions (3.4) are valid anywhere inside X N, and 
not just inside the perturbed surface S, which we consider 
the physical surface. If one views (3.1 b) as a constraint 
equation, then (3.4) will satisfy some other set of boundary 
conditions onSo. Here,fas calculated in (3.6) is thatf, such 
that the average fields obey (3.1 b) at S. It should be valid to 
assume the rhs of (3.6) should contain powers of Eh(x lI ), 
since the perturbed solutions are constrained by S. In this 
dependence [§ (qll) occurs naturaly, and thus (3.6) will 
have dependency upon the interval (qmin,qmax)' The behav­
ior of/under the transformation of q-+qmin + Dqmin is then a 
renormalization off, and its flow governed by the renormal­
ization group equation (RGE) found by differentiating 
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(3.6) with respect to qmin' Physically this says, that given 
some strength for 1 at the microscopic level 
(fmicro (q = qmax ), we may find a macroscopic strength by 
following the one-parameter family of solutions created by 
the ODE, for f, to the limit q = qmin' which is our infrared 
cutoff of the Fourier transformed surface. It should not be 
surprising thatl a:/o (A '1 A) + s(S) where A ' is the area of 
the perturbed surface. It turns out that there is also a nonlin­
ear term S, in the RGE. 

Technically (3.6) could be used to obtain the RGE for a 
set of closed systems. But, it will not prove easy or sometimes 
possible to find a second-order eigenfunction with good con­
vergence properties. Again, this is exemplified for Dirichlet 
boundary conditions (fo -+ 00 ), as is discussed at length in 
Ref. 6. On the other hand, one can find a second-order ex­
pansion for the eigenvalue that converges absolutely. 

It will prove beneficial to rewrite E in (3.2) in terms of a 
new variable k 2. This will allow us to cast the system of 
equations (3.1) into wave equation format, and develop a 
variational principle. Let 

00 

k 2= L Enk~2:::::kb2+Ek?+ck;2+&(c), (3.7) 
n=O 

or using the binomial expansion we identify kn with the coef­
ficient of En, and so on, 

k:::::ko +E--+t-- ----- + &(E). I k ~ 2( I k ~ 1 k i ) 3 
2ko 2ko Sk6 

(3.S) 

After finding the perturbed eigenvalue k, let ko -+k in'i'o 
and use 

(3.9a) 

to define the renormalized value off Here, (3.9a) will pro­
duce an eigenvalue equation that will in general be transcen­
dental. If H is a 2, for example, in the case of X N being an N­
dimensional box 

k tan(kL') = f (3.9b) 

Or in the case of X N ~S ~ (the N-dimensional sphere of radi­
us a), 

i~ (ka) 1 
----=-, 

in (ka) k 
(3.10) 

where thein's are spherical bessel functions. 
Now we expand (3.9b) or (3.10) in a power series in E 

and equate terms with the E expansion off, this will define a 
change in 1 and thus the RGE can be defined in the same 
manner as above. For (3.9b) this will be 

/0 = ko tan (koL '), 

f. = (kllko)(/o +L'(j~ +k~)), (3.11) 

h = (k2 / ko)(fo + L ' (j~ + k ~ )) 

+ (ki/k~)L'«(j~ +k~)(1 +/0), 

and for (3.9b) 
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fo = (l/a) - ko cot(koa) 

It = (k l Iko )(a(j~ + k ~) - fo) 

h = (k2Iko)(a(j~ +k~) -fo) 

+ jo- 2(koa)fo (k i Ik ~), 

(3.12) 

where averages may now be taken to find the average values 
of both It andf2' The averaging procedure will then relate 
the surface structure to some new value off, and a RGE 
similar to (3.6) is then derived. 

IV. THE SEMIINFINITE SPACE 

An interesting problem of moderate difficulty is a wave 
impinging upon a random surface in a semiinfinite medium. 
An example would be that of an electromagnetic wave re­
flecting from a rough dielectric. To simplify the problem and 
determine where an analysis of this problem might lead, a 
linear approximation is first calculated. Close to the surface 
there is no reason to believe that it would fail. In fact, the 
linear approximation turns out to have the same characteris­
tics as more complicated situations, in the sense that the 
main goal is to find an effective theory with renormalized 
parameters. 

Consider the N-dimensional Laplace's equation with an 
arbitrary metric g"v, 

g"V a 21/1 = a 21/1 = 0 ( 4.1) 
axp axv 

[i.e., H = a 2 in (3.1a)], and boundary conditions (3.1 b) 
with go (S) = O. For the diffusion equation our boundary 
conditions, with D the diffusion constant of the fluid, and p 
some surface interaction, would modify (3.1 b) to 

D(np a "1/1) Ion s + Pl/1lon S = O(Ref. 3), (4.2) 

where np are just the components of the unit normal point­
ing out of the semiinfinite volume that our solution exists. 
We still use the more compact notation of (3.1b) with 
g(S) = O. 

Under the linear approximation it is most easy to write 
down the form of the expected solutions, and the boundary 
conditions to (1 (c) : 

1/10 (x) = a + yx!, 

1/11 (x) = J dN-lkle-ik"XII-k,Xl¢l(kl)' (4.3) 

1/12 (x) = J dN-lk2e-ik2'XII-k2X'¢2(k2)' 

Where k2 = Ik2111, k2 = Ik2111, and integration over k! has 
been carried out with the requirement that the perturbed 
solutions be finite at infinity. The boundary conditions are 
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(1(C):[aI/12 +h
a2

1/11 _gflv~al/1l 
ax! ax! 2 axp axv 

aVh avh al/1o] [I" I" al/1l] 
- -- = J0l/12 +Joh-- . 

2 ax! x, =0 ax! x, =0 

(4.4) 

Omitting the tedious algebra, the solutions to (4.3) and 
(4.4) are 

¢I (k l ) = - foyh(k l )/(kl + fo) (4.5a) 

and 

¢2(k2)= Y JdN-lklh(kl)h(k2-kl) 
fo + k2 

X [gflvk lP (k;v - k 1v ) 

_ fogflvk 1p k2v _ f~kl ]. 

fo + kl fo + kl 
(4.5b) 

The average process in Sec. II is applied to find the aver­
age field (1/11 ) = 0, so 

(1/1) 'Z1/10 + C(1/12) 

=a+yx! -caJdN-lk[~+ f~k ] Y(k). 
2 fo + k 

(4.6) 

It would be tempting to usef = (al/1lan)/1/1 as the definition 
of f so that the average would be given by 
(f) = «al/1lan)/I/1). As pointed out in Sec. III though, 
there is no reason a priori not to select this renormalization 
scheme. But, Secs. III and V, show that there is only one 
allowable scheme for the closed system. The closed systems 
under investigation can be continuously enlarged to the limit 
of the semi infinite case. Thus, under these conditions, choice 
of the scheme that produces the correct limiting behavior is 
forced upon us. This choice does not include the squares of 
the first-order term nor any of its derivatives, implying that 
the correct choice isf = (al/1lan)/(I/1), (3.6), which yields, 

f'ZL {I +CJdN-lk[~+ f~k ] Y(k)}. 
a 2 fo+k 

Using (2.4) and explicitly writing out each step 

f'Zfo{1 + CASN-1C 

rqmu
, [ k 2 f2 k ]} 

X J.. dkk
N

-
2
- f3 2+~ . 

qnull fa + 

(4.7) 

(4.8) 

Here, AS N - 1 is the surface area of a unit N - 1 sphere, 

ASN- 1 = 21T 
r(N 12) 

Absorb theAS N - 1 into the definition of q andf, differentiate 
(4.8) with respect to qroin' drop the (min) subscript, and 
substitute inf to (1(c) forfo. Then, the RGE is given by 

df 'Z _ Cfql - f3 [q2 + j2q ]. (4.9) 
dq 2 f+ q 
A more complicated situation is that of a plane-wave 

R. Dashen and G. J. Orris 2355 



                                                                                                                                    

incident on a boundary constructed as before, but without a 
linear approximation. Here, terms occur in the RGE for f 
that are proportional to the new area and terms that are 
nonlinear in nature, including some that depend on the sur­
face structure through gradients and scalar products. Thus 
the particular renormalization is not unique and will depend 
on the spatial characteristics of the incoming wave. No long­
er a static problem, the Helmholtz equation is solved 

a 2t/J + k 2t/J = O. ( 4.10) 

The solutions are expected to take the form 

t/Jo (x) = e -,k·x + f!lt oe + ,k"x, 

.1. j d Nk - ,k,.X,i. k 
'1'1 (x) = Ie '1'1 ( I)' 

(4.11 ) 

To second order we not only have to worry about derivatives 
of higher order but the concept of a new area enters the 
problem. Our boundary conditions are, to second order 

(4.13 ) 

while continuity at the boundary implies kll = - k~ and 
kl = k/, which is contained within the familiar Snell's law 
of specular reflection. Once again we omit the edifying alge­
bra, and obtain 

tpl (k l ) = 8«k 2 - Ik11l12)112 + kll )(h(k lll - kll )/Ukll +10) )«klll - kll )·k ll (1 + f!lt 0) 

+ 10 ik 1 (1 - f!lt 0) - k i (1 + f!lt 0 », 
tp2(k2)= 'k 1 Ic jdN-IQ{h(k211-qll)tpl(qll,-(k2_lqII12)112)«k211_qll)·qll_k2+IQ11 12 

I 21 + 0 

- ifo (k 2 - IQ1l12) 1/2) + 0 QIl'(k211 - Qll - k ll ) Uk1)(f!lt 0 - 1) - Uk i12)(f!lt 0 - 1) 

+qll'kIlUk1)(f!lto -1) + (fokU2) (f!lt o + 1)h(qll)h(k211 -qll -kll )}. (4.14 ) 

We are guided by the previous exercise in applying the averaging procedure of Sec, II to these solutions. As in (4.6) 
(t/J) zt/Jo + (;2(t/J2)' but from a physical standpoint (t/J2) should propagate in the k' direction, because the boundary has a 
random structure and the average is over all possible random surfaces. This produces a spherically symmetric probability 
distribution of reflection directions, centered at k'. Here, (t/J2) should then only modify ,91 0 to (f!lt) and have the correct sign 
such that (f!lt) <f!lt 0' signifying that much of the reflected wave is scattered over other directions, So, 

(t/J) = t/Jo + ~(t/J2) 

(4.15 ) 

Whereql = - (k 2 - Iq1l12) 112 so that for k < Iqlll, ql = - ilq11 and the fact that Y (q) is an even function ofq has been used 
to eliminate terms linear in qll' Invoking (3.6) as before 

.3L = ~Io _d_jdN_Iq{lqIl12 + . iqJ~ + ( - k4 + Iok2(~ql -10) + (qll·kll )2} Y (q). (4.16) 
dqrnin dqrnin 2 lql +10 10 (lq1 +10) 

The first and second terms on the rhs are exactly what comes 
from the linear approximation, and the last term is what is 
required by the plane wave, and approaches 0 as k-O (the 
linear approximation limit). 
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rl------------------------------------------
V. THE CLOSED SYSTEM 

Applying the same procedure worked out in Secs. III 
and IV to that of a closed system is an important exercise, 
since the ideas of a particle in a box described by a scalar field 
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are prevalent throughout much of the literature. One of the 
difficulties that will arise is that control over ko is lost. In­
stead ofko remaining constant, a new mode is created, that is 
a function of all modes of the unperturbed problem, the sur­
face shape, and hence the Fourier components of the surface. 

In terms of energy, one expects the first-order shift to be 
proportional to ho.o, the constant Fourier component of the 
surface, with sign such that an increase in volume produces a 
decrease in energy. On the other hand, the second-order shift 
is expected to behave as some multiple of the new area. But 
as Sec. IV has shown, one should also expect nonlinear terms 
to appear as well. 

As pointed out in Sec. III, one ought to be careful with 
the process of renormalizingfo. It should be obvious that if 
fo were to be treated as some continuous parameter, 
foE[O,oo), then the limit -0 is the von Neumann boundary 
condition limit, andfo - 00 is the Dirichlet boundary limit. 
In terms of the energy spectrum, the ground state is Eo = 0 
for fo = 0 and Eo = 1Tflc/2L at fo = 00. The point is that 
fo = 0 is identical to a soft boundary that absorbs all incident 
waves, so that it is not surprising that Eo = O. 

For the first calculation, let X N be the N-dimensional 
hypercube with volume L N - I L " where the length L ' is tak­
en in the perpendicular direction. The second calculation 
will use the sphere S N, with radius a. To make the proper 
connection with the work in Sec. IV, let the transverse scales 
become very large compared to the perpendicular direction, 
then let the perpendicular direction become large as well. 

We return to Helmholtz's equation: 

a 2t/J + k 2t/J = 0, 

with 

nllallt/Jlon s + fo t/Jlon s = g(S) 

(fi points out of the boundary) while the normal derivative is 
zero on the transverse boundaries, 

and 

~~ (XI = 0,L"",xN _ 1 = O,L) = 0 

at/J (xN = 0) = 0, 
an 

(5.1 ) 

X N will be represented as Xl' Labeling a particular solution t/J 
as t/Jn, ..... nN' a typical solution of the system of equations 
(3.1a)-(3.lc) for the unperturbed problem will have the 
form 

t/Jn" .... nN = Cn, ..... nN cos(kn,x1 )coS(kn2 X2) 

.. 'cos(knN_,XN _ 1 )coS(knNX1 ), (S.2a) 

- Co _I_Xl sin (kOXl ), n = 1 = 0; 

where the Cn, ..... nN are the normalization constants defined as 

C - 2 - • 2k 2 0", (L)N-I(L' 1 ) N-I lj 

n" .... nN - 2" 2 + 4knN sm( nN) JJI 

and the boundary conditions yield 

tan (knNL ') =/olknN , 

kn, = ni 1TIL, i#N, 

(S.2b) 

( S.3a) 

(S.3b) 

k 2=k 2 + ... +k2 . (S.3c) 
nl nN 

To simplify the calculations as far as possible, let N = 3, 
change the notation to n l = n, n2 = I, n3 = m with 
1 = n = 0 and m = 1. Since we will be working in a finite 
domain, the Fourier integrals of Sec IV will become Fourier 
series. Lastly, the results of Appendix A may be used, and 
thus only the first-order corrections need be constructed di­
rectly. The rest being given by a variational principle (AS). 
So, 

+00 
hex) = L eik"./'Xh

n
•
1 (5.4 ) 

n.1 = - 00 

and 
+00 

t/JI (x) = L e,k".I'
X

i'pn.1 (Xl)' (5.5) 
n,l= - 00 

with 

kn,l = (n1TIL)i + (/1TIL)Y. 

Equations (3.1a)-(3.1c) to &(E) are 

a 2(t/Jo + Et/JI) + k~t/Jo + Ekft/Jo + Ek~t/JI = 0, 

(S.6a) 

(S.6b) 

The notation 15(, + s, means to evaluate on the perturbed sur­
face to first order, using our formula for a I an and expanding 
about Xl in powers of h ( x) : 

Solving for t/JI with the assumption 

t/Jo = Co cos(kOxl ), 

with 

(S.6c) 

t/Jo (L ') = C~ cos2(koL ') = ~ k ~ 
L2 fo +L'(k~ +/~) 

(5.7) 

we find 

( 

k2 

_ 2ko 

t/Jn,l(Xl ) = Ch (k 2 12) (kL') 
o n,t 0 + 0 cos 0 k 2 k 2 1/2 - cos - X) 

[k2 _k2 ]1I2sin([k2 _k 2 ]1I2L') -I'COS([k2 _k2 ]1I2L') ([ 0 n,d l' 
otherwise 

o n,t 0 n,1 Jo 0 n.t 

( S,8a) 
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and 

2 2k ~ (j~ + k ~ ) ho.o k I = - -~-=-----=--..:..:..:...-
lo+k~L'+lokoL' 

(5.8b) 

Now, before invoking the variational principle worked out in Appendix A, 

[k
2
] =k~ +ki -cki J dVtPotP, + J dStPo(~ +1o)(tPo +tPl)' (5.9) 

we note two facts that simplify our calculation. Fact 1: (a Ian + 10)( tPo + tPl ) is a second-order term by difinition. Fact 2: All 
terms with one or two ho.o in them will average to zero by (2.3). So, any term with k, averages to zero. Thus Facts 1 and 2, 
(2.3), (3.8), and (3.11) give 

II') = '" {k~ cos<[k~ -k~.d'12L') +Io[k~ -k;'.d'12sin<[k~ -k;'.d '12L ') 2 2 Iok~.I} f§ 
V2 £.. [k2 k2]112' [k2 k2]1/2 i I' [k2 k 2 ]112' (ko+lo)+ 11.1' 

(n.I)#(O.O) 0 - 11.1 sm( 0 - n.1 L) -Jo cos( 0 - 11.1 L) 2 
(5.10) 

There is an obvious resemblance between this and the case of reflection from a rough surface in a semiinfinite medium, worked 
out in Sec. IV. Letting k = kz, and k<fo ~ k ll ,/ implies 

<J;)z- I {Iok;''/ + I~kll'/ } f§1I'/' (5.11) 
(11'/) # (0.0) 2 10 + k ll.1 

which is in exact agreement with (4.9), showing that the linear approximation is reasonable. 
For the case of the sphere, the unperturbed wave function is taken as 

tPo = Caio (kor) = Co (sin korlkor), 

Co = (2!a 3
) 11%- I (koa) [ko/(ko -10)], 

( 5.12a) 

(5.12b) 

wherej(kor) is the spherical Bessel function of the first kind. And the boundary conditions are (3.1c), with explicit represen­
tation of a Ian being given by 

~z-(1- c a hal'-h)~-J...~~- 1 ~~. (5.13) 
an 2 I'- ar a2 ao ao a2 sin2 0 aifJ aifJ 

Applying the same procedure as above with the boundary now expressed in terms of spherical harmonics 

h(x) = I hl.m Y'(,(O,ifJ), (5.14 ) 
I.m 

we find: 

tPl = CI.O cos(kor) + I CU .m Y,!,(O,ifJ)h(kor). 
I.m (5.15 ) 

Here, Y,!,(O,ifJ) is the spherical harmonic, with phase convention from Arfkin.7 It is then straightforward to calculate the 
perturbed eigenvalue to & (€) and the constants CI,O and CU .m : 

2 2 CI,O 2koho.o 16 + k6 - (21oIa) 
k, =k o --= ------------

2Co a I~ + k6 - (lola) 
(S.16a) 

Coho.o 16 + k6 - (21oIa) 
CIO = - ---------

. a I~ +k6 - (lola) , 
(S.16b) 

C - (j~ + k~ - 21ola)Cohl,m - C' h 
1.I.m - [aj,(koa)!aa + l<il ] (koa) - 1.1 I,m' (5.16c) 

Following the same procedure that led to (5.10) leads to 

<J;) = a(j6 +k6) -10 {[J...(/~ +2k~ _ 610 ) I (2/+ 1)f§'(I)] 
a2 (ko - 10 ) 2 2 a I 

(
2ft ) [ ( a (k a) a 2 (k a) ) (a (k a) ) - I] 

+a I~ +k~ __ 0 I 10 it 0 + it 0 it 0 +ioh(koa) (2/+ l)f§'(I) 
a I aa aa2 aa 
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+ [_1_ f [1/(1)(10 _ ~/(koa) [(f~ + k~ _ 210) (Jh(koO) + Ioh(koO») -1]) Jdn(JY,!, Jyr
m 

41TO 1=0 2 Jo(koo) 0 Jo JO JO 
In= -/ 

+ _1 JY'!' Jyrm)]} . 
sin2 0 Jt/J Jt/J 

It is much more difficult to get at the meaning of (5.17) 
due to the complex nature of the distribution function 
[1/ (I). But the same term involving the new area of the per­
turbed surface is present. As well, the second summation is 
expected to yield the termf6, since it is exactly this term in 
the variational equation (AS) that leads to this term in 
(5.10). The interesting point that needs to be made about 
(5.17) is that it appears possible to have a fixed point in the 
renormalization off Namely, there seems to be no reason 
why <..h) = 0 is not a possibility, unlike (4.9) and (5.1l). 
The implication is that under the right circumstances 
10 -lip' the fixed point, regardless of the extent to which the 
surface is fractal-like, and thus the cutoff can be removed 
from the theory. Unfortunately, this is all that can be said 
about (5.17), because a fully detailed analysis is still forth­
coming, and will be the subject of the next paper. 

VI. CONCLUSION 

Under a vast set of conditions, (4.9) seems to be a good 
approximation of the RGE for f It should be emphasized 
that what we have done is tosolve the unperturbed problem 
with boundary conditions (1.2) and the constraint (1.3). 
The true (f) in ( 1.2) is in fact the measurable quantity much 
the same as m phys and not mo (the bare mass) is the physical­
ly measurable mass of the electron for quantum field theo­
ry.8 

To see the power of the philosophy of the renormaliza­
tion theory, consider the problem of NMR spectroscopy on 
pores in sandstone as in Ref. 3. In this example, the size of a 
typical pore is on the order of 10 - 6 m, and no scales are 
probed with size.;;; 10 - 10 m. Under the assumption that the 
diffusion time scale is large compared to 10 (i.e., ko <fa), 
then the area term in (4.9) dominates at all scales except 
close to the lower cutoff frequency of the surface spectrum, 
or - 106 m - 1. The renormalization scale factor of some 10 is 
then approximated by 

(f /10) IfJ= 1.5 -i ~,;..'J/2(4 - fJ) = £010". (6.1) 

For any realistic 10 ,fis considered to be effectively infinite, 
and the boundary conditions well approximated by Dirich­
let conditions. 

Another application of this idea is light reflecting from a 
mirror. Since any mirror surface can be considered rough at 
some scale, any field reflecting from the surface can have 
drastically renormalized boundary conditions if the surface 
roughness occurs at a high enough frequency in the power 
spectrum of the surface. This naturally leads to the concept 
of the two-scale model of wave reflection from a rough sur­
face. 9 The two-scale model divides up the surface power 
spectrum into two distinct regions and tries to find suitable 
physical interpretation for the effect these two regions im-
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pose upon the scattering cross section. The analysis seems to 
explain the high-frequency region of the surface as a redefin­
ition of the system boundary conditions. 

Further investigation into the region of validity of ( 4.9) 
will require accurate numerical calculations. As of yet only 
preliminary efforts in this direction have been made. Al­
though they are preliminary, these numerical calculations 
seem to give a smaller renormalization factor than that cal­
culated in (6.1), but it can still be large and has not been 
observed to be less than 1030

• Subjects that may also prove 
interesting are the range of validity and the conditions for 
(5.17) to have a fixed point. As well, the question of where 
the solution to (4.9) does not exist and what the physical 
characteristics of the surface are which produce this indeter­
minate solution need investigation. 
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APPENDIX A: DERIVATION OF EQ. (5.9) 

To derive a variational principle equation for the eigen­
value in a finite volume we consider the equation we want to 
solve. For example, (4.10) with boundary conditions 
(3.1b). We start by defining a functional equation for the 
eigenvalue and follow the notation of Ref. 6: 

[k
2

] J dVt/l = - J dVt/JJ 2t/J+ J dSt/J ~~, (Al) 

where we have assumed that t/J E R and the boundary condi­
tions have not been specified. Ifwe vary (AI), we find 

8[k 2] J dV t/l + 2[k 2] J dV t/J 8t/J 

(A2) 

So we would like to find something to add to the rhs of (A 1 ), 
such that under variation, and inclusion of the exact answer 
8[k 2] = O. Obviously, we addloS dS t/l: 

:::}[k
2

] = - J dVt/JJ
2
t/J+ J dSt/J(iot/J+ ~~) 

X (J dV t/l) - 1. (A3) 

Using the exact normalized wave function, the surface inte­
gral vanishes and 
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[k 2] .... - J dVrPa2rP· 

The next step is to expand rP, as in (3.2), to & (E). Inclusion 
of this first-order solution into (A3) should produce the cor­
rect eigenvalue to the next highest order, or & (c). Explici­
ly, 

[k 2];::: - J dV(rPo + ErPI )a 2(rPo + ErPI) 

+ J dS(rPo + ErPI)0 + ~) (rPo + ErPI) 

x( J dV(rPo + ErPI )2) - I. (A4) 

Because rPo + ErPI satisfies the boundary conditions to first 
order, and rPo is normalized, (A4) can be rewritten as 

[k 2] =q +Eq -ck~ J dVrPlrPo 

+ J dSrPo(~ +/o)(rPo +ErPI)· (A5) 

It should be pointed out that the integrations are carried out 
only over the unperturbed volume, since integration over the 
perturbed volume brings in only higher orders of E. Thus 
(5.9) has been proved. 

APPENDIX B: JUSTIFYING EQ. (3.5) 

We will now need to justify our particular choice of re­
normalization scheme. We are left with an ambiguity in the 
definition of our renormalized J, in the semiinfinite sce­
nario. We can choose 1 to satisfy either: 

or 

I(S,)=(allJ/anlon s') 
IIJl0n S' 

(allJ/anlon s') 
I(S')= . 

(\ilIon s') 
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(Bl) 

(B2) 

There is no reason a priori to choose (B 1 ) over (B2). But as 
we have seen, the choice of (B2) leads naturally to the same 
RGE as the case of the finite system. The question is: Should 
there be some reason why the finite system picks out a partic­
ular renormalization scheme over all other choices? 

Of the two schemes we easily denote the difference as 
whether or not a term such as 

~1IJ2 
an 1 

is present in the RGE. This is equivalent to whether or not 
terms like 

J dV ~ or J dV rPI rPo 

appear in the pertubative series for k ~. And the answer to 
this is, No. 

From the procedure we have used to construct the per­
turbed eigenvalue, one may add to the definition of rPI any 
constant multiple of rPo. So, we are able to make a transfor­
mation to a new solution: 

(B3) 

and with a judicious choice of the constant C, we can make 

(B4) 

Thus all of the contribution to the perturbed eigenvalue can 
be made to come from only the surface integral in (A5). 
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Hearing the shape of a general doubly connected domain in 1P 
with impedance boundary conditions 
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The basic problem in this paper is that of determining the geometry of a general doubly 
connected domain in R 3 together with an impedance condition on its inner bounding surface 
and another impedance condition on its outer bounding surface, from the complete knowledge 
of the eigenvalues {.1.)t= I for the three-dimensional Laplacian using the asymptotic expansion 
of the spectral function O(t) = '!.t= I exp( - tAj ) for small positive t. 

I. INTRODUCTION 

The underlying problem is to deduce the precise shape 
of a membrane from the complete knowledge of the eigenval­
ues .1.j for the Laplace operator 

V2= ± (~)2 
;=1 ax 

in the X l
X

2
X

3 space. 
Let n ~ R 3 be a simply connected bounded domain with 

a smooth bounding surface S. Consider the impedance prob­
lem 

(V2 + .1.)u = 0 in n, (! + y)u = 0 on S, (1.1 ) 

where a I an denotes differentiation along the inward point­
ing normal to Sand Y is a positive constant. Denote its eigen­
values, counted according to multiplicity, by 

0<.1.1 <.1.2 <.1.3<" . <.1.j < ... --. 00 asj--. 00. (1.2) 

The problem of determining the geometry of n and the im­
pedance Y has been discussed recently in Refs. 1 and 2 from 
the asymptotic behavior of the spectral function 

00 

B(t) =tr[exp( -tV2
)] = I exp( -tAj ) ast-+O. 

j= I 

(1.3 ) 

Problem (1.1) has been investigated in Refs. 3, 1,4, and 5 in 
the following special cases. 

Case 1 [y = 0 (Neumann problem) ]: 

B(t) = V +~+ 1 
( 41Tt) 3/2 161Tt 12 ~12 t 112 

xL HdS+ao +O(t1l2) ast--.O. (1.4) 

Case 2 [y -+ 00 (Dirichlet problem) ],' 

V S 1 
O(t) = ---+---

(41Tt) 312 161Tt 12~l2tl/2 

xL HdS+ao +O(t1l2) ast--.O. (1.5) 

In these formulas, Vand S are, respectively, the volume 

a) Present address: Mathematics Department, University Qf Emirates, Fa­
culty of Science, P. O. Box 15551, AI-Ain, United Arab Emirates. 

and the surface area of n while H = 1 ( 1/ R I + 1/ R 2 ) is the 
mean curvature of S, where R I , R2 are the principal radii of 
curvature. Furthermore, it has been shown that the constant 
term ao in (1.4) and (1.5) has the following form: 

_7_ f (_1 ___ 1_)2 dS in the case of 
5121T Js RI R2 ' 

Neumann problem 
(see Ref. 1), 

a
o 

= 1 i ( 1 1 )2 -- ---- dS 
5121T S RI R2 ' 

in the case of 

Dirichlet problem 

(see Ref. 5). 

In terms of the mean curvature H and Gaussian curvature 
N = 1/R IR 2 ,then 

_7_ f (H 2 _ N)ds, in the case of 
1281T Js 

Neumann problem, 
ao= (1.6) 

_1_ f (H 2 _ N)ds, in the case of 
1281T Js 

Dirichlet problem. 

The object of this paper is to discuss the following in­
verse problem: Let n be a general doubly connected domain 
in R 3 surrounding internally by a simply connected bounded 
domain n l with a smooth bounding surfaceSI and external­
ly by a simply connected bounded domain n2 with a smooth 
bounding surface S2' Suppose that the eigenvalues (1.2) are 
given for the impedance problem 

and 

(V2 + .1.)u = 0 in n, (1.7) 

(~ + YI)U = 0 on SI' (1.8) ani 

(~ + Y2)U = 0 on S2' an2 

( 1.9) 

where a I an I and a I anz denote differentiations along the in­
ward pointing normals to SI and S2' respectively, while YI 
and Yz are positive constants. Determine the geometry of n 
as well as the impedances YI and Y2 from the asymptotic 
behavior of B( t) for small positive t. 

Note that problem (1.7)-( 1.9) has been investigated 
recently by Zayed6 in the special case where 
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n = {(r,B,<p):a<r<b, O<B<11", O<<p<211"} 

is a spherical shell. 

II. STATEMENT OF RESULTS 

Suppose that the outer bounding surface S2 of the region 
n is given locally by infinitely differentiable functions 
Xi = /(U2)' i = 1,2,3, of the parameters uLo1. If these pa­
rameters are chosen so that d{ = const, a = 1,2 are lines of 
curvature, the first and second fundamental forms of S2 can 
be written in the form: 

ill (u2,llu2) = gil (U2)(lluj)2 + g22(U2) (llo1)2 

and 

il2(u2,llu2) = dll (u2) (lluj)2 + d22 (U2) (llo1 )2. 

In terms of the coefficients gIl' g22' d) I' d22 the principal radii 
of curvature for S2 and RII =gll/dll and R22 =g22Id22' 
Consequently, the mean curvature H2 and Gaussian curva­
ture N2 of the outer bounding surface S2 are 

H2 = ..l (_1_ + _1_) and N2 = _1_ . 
2 R 11 R22 R I\R22 

Similarly, suppose that the inner bounding surface S) of 
the region n is given locally by infinitely differentiable func­
tions Xi = /(ul ), i = 1,2,3 of the parameters u:.o7. If these 
parameters are chosen so that of = const, a = 1,2 are lines 
of curvature. the first and second fundamental forms of SI 
are 

and 

ilt(ul,llu l ) = bll (U I )(llu:)2 + b22(UI)(llo1 )2. 

In terms of the coefficients a II' a22• b II' b22 the principal radii 
of curvature are r ll = all/bl! and r22 = a221b22. Conse­
quently, the mean curvature HI and Gaussian curvature NI 
of the inner bounding surface S I are 

HI = ..l(_1_ + _1_) and N, = _1_ . 
2 r ll '22 '11'22 

Let SI and S2 be the surface areas of the inner and outer 
bounding surfaces SI and S2' respectively, then the results of 
problem (1.7)-(1.8) can be summarized in the following 
cases. 

Case 1 (0 < YI ~ 1, Y2> 1): 

B(t) = (4::)3/2 + l~m {SI - (S2 - 2y2-
11, H2 dS2)} + 12~;2t 1/2 LJ:.. (HI ~ 3y, )dS, + 1, Hz dS2} 

+ _1_ {7 { [(H, - 3YI)2 - (N, -~ YIHI + ~ rf)]dS1 12817" Js, 7 7 

+ Is, [H~ - (N2 - 16Y2- 'H2)]dS2 } + OCt 112) as t-.O. 

Case 2 (Y,>1.0<Y2~1): 
In this case the asymptotic expansion of B(t) follows directly from (2.1) with the interchanges SI+-+S2' YI+-+Y2' 
Case 3 (YI>Y2> I): 

B(t) = V / __ I {(SI - 2y,-1 ( HI dS,) + (S2 - 2Y2- 1 
( H2 dS2)} 

(41Tt)32 16m Js, Js, 

+ 12~;2t 112 {I, HI dS, + I, H2 dS2} + 12~17" {I, [Hi - (NI - 16YI-
I
H I) ]dSI 

+ I, [H~ - (N2 - 16Y2- IH2) ]dS2} + Oct 1/2) as t ..... O. 

Case 4 (0 < YI' Y2~ 1): 

B(t) = V + SI +S2 
( 41Tt) 312 1611"t 

(2.1 ) 

(2.2) 

(2.3) 

With reference to formulas (1.4 )-( 1.6) the asymptotic 
expansions (2.1 )-(2.3) may be interpreted as follows. 

(ii) For the first four terms, n is a general doubly con­
nected domain in R 3 of volume V. 

(i) n is a general doubly connected domain in R 3 and 
we have the impedance boundary conditions (1.8), (1. 9) 
with small/large impedances YI. Y2 as indicated in the speci­
fications of the four respective cases. 
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together with Neumann boundary conditions, while the oth­
er part has area 

(S2 - 2Yz-
li,HZ dSz). 

mean curvature H2 and Gaussian curvature 
(Nz - 16yz- IH2 ) together with Dirichlet boundary condi­
tions. 

In case 3, a part of its surface has area 

( SI - 2YI- I 1. HI dS} 

mean curvature HI and Gaussian curvature 
(NI - 16YI-IHI) together with Dirichlet boundary condi­
tions, while the other part has area 

(Sz - 2Yz- 1 i, Hz dSz). 

mean curvature Hz and Gaussian curvature 
(Nz - 16yz- 1Hz) together with Dirichlet boundary condi­
tions. 

In case 4, its surface has area SI + S2' A part of this 
surface has mean curvature (HI - 3YI) and Gaussian cur­
vature 

( 
26 47) N I - 7 y IH I +7 Tt 

together with Neumann boundary conditions, while the oth­
er part has mean curvature (H2 - 3yz) and Gaussian curva­
ture 

( 
26 47) 

N2 -7YzH2 +7~ 

together with Neumann boundary conditions. 

III. FORMULATION OF THE MATHEMATICAL PROBLEM 

In analogy with the two-dimensional membrane prob­
lem,7 it is easy to show that O(t) associated with problem 
(1.7)-( 1.9) is given by 

O(t) = f L f G(x,x;t)dx, (3.1) 

where G(X I,X2;t) is Green's function for the heat equation 
VZu = au/at subject to the impedance boundary conditions 
(1.8), (1.9) and the initial condition G(X I,x2;t) 
-+8(x I - x2) as t-+O, where 8(x I - xz) is the Dirac delta 
function located at the source point X2. 

Let us write 

G(XI,XZ;t) = GO(xl,XZ;t) + X(xl,xZ;t), 

where 

(3.2) 

GO(xl,XZ;t) = (41Tt) - 3lZexp{ - IXI - xz l
z/4t}, (3.3) 

is the "fundamental solution" of the heat equation, while 
X(X I,X2;t) is the "regular solution" chosen so that 
G(X I,X2;t) satisfies the impedance boundary conditions 
(1.8) and (1.9). 

On setting x I = x2 = x we find that 

O(t) = V /(41Tt) 3/2 + K(t), 

where V is the volume of nand 

K(t) = f L f X(x,x;t)dx. 

(3.4) 

(3.5) 

In what follows, we shall use Laplace transforms with re­
spect to "t," and use "S2" as the Laplace transform param­
eter; thus we define 

(3.6) 

Consequently, we deduce that G(X I,X2;S2) satisfies the mem­
brane equation 

(V2 - S2)G(X I ,X2;SZ) = - 8(xI - xz) in n, (3.7) 

together with the impedance conditions (1.8) and (1.9). 
The asymptotic expansion of K(t) as t-+O may then be 

deduced directly from the asymptotic expansion ofl:(s2) as 
s -+ 00, where 

(3.8) 

IV. CONSTRUCTION OF GREEN'S FUNCTION 

It is well known5 that the membrane equation (3.7) has 
the fundamental solution 

- exp( - srx x, ) 
GO(XI,X2;~) = ,- where rx,x, = IXI - Xzl 

41Trx ,x, 

is the distance between the points XI = (x: ,xi,xt) and 
X2 = (x~ ,x~ ,x~ ) of the domain n. The existence of this solu­
tion enables us to construct integral equations for 
G(X I,X2;S2) satisfying the impedance boundary conditions 
( 1. 8) and (1.9) for small/large impedances Y I' rz. There­
fore, Green's theorem gives the following cases. 

Case 1 (0 < YI ~ 1, Y2~ 1): 

+ -1-1 ~ G(xl,y;sZ) { exp( - sryX,) + Yz- I~ [ exp( - sryx , ) ] }dY. 
21T s, anZy ryx, anZY ryx , 

(4.1 ) 

Case 2 (YI~ 1, O<Yz~l): 
In this case G(X I,X2;SZ) has the same form (4.1) with the interchanges Sr'-~Sz' YI~YZ' and nl~n2' 
Case 3 (YI'YZ~1): 
In this case G(X I,X2;SZ) has the same form (4.1) except its second term which is different from the second term of (4.1). 

In case 3, the second term of G(xl,XZ;sz) is equal to the negative of the third term of (4.1) with the interchanges SI~SZ' 
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Case 4 (0 < r., r2 < 1): 
In this case G(x.,X2;S2) has the same form (4.1) except its third term which is different from the third term of (4.1). In 

case 4, the third term of G(x. ,X2;S2) is equal to the negative of the second term of (4.1) with the interchanges 

S.+-+S2' r.+-+r2' and O.+-+0z· 
On applying the iteration method (see Ref. 2) to the integral equation (4.1), we obtain the Green's function G(x.,X2;S2) 

which has the regular part: 

- . 2 _ 1 i exp( - srX,y) { a [exp( - sryx, ) ] exp( - sryx, ) } 1 i a [exp( - srx,y ) ] X(X.,Xz,S ) - -, -- + r. dy + - -- ----....:.::....-
811 s, rx,y an.y ryx, ryx, 8r s, an2y rx,y 

{
exp( -sryX,) _. a [exp( -sryX,)]} 1 r r exp( -srXY) , 

x - + r2 -- - dy + -, L J~ '. M.(y,y) 
ryx, an2y ryx, 811 s, s, rx,y 

{ a [exp( - sry'x,) ] exp( - srY'X')}d d ,Iii a [ exp( - srX,y) ] M ( ') x -- + r. y y + - -- 2 y,y 
an.y' ry'x, ry'x, 8r s, s, an2y rx,y 

x {exp( - sry'x,) + r2- ._a_ [exp( - sry'x, ) ] }dY dy' + _1_ r {r ~ [ exp( - srx,y ) ] M3 (y,y' )dY} 
ry'x, an2y, ry'x, 8r Js, Js, an2y rx,y 

X {_a_ [exp( - sry'x, )] + r. exp( - sry'x, ) } dy' + _1_ r {i exp( - srX,y) M4 (y,y' )d
Y

} 

an.y' ry'x, ry'x, 8r Js, s, rx,y 

x {exp( - sry'x,) + r2- ._a_ [exp( - sry'x, ) ] }d
Y

', 
ry'x, an2y, ry'x, 

(4.2) 

where 

'" M;(y,y')= I K;")(y',y), i=I-4, (4.3 ) 
1,=0 

, _ 1 { a [exp( - sryy.) ] exp( - sryy') } 
K.(y,y)-- -- +r. , 

21T an.y ryy. ryy. 
(4.4 ) 

K,(y,y)=--- +r2 , 1 { a [exp(-sryy.)] _. az 
[exP(r-yy.sryy.)]}, 

- 21T an2y· ryy. an2y an2y, 
( 4.5) 

, _ 1 {exp( - sryy' ) _. a [exp( - sryy. ) ]} 
K 3(Y'Y)--2 +r2 -a ' 

1T ryy ' n2y ryy ' 
(4.6) 

and 

Similarly, we can find X (x. ,xz;S2) for the other three cases. 
On the basis of (4.2) the function X(x.,X2;S2) will be 

estimated for large values of s together with small r. and 
large r2' The case when x. and x2lie in the neighborhood of 
the inner bounding surface S. or in the neighborhood of the 
outer bounding surface S2 is particularly interesting. To this 
end we shall use coordinates similar to those obtained in Sec. 
3 of Ref. 2 as will be shown in the following section. 

v. DIFFERENTIAL GEOMETRY OF THE BOUNDARY 

Let n .,n2 be the minimum distances from a point 
x = (x· ,xz ,x3

) of the domain n to the bounding surfaces 
S.,S2' respectively. Letters 0. (u.), 02 (u2 ) denote the inward 
drawn unit normals to S.,S2' respectively. We note that the 
coordinates in the neighborhood of S2 are in the same form 
as in Sec. 3 of Ref. 2 with the interchanges 

u·+-+ui, u2+-+~, n+-+n2, h+-+h2' 
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(4.7) 

Thus we have the same formulas (3.1 )-( 3.4) of Sec. 3 in 
Ref. 2 with the interchanges 0(U)+-+°2(U2), n+-+n2, H+-+H2' 
and K+-+N2' Similarly, the coordinates in the neighborhood 
of S. are similar to those obtained in Sec. 3 of Ref. 2 with the 
interchanges 

u·+-+ul, u2+-+cii, n+-+n., h+-+h., 

1-+1., C(/)-+C(/.), 8*-+8 •. 

The only remark here is that the two unit normal vectors on 
S. and S2 are in the opposite direction. Therefore, we have 
the same formulas (3.1 )-( 3.4) of Sec. 3 in Ref. 2 with the 
following interchanges: 

o(u)+-+o. (u.), n~n., H+-+H., 

K+-+N., II.+-+IIr, II 2+-+II !, 
the plus sign of the second term of (3.1) by the minus sign, 
the minus sign of the second term of (3.2) by the plus sign, 
and the minus sign of the second term of (3.4) by the plus 
sign. 
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VI. SOME LOCAL EXPANSIONS 

It now follows that the local expansions of the functions 

exp( -srxy), ~ [exp( -srXY )], 

rxy an ly rxy 

~ [exp( - srXY )], 
an2y rxy 

(6.1 ) 

when the distance between x and y is small are very similar to 
those obtained in Secs. 4 and 5 of Ref. 2. Consequently, for 
small Y I and large Y2 the local behavior of the following ker­
nels 

KI(y',y), K 4 (y',y), 

K 2 (y',y), K 3 (y',y), 

(6.2) 

(6.3 ) 

when the distance between y and y' is small, follows directly 
from the knowledge of the local expansions of the functions 
( 6.1 ). This follows from the definition of eA. functions in 
small domains C(ll ) and C(l2)' Thus using methods similar 
to those obtained in Secs. 6-10 of Ref. 2, we can show that 
the functions (6.1 ) are eA. functions with degrees 
A. = - 1, - 2, - 2, respectively. Consequently, for small 
impedance YI the functions (6.2) are eA. functions with de­
grees A. = 0, - 1 while for large impedance Y2 the functions 
(6.3) are eA. functions with degrees A. = 0, I. 

Definition: Ifx l,x2 are points in a large domain n + SI 
or n + S2' then we define 

or 

712 = min (rx,y + rx,y), if yES I' 
y 

RI2 = min (rX,y + rX,y), ifyES2· 
y 

An EA.(X I,X2;S) function is defined and infinitely differ­
entiable with respect to x I and X2 when these points belong to 
a large domain n + SI or n + S2 except when XI = x2ESI or 
S2' Thus the EA. function has a similar local expansion of the 
eA. function (see Ref. 2). 

By the help ofSecs. 8 and 9 in Ref. 2 it is easily seen that 
formula (4.2) isanE- 2 (X I,X2;S) function and consequently 

G(X I,X2;S2) = O{r122exP( - AS712 )} 

+ O{R 122 exp( - BSRJ2)}, (6.4) 

which is valid for s- 00 and for small YI and large Y2, where 
A and B are positive constants. Formula (6.4) shows that 
G(X I,X2;S2) is exponentially small for s- 00. Similar state­
ments are true in the other three cases. 

With reference to Sec. lOin Ref. 2, if the ~ expansions 
of the functions (6.1)-(6.3) are introduced into (4.2) and if 
we use formulas similar to (6.3) and (6.8) of Sec. 6 in Ref. 2, 
we ob~in the following local behavior of X(X I,X2;S2) when 
712 or RI2 is small which is valid for s- 00 and for small YI 
and large Y2: 

where, if x I ,X2 belong to a sufficiently small domain C(ll ), 
then 
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XI (X I,X2;S2) 

__ 1_ {I _ YI(-4)-I} exp(:- SPI2) 
81T at I PJ2 

+ 0 {exp( -::-ASPJ2)}, 
pJ2 

(6.6) 

while, if XI,X2 belong to a sufficiently small domain C(l2)' 

then 

X2(X I,X2;S2) 

= __ 1_ {I _ Y2- 1-4} exp( -: SPI2) 
81T ati PI2 

+ 0 {exp( -::- BSPI2)}. (6.7) 
PI2 

When 712 ;;;.81> 0 or R12 ;;;.82 >Othe functionx(x l,x2;s2) 
is of order O(e - CS) as s- 00, c> O. Thus since 
lim 7J2lp12 = 1 or lim R 12/PI2 = 1 when 712 or R 12 tends to 
zero, then we have the asymptotic formulas (6.6) and (6.7) 
,*,ithpl2 in the small domains cases being replaced by "12 or 
R 12 in the large domain n + SI or n + S2' respectively. Sim­
ilar formulas for the other three cases can be found. 

VII. CONSTRUCTION OF OUR RESULTS 

Sincefort 3 ;;;.h l > Oort 3;;;.h2 > OthefunctionXI (X,X;S2) 
is of order O(e- 2Ash

,) while the function X2(X,X;S2) is of 
order O( e - 2 Bsh, ), the integral over the region n of the func­
tion X(X,X;S2) can be approximated in the following way 
[see (3.8)]: 

[(S2) 

= l,f.'~oX2(X'X;S2)[1- 2t 3H 2 + (t 3 )2Nz]dt 3dS2 

-l.f:'~OXI(X'X;S2)[1-2t3HI 
+ (t 3 )2NI ]dt 3 dS I + O(e- 2Ash

,) 

+O(e- 2Bsh
,) as S-oo. (7.1 ) 

If the eA. expansions of X I (X,X;S2) and X 2 (X,X;S2) are intro­
ducedinto (7.1) and by the help of formula (11.2) of Sec. 11 
in Ref. 2 we deduce, after inverting Laplace transforms and 
using (3.4), that our results (2.1)-(2.3) have been con­
structed. 
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Geometric quantization on (infinite-dimensional) graded symplectic manifolds is elaborated 
for a restricted class of phase spaces. The formalism includes the treatment of Fermionic field 
theories. The chira1 anomaly [U(1 )-anomaly] as well as the non-Abelian (covariant) 
anomaly of D-dimensional non-Abelian gauge theories is calculated in this framework. 

I. INTRODUCTION 

Using symplectic geometry on the classical phase 
space, geometric quantization I provides a coordinate­
independent quantization scheme avoiding the ambiguity 
of operator ordering. In Ref. 2 it has been suggested to 
consider field theoretic anomalies in the context of this 
scheme. However, it is not clear in the literature,3 to what 
extent geometric quantization is applicable to field theo­
ries. In Ref. 3 it was claimed (without proof) to yield the 
correct quantum field theory for linear systems and semi­
classical approximations in general. 

In previous work,4 the authors have contributed to this 
discussion: Considering the nonconservation of the quan­
tized chiral charge in time, they have shown how to cal­
culate the chiral U ( 1) anomaly of a non-Abelian gauge 
theory in four dimensions within the geometric quantiza­
tion scheme. As the chiral anomaly is a well-established 
feature of gauge theories, one can regard its determination 
to be a significant test for the application of geometric 
quantization to field theories. 

In Ref. 3 the space 'Y of solutions of the Dirac equa­
tion in a gauge background has been taken as the classical 
phase space for the Dirac system. In Ref. 4 a slightly dif­
ferent approach has been chosen: As in Ref. 3 the solutions 
'l'E'Y have been represented by their initial values 
'I'(x,t) 11=0= :tPo(x). However, in accordance to the usual 
treatment of Fermionic field theories, the tP1'(x) have been 
regarded as anticommuting coordinates on a graded sym­
plectic manifold. 

Although graded manifolds are extensively used in the 
physics literature,5,6 the subject of geometric quantization 
on such manifolds has been investigated systematically (to 
our knowledge) only in Ref. 7 and only up to the prequan­
tum level. Hence, it suggests itself to deal with the formal­
ism of geometric quantization on phase spaces with the 
structure of the one used in Ref. 4. This will be done in Sec. 
II of the present paper. More strictly speaking we will 
consider the quantization of a graded symplectic manifold 
(X, d, w) (in the notion of Ref. 7), where X is pointlike 
and d is the exterior algebra over the dual of a vector 
space. Results of Ref. 7 will be revisited as far as necessary 
to keep the paper self-contained. However, the consider­
ation of a complex structure and the induced polarization 

as well as the construction of a quantum Hilbert space 
exceeds the material presented in Ref. 7. 

In Sec. III of the present paper the geometric quanti­
zation formalism developed in Sec. II is applied to Dirac 
theory in even dimensions D. An appropriate polarization 
for a Dirac theory with gauge background is presented and 
the Fock space structure of the quantum Hilbert space is 
outlined. 

A shortcoming of Ref. 4 was the restriction to the 
chiral anomaly in four space-time dimensions. In Sec. IV 
the chiral U ( 1) anomaly in arbitrary even D dimensions as 
well as the (covariant) non-Abelian anomaly are calcu­
lated. Generalizing Ref. 4 the results are in full agreement 
with the standard ones.8 The calculation shows that the 
·half-form contribution, corresponding to the transforma­
tion property of the measure in the Hilbert space, plays a 
crucial role in determining field theoretical anomalies. In 
the Appendix we will point out technical details of the 
calculations done in Sec. IV. 

II. GRADED MANIFOLDS AND GEOMETRIC 
QUANTIZATION 

Geometric quantization on the one hand and the the­
ory of graded manifolds on the other hand are well estab­
lished in the physics as well as in the mathematics litera­
ture. Already in 1975 Kostant showed in a remarkable 
work7 that the notion of graded symplectic manifolds in­
duces a natural connection between these two fields. How­
ever, with few exceptions (cf. Ref. 9) this connection has 
not received much attention in the literature. Hence, to the 
extent that we will need it later, we will start this section by 
repeating the main ideas of Ref. 7 in short. For more de­
tails on graded manifolds (supermanifolds) in finite and 
also in infinite dimensions we refer to Refs. 5 and 6. 

Let A be an algebra decomposed into A =Ao $ A I such 
that A;"AjCA j + jt iJEZ2• We call ajEAj homogeneous ele­
ment of A with degree gr(aj) = i; A is a graded (commu­
tative) algebra over Z2' if the product of each two homo­
geneous elements a, bEA is graded commuting, i.e., 

a·b= (-1 )gr(a)gr(b)b·a. (2.1) 

In this sense Ao and Al are referred to, respectively, as the 
even and the odd part of the algebra A. 

a)Present address: Lehrstuhl fUr Mathematik I, Universitiit, Mannheim, Schloss, D-6800 Mannheim, Federal Republic of Germany. 
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Let X be a smooth manifold and [U;} the set of all 
open subsets of X. Let A be a graded algebra, equipped 
with an appropriate topology and consider smooth func­
tions f;:U;-+A. The set of these functions also forms a 
graded algebra under pointwise operations, denoted by 
d( U;). For a pair UjC U; the (natural) restriction 

(2.2) 

is an algebra homomorphism and the tupel 
(X,d( U;),pg;) is a special example of a sheaf. (For our 
purpose it is ~ufficient to consider a sheaf as an object of 
this type, for the exact definition we refer to Ref. 10.) Iffor 
an atlas [Ua} of X any function faEd( Ua) can be writ­
ten as 

the sheaf (X,d( U;),p~ together with this deomposition 
defines a graded manifold denoted by (X,d). In (2.3) x 
EUa is a point, I a' (g a)jl"'j, respectively, are usual 
C'" (Ua ) functions and ()it' ... '(}jn are the generators of A. 
Note that A = R also fits into the definition of a graded 
algebra (with trivial odd part), hence each usual manifold 
X can also be considered as a graded manifold (X, C"'). If 
in contrast A = Gr is a Grassmann algebra the correspond­
ing (X, Y 1") is also called a supermanifold. 

For the application we have in mind let V be a vector 
space and V* its dual. In the case of infinite dimensional V 
let the dual be defined with respect to some pairing (e.g., in 
the sense of Ref. 11). The exterior algebra al nAn ( V*) over 
this dual space is a Z2 graded algebra, with respect to the A 
product. If we consider W 
: = al nAn( V*) as a (trivial) sheaf over the pointlike man­
ifold X = [p}, this defines a graded manifold 

Mv:=([p},W). (2.4) 

Here, the splitting (2.3) holds trivially, considering the 
elements of V = Al ( V*) as odd generators of W. As 
shown by Batchelor6 the fact that V may be infinite dimen­
sional does not spoil the construction. [In the same way as 
constructed above al nyn( V*), the symmetric tensor alge­
bra of V* defines a graded manifold ([pJ, alnyn(v*» 
with trivial odd part. This example should be of interest in 
geometric quantization of Bosonic field theories, however 
it will be considered elsewhere. 12] 

For graded manifolds the notion of a tangent space is 
not so natural as for a usual manifold. Nevertheless it is 
possible to do differential geometry and proceed with geo­
metric quantization by considering the space of all super­
derivations instead of T(X). This space of superderiva­
tions Der (d) C End (d) over the algebra of functions d 
is defined as the space of all linear maps fj:d -+ d obeying 
a graded Leibnitz rule: 
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Der(d) = {fj=fjo + fjIEEnd(d) Ifjk(f'g) =fjk(f)'g 

+ (_l) gr(j)gr( c5klf·fjk(g), kEZ2 }, 
(2.5) 

where fj = fjo + fjl is understood with respect to the natu­
rally induced (Z2) grading ofEnd(d). Der(d) does not 
define the tangent space of the graded manifold (X,d), 
but generalizes the (algebraic) definition of T(X) as the 
space of all derivations on C'" (X). In coordinates (x;,()j) 
on (X,d) we have 

J J 
fj= L ar-a .+ L bJJ().=: L apx

i 
+ L bjJo. (2.6) 

; X, j J; j J 

with coefficients a;,bjEd. For fj, ~EDer(d) the commu­
tator between (homogeneous) superderivations naturally 
generalizes the commutator between vector fields 

(2.7) 

In the example (2.4), superderivations fj of M v are com­
pletely determined by their action on a base of V* via 
linearity and Leibnitz rule. Thus Der( W) may be identi­
fied with W ® V where the elements of V act on W as 
superderivations of homogeneous grading 1. 

To generalize the definition of differential forms to 
graded manifolds (cf. Ref. 7) we consider (for all open 
U;CX) the tensor algebra T( U;) of Der(d (U;» with co­
efficients in d (U;) and denote by Tm( U;) the space of all 
m-tensors. Then the space of differential m-forms 
nm(U;.d(U;») is given as the set of all d(U;)-valued lin­
ear forms on Tm( U;) obeying a graded symmetry, specified 
below. Using the sheaf structure of (X, d) we get globally 
nm(X, d) as the space of all m-linear maps on Der (d) 
with values in d, characterized by the additional graded 
symmetry condition on aEnm(X,d) 

a(51"",5p5j+ t>···,5m) 

-(_I)(gr(s)+l)«gr(sj+ll+t)a(1: 1:. 1:. 1:) 
- ~ l""'~J + t>~r"'~m , 

(2.8) 

with 5;EDer(d) homogeneous. (Note that our sign con­
ventions coincide with Ref. 5 but not with Ref. 7.) For 
M v all elements in V are of homogenous degree 1, so 
nm(M v) simplifies to the space of symmetric m-forms 
over V with values in W. Hence, denoting by ym( V*) the 
space of symmetric m-tensors over V* 

(2.9) 

This may become more apparent in a coordinate de­
scription: Assume a basis set [e;} is given on V, so each 
vE V may be written as 

(2.10) 

The set of coordinates {();} may be identified with the cor­
responding dual basis on V*, i.e., ();(ej) = fjij. Regarding 
(); as Grassmann numbers (anticommuting variables) ele­
ments of W become polynomials in ();. In these coordinates 
Der( W) is spanned by {Jo.} with 

I 
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(2.11 ) 

Note that {ae.} also determines a base of V that is anti­
commuting irl contrast to {ej}' For the construction of 
om(Mv) we denote the basis elements of yl(V*) by d8j 

with 

(2.12) 

This notation becomes consistent if we take dO j to be com­
muting, in contrast to the OJ. Then the symbol d coincides 
with the exterior derivative on W, in coordinates 

(2.13 ) 

that acts as a derivative of grading 1 and is nilpotent 
(d2 = 0). On a graded manifold we also have the notion of 
an interior derivative is with degree gr(is) = gr(s) + 1 
defined as on a usual manifold by 

Now let Ac = A ® C be the complexification of the al­
gebra A and let {U a} be an open covering of X. Then a 
(complex) line bundle sheaf L over the graded maniold 
(X, d) is locally determined as 

(2.15 ) 

Here, 'T a are even generators of Ac with invertible transi­
tion functionscaPEd(Uan Up) givenbY'Ta = catl'Tp. Using 
the sheaf structure of (X,d) this can be globalized. The 
space of sections of a line bundle L over a graded manifold 
is defined as in the usual case and will be denoted by 
r(L) =L(X). For geometric quantization L has to carry a 
Hermitian sturcture, i.e., a bilinear, Hermitian operation 

(2.16) 

mapping pairs of sections Y(x), Y(x)EnL) smoothly 
to a section (Y,Y) (x) of the trivial line bundle de over 
(X,d). As for usual manifolds a connection V on a line 
bundle sheaf L can be written as a map V s:L - L, locally 
given by 

for any sEDer(d), 
(2.17) 

where {}EOI(d) has degree gr({}) = 1. The curvature of 
the connection then is curvV = d{} [with d given by (2.13)] 
and a Hermitian structure on a line bundle sheaf is said to 
be compatible with the connection, if 

(2.18) 

For more details we refer to Ref. 7. 
Symplectic mechanics on a graded manifold proceeds 

as for usual manifolds: alE02(X,d) is called a graded 
symplectic form, if it is even with respect to the grading of 
d, closed (dal = 0) and (weakly) nondegnerated on 
Der(d) [Le., if al(V,W) =0 for all VEDer(d) then 
W = 0, cf. Ref. 11]. Then due to the graded Darboux the­
orem there exist local coordinates with 
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II .. 1 I .. ,.,-- I'IJdx·dx·+- nlJd8·d8· --2 .. J I J 2 .. 5 I P 
IJ IJ 

(2.19) 

where the matrices fj (antisymmetric) and gij (symmet­
ric) are constant and of grading O. Also there is a graded 
Poincare lemma that (locally) guarantees the existence of 
e with al = de. For M v the Darboux theorem and the 
Poincare lemma hold globally and thefj in (2.19) vanish. 
To generalize the Poisson algebra from Coo (X) to done 
assigns via 

(2.20) 

a Hamiltonian vector field sFEDer(d) to each obserable 
FE d. Then the Poisson algebra over d is given by 

(2.21) 

with spG = SFJ dG. In Darboux coordinates this is 

~ .. laFaG 
{F,G} = 7; (I'J)- aXjaXj 

(2.22) 
(F) ~ .. laFaG + (- 1) gr L (g'J) - - - . 

ij aOj aOj 

This includes the usual Poisson bracket and also gives an 
anticommutator on the level of classical mechanics. 

The first aim of geometric quantization is to associate 
to each observable FEd an operator &£0 acting on sec­
tions of a complex line bundle sheaf L over the graded 
symplectic manifold (X,d,al) such that a representation 
of the Poisson algebra is provided and the unit element 
lEd is represented as the unit operator: 

[& £0& GJ ± = -ifz&IF,Gj, 

&1 = 1. 
(2.23) 

Such a representation is called prequantization. If we con­
sider a usual symplectic manifold with [al] integral, Weil's 
theorem guarantees that there exists a Hermitian line bun­
dle L over X with a connection V such that V is compatible 
with the Hermitian structure on L and induces the sym­
plectic form by al = curv (V). For a graded manifold 
(X,d) such a Hermitian line bundle sheaf has been shown 
in Ref. 7 (cf. Sec. 6.3) to exist if X has trivial cohomology. 
This is the case for our application (2.4); moreover, the 
line bundle over M v can be chosen trivial, i.e., 
Lv = W ® C. The prequantum operator on such a line bun­
dle sheaf is then given by 

& F:nL) -nL), 

& F= -ifzVSF + F, 
(2.24) 

where the covariant derivative V 5 may be written as 

V s=s - (ilfz)s J e. (2.25) 

However, full quantization demands an irreducible 
representation of the Heisenberg subalgebra (cf. Ref. 1), 
not given by (2.24). On a usual manifold X this problem is 
solved by choosing a polarization (Lagrangian subspace) 
PC :rC(X) of the complexified tangent space. An appro­
priate polarization for geometric quantization is provided 
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by a Kahler structure13 on X. We use the notion of Ref. 3 
and define an (almost) Kahler structure on X as a linear 
involution J:T(X) -- T(X) with 

(2.26) 

If one can choose on X local coordinates I z",zt j solving 
over rc(X) the eigenvalue problem 

This defines a Kahler polarization P spanned by the eigen­
vectors a/azt = :aZk+' This description of a Kahler struc­
ture easily generalizes to graded manifolds given by an 
automorphism J:Der(d) --Der(d) obeying (2.26). A 
Kahler polarization on a graded manifold is then deter­
mined by 

(2.28) 

To fulfill the irreducibility condition we have to represent 
classical observables as operators on the space of polarized 
sections 

rP(L)=!5PErcL)IV~Y=O for all sEPj. (2.29) 

For a Kahler polarization this means that the wave func­
tions YErP(L) have to be holomorphic sections, i.e., co­
variantly constant under V zl' 

On a usual (2m-dimensional) manifold X the symplec­
tic form w induces a natural volume element (w)m. Using 
this for integration over X the Hermitian structure (2.16) 
on L extends to an inner product on r(L) by 

(',' ):r(L) X r(L) --C, 

(S,71) = f (s,71)(w)m. 
(2.30) 

Such is not the case on a graded manifold, where integra­
tion over forms is not defined directly. Due to Berezin5 

integration over anticommuting variables is identified with 
differentiation. A naive identification would yield a coor­
dinate dependent integral. However, considering the sym­
plectic graded manifold M v and a complex structure J 
defined on it Berezin's idea can be used to determine a 
coordinate independent integration: On M v the symplectic 
form w determines a map r between superderivations and 
one-forms by 

r:Der(M v) --.o!(M v), 

res): = S J w. 
(2.31 ) 

On the other hand the symplectic form and the complex 
structure yield an antisymmetric tensor field g on 
Der (Mv) by 

g(s,71) =w( J(S),71), S,71EDer(M v)· (2.32) 

We note that wE.o2(Mv) and hence gEW®A2(V*), so 
we can define an antisymmetric form w' E W ® A 2 

( V) 
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(2.33 ) 

For 2m-dimensional V, the m-fold tensor product 
(w,)mE W ® A2m( V) provides a natural volume element 
for the integration of functions over M v' i.e., integration of 
sections FEr(L v) in the following way. We have 

(2.34) 

and the integration is carried out applying the A2m( V) part 
as product of superderivations to W. This yields a coordi­
nate independent map 

(2.35) 

that gives in coordinates the Berezin integral with 
"'det gij used as integration measure. We note that this 
generalizes to infinite dimensions (cf. Chap. 1.3 of Ref. 
14). 

In contrast to r(L) on the space of polarized sections 
rP(L) the natural volume element (w)m [respectively, 
(w,)m] does, in general, not induce a pairing by integration. 
Therefore, it is necessary to introduce the notion of half­
forms.! Essentially a half-form on a usual manifold X is a 
function on the bundle of frames yp(X) spanning the 
polarization P: 

(2.36) 

which transforms under right group actions g on P accord­
ing to 

(2.37) 

Roughly speaking v reflects the transformation property of 
the measure in the Hilbert space build from the space of 
polarized sections rP(L). For infinite-dimensional mani­
folds one furthermore has to choose a proper regulariza­
tion to make the determinant well defined. The notion of 
half-forms can also be applied to our graded manifold 
Mv(!pj,W): 

(2.38) 

where yP is the frame bundle of the polarization 
PCDer( W) and v transforms under group actions accord­
ing to (2.37). 

Quantum states are now taken as products of a (nor­
malized) polarized section YErP(L) and a half-form v 
corr~ponding to the polarization P. The quantum opera­
tor F of a classical observable FEd then becomes the 
sum of the prequantum action tJ F on Y and the Lie de­
rivative of v with respect to the Hamiltonian vector field 
SF: 

F(Yv)=tJFY·v+ iY·!f;£V. (2.39) 

Note that this gives the right quantum operator only if F 
respects the polarization in the sense that 

(2.40) 

In the case of a Kahler polarization, a holomorphic pro­
jection!5 is needed to obtain the correct quantum operator 

P. Schaller and G. Schwarz 2369 



                                                                                                                                    

for observables not respecting the polarization. However, 
this will not be crucial for our following considerations. 

III. GEOMETRIC QUANTIZATION OF DIRAC THEORY 

To elaborate geometric quantization for a Dirac field 
we consider (according to Ref. 3) the space of solutions of 
the (massless) Dirac equation 

(3.1 ) 

in D space-time dimensions in a non-Abelian background. 
The elements IIJ of this space are complex D-spinors and 
the field A (x,t) is regarded as an external gauge connection 
A (x,t) = Aa(x,t) r with r generating the gauge group. 
Our conventions are similar as in Ref. 4 and can be found 
in the Appendix, Eq. (Al). A solution of (3.1) is uniquely 
determined by its value tPr(x) at a fixed time 1" via 

(3.2) 

what respects the linear structure of the solution space. An 
inner product between solutions of (3.1) is given by 

1IJ8W:= J tP: (x) lPr(x)dD-1x, 
l:, 

(3.3 ) 

where l:r denotes the t = 1" hypersurface. This fixes the 
space under consideration: 

r:={1IJ solution of (3.1) 1 1IJ811J < 001· (3.4) 

As explained above (2.4), this yields a graded manifold 
with the dual r* determined by (3.3): 

My = ({pI, Gl An(r*». (3.5) 
n 

The (D - 1) dimensional IS-functions span (formally) r* 
assigning to each IIJEr its value tPr(x) at some space 
pointx. As explained in (2.10) and (2.11) we use tPr(x) as 
anticommuting coordinates on My. [Note that our nota­
tion does not distinguish between tPT(X) as elements of r* 
and as functions on l:,l] With the symplectic form 

(3.6) 

on My the Poisson bracket, (2.22) yields the well-known 
equal time anticommutator: 

{tPT(X),tPr+ (x')} + = -t¢,(X)tP: (x') = + ilS(x-x'). 
(3.7) 

Here, r is per construction a complex vector space, 
but the Kahler polarization with respect to the natural 
complex structure is not acceptable from the physical point 
of view: It would lead to an energy spectrum that is un­
bounded from below. For the free theory (A = 0) an ap­
propriate polarization is given in Ref. 1. There the operator 

Bfr=yDyiiaj (3.8) 

is used to split the space of solutions of the free Dirac 
equation r into a positive and a negative frequency part in 
order to define a complex structure by 
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Jfr [ tPA] =i sign(A)tPA for eigenstates BfrtPA(X) =AtPA(X). 
(3.9) 

A natural generalization of (3.8) for a theory in a back­
ground field is 

(3.10) 

We proceed in analogy to the free case and decompose at 
t = 1" the function tPT into a formal sum of eignfunctions 
'P~ of the Hermitian operator Br 

(3.11) 
n 

In contrast to the free case, A~ determines the time evolu­
tion of 'P~ only up to first order, nevertheless {'P~} provides 
a basis of r. Considering (3.11) one should note that the 
deomposition is not discrete, so the sum over 'Pn is only 
formal and has to be understood as an integration. 

In the corresponding coordinate system {c~1 we now 
can define the complex structure r by 

r[ a~~] = + i sign(A~) a~~' 

r[ a:: + ] = -i sign(A~) a(c~) + . 

(3.12) 

This complex structure explicitly depends on 1". As 1" can be 
chosen arbitrarily it defines a time-dependent complex 
structure J(t) by J(t) 1 t=T: = r. To describe this in a 
small neighborhood of T, i.e., for t = 1" + 1St, we use the 
(unitary) transformation matrix f3~~t) between the eigen­
states of BT and Bt: 

(3.13) 
m 

Then we have in {c~ I coordinates the complex structure 

J( 1" + 1St) [a~d =i t f3~?)sign(AD (f3~;;t» -I a:~ 
+ u(ISf-), (3.14) 

with a similar expression for c~ + . The complex structure is 
also a functional of the gauge background [J(t) =J(t)[A]] 
and transforms covariantly with respect to local (fixed 
time) gauge transformations a(x) = aa(x) r: 

eia(x) J(t) [A] e-ia(x) =J(t) [paA]· (3.15 ) 

The Kahler polarization pr, determined by J(t) 1 t=T is then 
given as 

( 3.16) 

and naturally induces holomorphic (anticommuting) co­
ordinates 

(3.17) 

In order to simplify our notation we will suppress the index 
1" in the sequel whenever this is possible. 
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We proceed in the coordinates [zn,zn+ J on the graded 
manifold Mr where the symplectic form (3.6) is 

(3.18 ) 
n 

and 0 can be chosen as 

0=~( L z: dZn + L dZn+ Zn). 
2 n n 

(3.19) 

According to (2.29) polarized sections YErP(Lr ) have 
to obey 

(3.20) 

Hence with (2.25) and 0 given in (3.19) (see also Ref. 1) 
we obtain 

Y(Z,z+) =u(z)exp ( -~ ~ znZn+ ), (3.21 ) 

where the u(z) are holomorphic functions. On the (trivial) 
line bundle L rover M r the Hermitian structure defined 
by 

(3.22) 

is compatible with the covariant derivative (2.25) on Lr 
(cf. Ref. 1, respectively, Ref. 7). It extends (formally) to 
the inner product on the space r of sections of L r : 

(Y(Z,Z+), Y(z,z+» = lim f (w')m(y, Y)(z,z+). 

m-eo (3.23) 

To make this formal definition meaningful we can approx­
imate r as a sequence of finite-dimensional vector spaces 
Vn as proposed in Refs. 14 and 3. However, as a pairing 
between sections YErP(L) (3.23) is well defined if it is 
understood in terms of the Fock space structure given be­
low. 

Geometric quantization of the Dirac equation means 
to determine the quantum operators (2.39) of any observ­
able and apply it to polarized sections YErP(Lr ). For 
the coordinate functions z",zit as classical observables the 
half-form contribution .!L'SFv in (2.39) vanishes for an ap­
propriate normalization of the half-form v [cf. (3.33)] and 
we obtain 

z: Y(z,z+ )v=(azP(z»exp( -~ ~znZn+ )v, 

( 

1 ) (3.24) 
Z kY (z,z + )V=(Zk'u(z»exp -2 ~znZ: v. 

This coincides with the well-known holomorphic represen­
tation of F ermionic field theory (cf. Refs. 16 and 14) . We 
define the vacuum state 10)ErP(Lr ) by 

(3.25) 

where IIzn means the formal product over all coordinates 
Zn' This yields formally 

(010) = 1, (3.26) 
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what may be regarded either as a definition or as the result 
of a limiting procedure defining (3.23) and (3.25) prop­
erly. Then (3.24) gives the interpretation of z it and 
z k, respectively, as creation and annhilation operators 

z: 10)=:lk), 
(3.27) 

for they fulfill the (usual) anticommutation relations 

[ A A] [A+A+] Z '" Z 1 + = zk' Z 1 + =0, 

(3.28) 

Together with (3.26) this yields the orthonormality rela­
tion 

(3.29) 

The construction of the Fock space given above corre­
sponds to the polarization pt only at t=T. To extend this to 
a time t=T + ()r we use (3.14) to define holomorphic co­
ordinates by 

(3.30) 

what in some sense corresponds to the interaction picture 
of quantum mechanics. The dynamics of the system then is 
determined by the (time-dependent) Hamiltonian 

= L IA~I (z~) +z~, (3.31 ) 
n 

where we choose the Ao = 0 gauge for sake of simplicity. 
At t=T the corresponding Hamiltonian vector field of H t is 
given by 

(3.32) 

preserving the Kahler polarization Y. To quantize Hr we 
have to consider further the half-form contributions. 
Choosing a reference half-form Vo on pr (3.16) normed by 
vo(azt, ... ,azt ,"') = 1 quantum states are determined as 

(3.33) 

A 

Then we obtain for the quantum operator H T 
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H,.I.I)=_e-1I2LZn+zn( t IAkIZka~ka(z") )vo 

-HTrpr(.?!- )] 'Vo 
'HT 

= + e- 1I2Lz';-zn( t IAkla~fka(z") )vo 

-~ L IA~II.I)· 
2 n 

(3.34) 

This confirms the interpretation (3.27) of zit ,;;- a/azk as 
creation operator of a one-particle state in Fock space with 
energy An > O. The vacuum contribution 

(01 H,.IO),.= -~ L IA~I 
n 

(3.35) 

of the Hamiltonian may be compensated by a redefinition 
of the classical Hamiltonian due to 

H,.-+H,,+~L IA~I, 
n 

that does not affect the dynamics of the system. 

IV. THE CHIRAL ANOMALY 

A. U(1) anomaly in four dimensions 

The chiral transformation on a Dirac field \II 

c5\11(x,t) = -ay\ll(x,t) (4.1 ) 

is a symmetry of the equation of motion (3.1). Noether's 
theorem yields for the y current 

US)JL(x,t) = \II + (x,t)"orP(iay)\II(x,t), (4.2) 

the conservation law 

(4.3) 

To obtain the anomaly of (4.3) we consider the noncon­
servation of the chiral charge, defined by 

(4.4) 

This is precisely the momentum map!7 of the chiral sym­
metry (4.1) with respect to the symplectic form w,. (3.6). 
To express (4.4) in the holomorphic coordinates (3.17) we 
note that y and B,. commute, so they have a common 
eigenbase [ip~J. With the notion 

(4.5) 

we see that these matrix elements ct>:"n vanish if A:"#A~ 
and obtain 

(4.6) 

This yields the Hamiltonian vector field 
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( 

I a I a) x (Zn) + a(Z~) + - Zm aZ~ . (4.7) 

As the chiral transformation (4.1) is a symmetry of the 
theory, the chiral charge (4.4) is conserved under the 
(classical) Hamiltonian dynamics (3.32): 

(4.8) 

Note that the term a/at F 5 occurs due to a possible explicit 
time dependence via the external field. Quantizing (4.8), 
i.e., considering the corresponding quantum relation 

dl A5 A A5 al A5 
dt F = [H,., F ] + at F , 

1+,. 1=,. 
(4.9) 

with (3.19) we obtain for the prequantum operators 
(2.24) 

(4.10) 

Furthermore, Sp preserves the Kahler polarization pro­
vided by J(t) (3.14). So we obtain at t=T for a state I.I) 
given by (3.33) 

Fixing T = 0 for the sequel and using (4.7) we have 

(01 p 510)0=(01-isp I0)0 

=-~L J (ip~)+(x) 
n 1:0 

X sign(A~)ayip~(x )d3x. (4.12) 

Then the anomaly is determined by 

(4.13) 

To compute (01 p510)1 at t#O we have to use the coordi­
nates provided by (3.30) because of the time-dependent 
polarization P. By the classical conservation law it is clear 
that the prequantum operators commute ([&' H, &' p] 
= 0) so we obtain T 

X (f3~:;?»-!sign(A~)aYf3~~)ip~(x) + a(&)2) 

=:tl L~J (ip~)+(x)BI(BI)-!/2aYip~(x). 
1=0 n 1:0 

(4.14 ) 

Here, = refers to replacing the eigenvalue expression 
sign (AI) = AI. (AI) -112 by the corresponding formal series 
in the operator B I • This is an identity in (4.14). However, 
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the infinite potentially divergent series demands a regular­
ization. Thus we start the summation over the cp~ from 
small energy eigenvalues A.~, i.e., we choose a regulator 

~O = exp ( - (~t) =exp ( -~). ( 4.15) 

and take the limit M -+ 00 after the summation: 

a i 
.sf = atl lim L"2 f d3x(cp~) + (x) 

t=O M-oo n 1:0 , 

( 4.16) 

This expression is well defined and we can proceed in anal­
ogy to Ref. 18, changing the basis set to plane waves. We 
let Tr refer to both the trace over gauge group tr g and the 
r indices tr r and define 

4 . i J d3
k +ikx ..2 -\12 • .5 

% (x,t):= hm Tr"2 (21T)3 e Bt(D/) ay 
M-oo 

( 4.17) 

to obtain 

a I f 3 4 .sf = at d x% (x,t). 
t=O 1:0 

(4.18 ) 

The last two terms are logarithmic divergent but can be 
properly regulated using (A 14 ). With a cyclic g permuta­
tion and the integration (All) for the convergent terms 
we have 

- Ai(x,t)Fjk(x,t», (4.23) 

what determines the integrated anomaly to be 

(4.24) 
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To calculate %4(X,t) we define the operator 

( 4.19) 

substitute k -+ kM, eliminate the plane wave from the k 
integral and obtain 

4 . / J d3
k Ii: -\12 • .5 %(x,t)=hmTrM"2 (21T)3 Bt(k,x)( t(k,x» ay 

M-oo 

Xexp(-Fo(k,x». (4.20) 

Here, B~(k,x) contains the gauge curvature Fjk(x,t) 
=ia~k-ia0j+ [ApAJ: 

( 
2 1 

If,(k,x) = k2 + ~(x,t) + ika) + ""if'! (2iA(x,t)a 

'a 2 2) yiyk ) + I A + A + a -2M2 Fjk(x,t) . (4.21) 

Expanding %4(x,t) in (11M) and using results ofEq. 
(A6), we see that only terms proportional to ~jkA;Fjk will 
contribute in the limit M -+ 00. Then with (AlO) the Tay­
lor expansion yields 

(4.22) 

From the computations it is clear that (OI.PIO}t=o 
= 0. Furthermore we can repeat the above calculations for 
the other components of the r current: 

= L f (cp~) + (x)yDyk(iar)cp~(x)d3xc~ Cn' 
mn 1:, 

(4.25) 

Using (A2) one can show 

(4.26) 

All the calculations hold even if the transformation param­
eter a in (4.4) is taken to be local, i.e., a = a (x). Choos­
ing a(x) =c5(x - y) this allows to quantize also the local 
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relation (4.3) and derive the nonintegrated fonn of the 
anomaly, what coincides with the celebrate result (cf. Ref. 
8): 

XBtCB;)-1I2(i)D/2ayD+ I 

Xexp( _~oIM2)eikx, (4.28) 

(4.27) 

B. The chlral U(1) anomaly In 0 dimensions 

explicitly is a more tedious job. Again we make use of 
(A6) to argue that in the limit M -+ 00 only tenns propor­
tional to 

To detennine the chiral anomaly in D dimensions (D 
even) we replace y by (- (i)Dl2yD + I) and all above con­
siderations naturally generalize from the four-dimensional 
case. However, to compute 

€ih"' -jD-IA .Il . .... p. . (4.29) 
i' hh lD-VD-l 

will contribute. With the Taylor coefficients of (1 - x) - 112 

given by 

f 
dD-lk . 

yD(X,t)=-~~co Tr (217")D-1 e+
1kx 

bn= (2n)!/(n!)24n 

the expansion of (4.28) yielJS 

(4.30) 

f dD-lk e-
12 

( N (F(X,t»)n 1 (F(X,O»)N-n 
yD(x,t) = - (2i)D/2€ trg (217")D-1 W n~o A(x,t)bn ~ a(N _ n)! -2-

~ 2bn+l(n+1) (F(X,t»)n 1 (F(X,O»)N-n 
/~o D-l A(x,t) ~ a(N_n)! -2-

~ (F(X,t))n 2(N-n+l) ~ (F(X,O»)N-n ) 
/~obn ~ a(N-n+l)!D-l -2- A(x,O). (4.31) 

Here we suppressed the indices, set N: = DI2 - 1, and used (A7). The n=Nterms ofthe first and second sum in (4.31) 
are infrared divergent and have to be integrated with (AI4). The rest is a usual Gauss integral (All) and yields 

D (i)DI2 (DI2-1)!( N N 
y (x,t) = -€;. trg (D-l)! 2bNA(x,t) (F(x,t» a+2bNlF(x,t» aA(x,O) 

N-I (D-4-2n) b (D-1) 
+ n~o 2 !(~_n)!A(x,t)(F(x,tWa(F(x,o»N-n 

N ~ I (D - 4 - 2n) 2(n + 1 )bn + I N 
/~o 2 ! (N _ n)! a(x,t)(F(x,tWa(F(x,O» -n 

N-I (D-2-2n) 2b ) 
n~o 2 !(N _nn)!(F(x,tWa(F(x,O»N-nA(x,o) . 

After a cyclic g pennutation this detennines the anomaly 
in D dimensions by ( 

i )DI2 1 
KD=2D 417" (DI2)! . 

(4.32) 

(4.35) 

i a I D 2 at t=O y (x,t) 
Hence the integrated anomaly in D dimensions is deter­
mined by 

where the coefficient KD computes from (4.32) to 

_(~)DI2(DI2_1)!( N-I) 
KD- (D-l)! bN + L bn . 17" . n=O 

(4.34) 

This induces a recursion fonnula for KD that will be 
solved by 
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(i)D/2 + leI'o" 'I'D-l 

d = -2 (DI2)!(417")DI2 

X f dD-IxaF .. ·F . 
1:0 I'rPl I'D-]}I.D-l 

c. Non-Abelian anomaly 

(4.36) 

Also the non-Abelian anomaly8 can be discussed in 
this framework. Introducing the pair of orthogonal projec­
tion operators 
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(4.37) 

the space of solutions of the Dirac equation is split into the 
direct sum r = r L EB r R of left- and right-handed 
spinors. Now we consider r L to be the space of left­
handed solutions only. As llL commutes with B, (because 
y does so) we can choose the base [CPnJ in (3.12) to be 
given by eigenstates of "L' Thus a base of r L is provided 
by the eigenstates to the eigenvalue 1, denoted by ['I'; J . 
The gauge transformation 

cS\{I(X,t) = -iaara\{l(x,t) , 

yields for the Noether current 

.f'(x,t) = - \{I + (x,t)y'lyl'(aara) \{I (x,t) 

on classical level a covariant conservation law 

~ p.f(x,t) =0. 

(4.38 ) 

(4.39) 

( 4.40) 

On the quantum level we may obtain the (integrated) non­
Abelian anomaly from 

.flfg= f (ao(017°10), + (01 [B, JO
] 10), 

+ [Ai(x,t),(OI J iIO),)d3x. ( 4.41) 

The last two terms on the rhs can be shown to vanish at 
t = 0. Thus for a theory with left-handed Fermions only we 
have 

al A 
.flf1= at ,=0(01 F110)" (4.42) 

where, similar to (4.4), 

For llL eliminates r R we can rewrite the summation over 
r L as a sum over all of r and obtain 

The technical calculation of the anomaly now proceeds 
in the same way as above. However, the matrix elements 
<l>mn (4.5) have to be replaced by 

f (l-iY) 
<l>mn..... 1:0 '1';; (x)aara -2- CPn(x)d3x. ( 4.45) 

Thus we have to compute instead of (4.17) 

f 
d3k 

jyg(x,t) = lim Tr (211')3 e + ikxB,(B;) -1/2 

M-oo 

( l-iY ) (-Ifo) . Xaara -2- exp 7 e- 1kx. 

( 4.46) 

With B~ from (4.21) and the properties (A2) on the 
gamma trace we see that only the part containing rs will 
contribute. After a cyclic g permutation we obtain 
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i#VPU f 3 
.flf1 =n:;?" trg 1:0 d xaaraF,."vFpcr ( 4.47) 

On the other hand the non-Abelian chiral transforma-
tion, 

(4.48) 

can be discussed similarly. For the matrix elements <l>mn we 
have instead of (4.45) 

(4.49) 

and we obtain for the left-handed Fermions 

(4.50) 

The same considerations made for a theory with right­
handed Fermions only yield 

(4.51 ) 

In a theory with different gauge connections ALand A R for 
the left-handed and right-handed Fermions we thus obtain 
the (covariant) gauge anomaly and the chiral anomaly, 
respectively, as 

(4.52) 

For the calculation of the consistent anomaly one 
notes, that the current (4.39) is defined by the gauge trans­
formation (4.38) only up to a constant (in the phase 
space). Thus the anomaly is determined in our framework 
only up to the covariant derivative of a (local) polynomial 
in the gauge field. As shown in Ref. 8 the difference be­
tween covariant and consistent anomaly is an expression of 
this type. 
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APPENDIX: TRACES 

( I) For the calculations involving y matrices in D 
(even) dimensions we use the conventions 

[yI',yVI + =27fv=2 diag( + ,-, ... ,-), 
(yI') + ="oyl'"o, (Al) 

yO+ I="oyl ... yO-l=> (yO+ I) + = (_ )D/2-lyO+ I. 

From this one derives the trace formulas 

k<D-I, 
k=D-I, 

try(yO+ Iyh .. . yik) = 0, for OEI:[jI, ... Jkl, 

trr< "of I .. . yik) =0, for OEI:[jI, ... Jkl. 

(A2) 

(2) In computing the integral %D(X,t) one has not to 
take care on ultraviolet divergences because of the Gauss­
ian regulator. However, infrared divergences may appear 
from 

·JJy'·k.+D· B (Ii:) -1/2 =_Y __ J __ J 
t t M Ikl 

( 
2kjJj ykyFk/(x,t) + DjJj) -1/2 

. I + TM" + k'-M2 , 
(A3) 

withDj=A/x,t) + iat Eachtermoforder(lIM)ninthe 
expansion of (A3) will contribute with factors (11k) n - I 

and (lIk)n. Hence, for the resulting D - I dimensional 
integral 

M D- I f ~-2 dk Polynom (k~'k ), (A4) 

no IR divergences appear in order Mj for j > O. In order ~ 
there are logarithms divergent contribution and for nega­
tive powers of M rational divergences appear, what will be 
discussed below. 

(3) From (A2) it can be seen that in the 11M expan­
sion of %D(X,t) only terms will contribute under the 
y-trace containing at least (D - 2)/2 factors 

(A5) 

On the other hand no more than (D - I) /2 such factors 
can contribute in the limes M --+ 00. So performing the 
y-trace and suppressing the indices all terms in the expan­
sion will have the form 

lim tr gMD- 12D/ 2E 

M~oo 

(A6) 

where fJJ (~) is a Laurent polynom in k2
, determined by 

the M expansion of %D(X,t). Note that one has to take 
care on the order of terms in (A6), what will be considered 
below. For computing the polynom fJJ explicitly we have 
to replace terms of the form kj(kA) under the surface 
integral: 
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f dD-Ikki(kA) = D~ I f dD-Ik~Ai' (A7) 

( 4) Determining fJJ (~) in (A6) one gets from the 
expansion of %D terms of the form 

eh .... JnFith(t)··· Fh_1 (t)aFh+ 1(0)'" Fjk_1 (0) 

x uaJ'k+AJ' (O»)FJ. (O)"·FJ. J' (0). k k+ I n-I n (AS) 

Then we can eliminate the spatial derivative aj from the 
expression by using 

Eijk[ia;Fjk(t)] =~jk[Fiit)Ak(t) -Ai(t)Fjk(t)], (A9) 

and shift at t=O the field A(O) to the right. So we get for 
(AS) 

eil .. ..)nFith (t) ... Fh_2jl_1 (t) 

(AlOa) 

After integration by parts ah acts to the left, so we can use 
the same argument to show 

eil .... JnFhh(t)··· Fh_1 (t) [iajl + Aj/(t)] 

xP- (t) ... P- (t)aP- (0)'" F· (0) JI+I h h+1 I n 

=eil.· .. JnA· (t)P- . (t) .. ·F· . (t) JI lth JI_2JI_I 

XaFJ· J' (0)" ·FJ. J' (O)AJ. (0). I + I 1+2 n-2 n-I n 
(AlOb) 

(5) The Gaussian integrals in D - I dimensions yield 

f dD-lk n -~ _ (~)D/2(D/2_1)!(D_3 + n)r 
(21T)D-Il k l e - 1T 2(D-2)! 2 ., 

(All) 

for D - 2 + n positive and odd. 
Furthermore, one has to consider the IR divergent in­

tegrals 

(A12) 

with N=D/2 - I [cf. (4.22) and (4.31)]. To regulate the 
logarithimic divergence we substitute I k I -+ ..J ~ + E - E 

and expand the denominator around ~ : = k2 + E. This 
yields 

2bN + I(N + 1) ~ f _~.n 2N+3 
D-I ~ e ~cJ 

J 

.( I )N +j+ 3/2 
X e p:-:-: dk, +E (A13) 

with cJM + I the Taylor coefficients of ("I_E)2M + 1. More 
rigorously we would have to substitute 
~--+~+M2E_M2E in (4.21) before the expansion of 
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0;-112 in M. By this IR contributions are avoided not only 
for ~ but in any order. However, this also yields (A13). 
Expressing cJN + 3 by CJN + 1 and bN + 1 by bN we receive 
after an integration by parts of the second term of (A 13) : 
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Let Mbe an n-dimensional manifold with derivative operator Va and let B(M) be an arbitrary 
vector bundle over M, equipped with a connection. A cross section of B defines a field <p on M. 
Let a be a p-form on M (with p < n) which is locally constructed from <p and finitely many of 
its derivatives (as well as, possibly, some "background fields" ¢ and their derivatives) such 
that da = 0 for all cross sections <p. Suppose further that a = 0 for the zero cross section, 
<p = O. It is proven here that there exists a (p - 1 )-form [3 that also is a local function of <p,¢ 
and finitely many of their derivatives, such that a = d [3. A number of applications of this 
result are described. In particular, gauge invariance is established for the charges and the total 
fluxes derived from gauge-dependent conserved currents, and severe limitations are established 
on the the possibilities for gravitational analogs of magnetic charges. 

I. INTRODUCTION 

In a number of diverse contexts, there arise situations in 
which one obtains (or seeks to find) a differentialp-form a 
that is locally constructed from a field <p and additional, fixed 
"background fields" ¢ such that a is "identically closed," in 
the sense that da = 0 for all <p. (Here, by "fields" <p and ¢, we 
mean sections of a vector bundle. In Sec. II, we will give a 
precise definition of what we mean by a being "locally con­
structed" from <p and ¢.) By taking the difference between a 
and its value when <p = 0, we may assume, in addition, that 
a = 0 when <p = O. In such situations, it is often important to 
know whether a can be expressed in the form a = d [3, with [3 
a (p - 1) -form which is similarly locally constructed from <p 
and ¢. The main purpose of this paper is to prove that this is 
always the case. In this section, we give three examples that 
illustrate some of the contexts in which the presence of an 
identically closed form a arises and we explain the relevance 
of the issue of whether a is of the form d [3, with [3 locally 
constructed from <p and ¢. 

For the first example, we remind the reader that in an 
arbitrary Lagrangian field theory for a field 5 on an n-dimen­
sional space-time, a symplectic current density' if-or 
equivalently a symplectic (n - l)-form2 oo-can be con­
structed in a local manner from a background solution and 
two "linearized perturbations," 8. 5, 82 5. This form 00 satis­
fies doo = 0 whenever 8 15 and 82 5 satisfy the linearized 
field equations. However, in theories with local symmetries, 
such as the Yang-Mills theory and general relativity, 00 fails, 
in general, to be gauge invariant. One wishes to know 
whether or not the "charge" Q= S L 00 obtained by integrat­
ing 00 over a Cauchy hypersurface ~ is gauge invariant. 
(This is of interest since this charge plays the role of a sym­
plectic form on phase spaceY·1) ) To investigate this ques­
tion, we define a = 00(5.815,825 + 85) - 00(5,815,82 5) 
where 85 denotes the field variation resulting from an arbi­
trary gauge transformation. We now view 5,815, 82 5 as 
"background fields," ¢, and take <p to be the (arbitrary) field 
appearing in the formula for the infinitesimal gauge transfor­
mation for 85. Since 85 satisfies the linearized field equa­
tions l for all <p, it follows that a is an identically closed form 
(for all <p), which is locally constructed from <p and ¢. Ifwe 

knew that a = d [3, it would follow immediately that Q is 
gauge invariant whenever }; is compact (without bound­
ary). Furthermore, if we knew that [3 is locally constructed 
from <p and ¢, considerable additional information about the 
gauge invariance of Q in the noncompact case would be ob­
tained. In the specific cases of the Yang-Mills theory and 
general relativity, it has been shown3 by direct, rather labori­
ous calculation, that, indeed, a = d [3 with [3 locally con­
structed from <p and ¢. Our results proven below show that 
this property holds quite generally, thus establishing the 
gauge invariance of Q in a wide variety of contexts without 
the need for any detailed calculations. Note that similar 
questions also arise whenever one has a conserved current 
that is gauge dependent. For example, in the study of vacu­
um perturbations of a vacuum space-time with Killing field 
{; a, the quantity ju = G (2) ab{; b is a conserved, gauge depen­
dent current where G (2) ab denotes the second-order Ein­
stein tensor constructed from the perturbation.4 The results 
of this paper can be used to establish gauge invariance of the 
total "gravitational energy flux" defined by ja when suitable 
asymptotic conditions are imposed upon the perturbations. 
In Sec. III we will comment further on the use of our results 
to prove the gauge invariance of charges and fluxes obtained 
from gauge dependent conserved currents. As we shall dis­
cuss further there, the gauge invariance of Q in the compact 
case also can be established by alternative arguments; in the 
noncompact case, however, our theorem yields further use­
ful information. 

As a second example of a context in which our basic 
question arises, we consider the issue of constructing a gravi­
tational analog of "magnetic charge.,,5 Here, one seeks a p­
form 0', on an n-dimensional manifold M (with 1 <p<n - 1) 
which is locally constructed from a metric gab and finitely 
many of its derivatives, and is such that dO' = 0 for all met­
rics gab' The integral of 0' over a p-dimensional compact 
surface which is not homologous to zero would then define a 
conserved charge. The issue of whether any such nontrivial 
gravitational charges exist is easily seen to be equivalent to 
the issue of whether all such identically closed forms 0' must 
be exact. Some partial results on the nonexistence of gravita­
tional charges were previously obtained by direct calculation 
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of candidate terms. 5 We shall see in Sec. III that our results 
can be adapted to prove the following: For Riemannian met­
rics, any charge obtained from an identically closed form (J 

must be metric independent (Le., it must be a topological 
invariant of M); for Lorentz metrics, any such charge can 
depend only on the homotopy class (see Finkelstein and 
Misner6

) of the metric. Note that our theorem also yields 
immediate generalizations to cases where additional "back­
ground fields" are permitted in the construction of the gravi­
tational charges. 

A third illustrative example arose in an investigation 7 of 
the possible couplings of a spin-two field Yab to a scalar field 
tP in flat space-time (R4, 17 ab ). It provides a good illustration 
of the relevance of the issue of whether a is of the form d (3 
with (3 locally constructed from the fields, as opposed to 
merely whether a is exact. A possible interaction Lagran­
gian for Yab and tP is L[ = Yab v

ab
, where V ab is an identical­

ly conserved (Le., aa V ab = 0) tensor locally constructed 
from tP and 17ab' One wishes to know all of the possible candi­
dates for V ab

• From the fact that all closed forms are exact 
(since the topology here is R4) it is not difficult to show (see 
problem 5 of Chap. 4 of Ref. 8) that V ab is expressible in the 
form V ab = a c ad V acbd, where V acbd = v[ac][bd] = V bdac

• 

However, it is not clear that V ab can be expressed in this 
manner using a tensor V acbd which itself is locally construct­
ed from tPand "IJab.ltisofinterest to know if this always is the 
case: If so, then L [ can be reexpressed as a local coupling of 
the field tP to the linearized Riemann tensor of Yab; if not, 
then additional possible couplings could arise. It is not diffi­
cult to show that this question is equivalent to the question of 
whether every locally constructed, identically closed form a 
on R4 can be expressed as a = d (3 with (3 locally constructed 
from tP and 17ab' Thus the results of this paper eliminate the 
possibility of any couplings of the above type apart from 
local couplings of tP to the linearized Riemann tensor. 

In the next section we shall state and prove our lemmas 
and theorem. The main task involved in the formulation of 
these results is to give a precise definition of the notion that 
the form a is "locally constructed from the fields tP and t/J and 
finitely many of their derivatives." The proof of our results 
divides into two steps: First, in Lemma 1 a direct proof that 
a = d (3 with (3 locally constructed from tP and t/J is given for 
the special case where a depends linearly on tP and its deriva­
tives. Then, using this linear result, we give a simple prooffor 
the general case. Some further remarks on the applications 
of this result are given in Sec. III. 

II. FORMULATION AND PROOF OF OUR LEMMAS AND 
THEOREM 

In this section, we shall prove that on an n-dimensional 
manifold M, any p-form a (with p < n) which is locally con­
structed from fields tP and t/J and finitely many of their de­
rivatives and which is closed for all tP must be expressible in 
the form d (3, where the (p - 1 )-form (3 is similarly locally 
constructed from tP and t/J. As already indicated above, our 
first main task is to give precise meaning to the notion that 
the forms a and (3 are "locally constructed from fields and 
their derivatives." 

To begin we must define what we mean by "fields." Nor-
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mally, by a field on M one means simply a (smooth) cross 
section of a fiber bundle, B(M), over M, Le., a smooth map­
ping taking each xEM to the fiber in B(M) over x. However, 
for our purposes here, it will be convenient to assume that 
B(M) has the structure of a vector bundle, so here a "field" 
will mean a cross section of a vector bundle. As discussed at 
the end of this section, this restriction on B(M) could be 
eliminated for our main results, but only at the expense of 
using a more cumbersome notion of derivatives of fields and 
introducing some further assumptions about B(M). We 
note that it is not difficult to adapt our arguments and results 
to typical cases where the fields of interest do not have a 
natural vector bundle structure. For example, as described 
in Sec. III, we may treat metrics by viewing them as a sub­
bundle of the vector bundle of tensors of type (0,2), then 
taking into account the fact that a need be defined only on 
this sub-bundle. As a second example, we may treat the 
Yang-Mills fields (i.e., connections on a principal fiber bun­
dIe) by fixing a connection on the principal bundle and 
working with the difference between this connection and an 
arbitrary connection. (This difference has natural vector 
bundle structure. ) 

We shall use lower case Greek indices to denote vector 
space indices for the fibers of B(M), whereas lower case 
Latin indices will refer to the tangent space of M. Thus a field 
on M will be denoted as Xo. As above, we shall use boldface 
letters to denote differential forms, and, in general, we will 
suppress the space-time indices on forms. 

In order to define derivatives of fields, we shall assume 
further that B(M) is equipped with a linear connection. In 
many cases-e.g., if B(M) is a bundle of tensor fields over M 
and M is equipped with a fixed, background metric-a natu­
rallinear connection will be available. If no such connection 
is available or specified, we simply introduce a fixed linear 
connection on B(M) in an arbitrary manner. (We may then 
wish to impose as an additional restriction that the construc­
tion of the p-form a be independent of this choice of connec­
tion. However, our general framework permits a to depend 
upon this choice.) Similarly, we also assume that the mani­
fold M is equipped with a fixed affine connection. 

In the usual manner, the connection on B(M) allows us 
to define the derivative of the field Xo, which may be repre­
sented as a tensor field on M with index structure VaXo. It 
satisfies the standard properties of additivity in Xo and the 
Leibnitz rule with respect to multiplication of Xo by a func­
tion/ = M -+ R. Note that at each xEM, VaXo arises naturally 
as a linear map from the tangent space Vx of x in M to the 
tangent space to the fiber at X(x). However, on account of 
the vector bundle structure assumed for B(M), we may 
identify the tangent space to the fiber at X(x) with the fiber 
over x, thus allowing us to view VaXo at xEM as a linear map 
from Vx to the fiber over x. This tensor field VaX« provides 
the notion we seek of the first derivative of Xo. 

For the purpose of defining second and higher deriva­
tives of Xo, it is convenient to view VaXo as a cross section of a 
new vector bundle B '(M), whose fiber over each xEM is the 
tensor product of the fiber of B(M) over x with the cotan­
gent space, Vx *, of x in M. The linear connection on B(M) 
together with the affine connection on M naturally give rise 
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to a linear connection on this new bundle H '(M). Hence, we 
may define the second derivative of XU -denoted Va V bX"­
as the first derivative of the cross section V bX" of H '(M). 
[Note that both the linear connection on H(M) and the af­
fine connection on M are needed to define the second deriva­
tive of X", whereas only the linear connection on H(M) was 
used to define the first derivative.] Continuing in this man­
ner, we obtain the notion of the k th derivative of X" as a 
tensor field with the index structure Va, ... V akX". This yields 
the desired notion of "a field and its derivatives" which we 
shall use below. 

In fact, we wish to allow the p-form a to be considered 
below to be a function of two types of fields. There will be a 
"dynamical field" (or fields), denoted qi', such that da = 0 
for every cross section ¢/', but we also wish to allow for the 
possibility that a depends upon an additional "background 
field" (or fields), denoted fro and da = 0 (for all ¢l') only 
for a given, fixed. cross section fro (A good example of such 
a field 1/f is a fixed, background metric gab on space-time.) 
Thus, we shall assume that the vector bundle H(M) can be 
expressed as the direct sum of two vector sub-bundles 
HI (M) and H2 (M). In order not to introduce any ¢/' de­
pendence when we take derivatives of 1jJv, we shall assume 
further that the linear connection on H(M) of the previous 
paragraph arises from linear connections defined separately 
on HI (M) and H2 (M). Thus a cross section X" of H(M) 

corresponds to the pair of cross sections (1jJ",qi') of HI (M) 

and H2 (M) respectively. and the derivatives of these cross 
sections separately-i.e .• Va, ... Va, 1jJ" and V u, ... V u, ¢l'-are 
well defined. 

Note that if we antisymmetrize Va, ... Va,X" over any 
pair of cotangent space indices ai' aj • the result can be ex­
pressed in terms of lower derivatives of X" as well as the 
curvature of both the linear connection on H(M) and the 
affine connection on M. The curvature of these connections 
can be treated as a "background field" and incorporated into 
the field 1jJv. Thus only the totally symmetric parts 
V (a, ••• Vad ¢l', of the derivatives of the dynamical field ¢/' 
should be viewed as independent quantities. i.e., all other 
components of the derivatives of ¢/' are determined by the 
totally symmetrized derivatives together with background 
fields. Note also that for any point xEM, we can choose a 
cross section ¢Il such that the tensors ¢Il, 
Va ¢/', ...• V (a, ••• Va,) ¢Il take on arbitrary prescribed values at 
X. 

Weare now ready to define the notion that a p-form a 
(or other type of tensor field on M) is "locally constructed" 
from the field X" and its first k derivatives. The main aspect 
of this notion is simply that at each xEM, there is defined a 
smooth map which takes the tensors X", 
VaX""",V(a, .. 'Va,)X" atx to ap-form a atx. We write this 
map as a(x",VoX",""V(O," ·Va,)X"). [As discussed above, 
we take a to be a function of only the totally symmetrized 
derivatives, since only these are independent.] In addition, 
however, we wish to impose the restriction that a be con­
structed solely out of the quantities of which it is explicitly a 
function [together with any additional structure specified in 
the vector bundle H(M) ], and that for all x.y EM, a is "the 
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same function" of its variables at y as it is of its correspond­
ing variables at X. These further restrictions may be formu­
lated as follows. Given x,y EM, let Lv: Vx -+ Vy be a vector 
space isomorphism between the tangent space Vx to M at x 
and the tangent space Vy to M aty. Similarly, letLF:Fx -+Fy 
be a vector space isomorphism between the fiber Fx over x 
and the fiber Fy over y. We require further that Lv and LF 
preserve any additional structure specified in the fiber bun­
dle. (For example, if the fiber space is given as the direct sum 
of two subspaces as above, then we require L F to preserve 
this direct sum structure. If the fiber at x consists of tensors 
over Vx , we require L v and L F to be such as to preserve this 
relationship between the fiber space and tangent space.) The 
maps L v and L F induce vector space isomorphisms of arbi­
trary tensor products of Fx and Vx and their dual spaces Fx * 
and Vx * with the corresponding tensor product spaces at y. 
We denote these induced isomorphisms by L *. Thus L * 
maps any tensor atx (with arbitrary Greek and Latin index 
structure) to a tensor with the same index structure at y. We 
require that for all allowed L F and L V> we have for all cross 
sections X", 

L *a(xa,VaXa"",V(a, .. 'VO,)Xa) 

= a(L *Xa,L *VuXa, ... ,L *V(U, .. 'VU,)Xa), (1) 

where evaluation of this equation at point y is understood. 
When x = y. this equation expresses the notion that a is 
constructed solely out of the quantities of which it is explicit­
ly expressed as a function [together with any additional 
structure specified for H(M) ], since it is invariant under any 
isomorphism of Fx and Vx which preserves the fiber bundle 
structure and leaves these quantities invariant. When x # y, 
this equation expresses the notion that a is the same function 
of its variables at y as it is of its corresponding variables at X. 

A differential form a satisfying the properties of the pre­
ceding paragraph will be said to be locally constructed out oj 
the field Xa and itsfirst k derivatives. We emphasize that this 
phrase carries the implication that Eq. (1) is satisfied. 

We wish to study p-forms a that are locally constructed 
out of a field XU = (1jJv,¢/') and finitely many of its deriva­
tives in the sense defined above, and which have the property 
that for a given cross section 1jJv and all cross sections ¢/', we 
have da = O. To begin we consider the case where a is linear 
in ¢/' and its derivatives. More precisely, we consider a of the 
generai linear form: 

k 

a - '" A (i) b,"'b V V AJl-
a,"'ap - L.. a,' 'Op '11 (b,'" b,)'fJ' 

;=0 
(2) 

In this equation we have restored the space-time indices for 
a and, as discussed above. we include only the totally sym­
metrized derivatives of ¢a. Each tensor field A (i) a ... a b," b,,, 

'p ~ 

occurring in the sum is locally constructed from the back-
ground field 1jJv and its derivatives alone, i.e., it is indepen­
dent of ¢/'. Note, in addition. that we have, 

A (i) h," 'b, _ A (i) (b," 'b,) 
o,"'Up 11 - [u,"'Op] 11' (3) 

where square brackets denote antisymmetrization and, as 
above, round brackets denote symmetrization. 

The following lemma establishes that if such an a is 
closed for all ¢/'. then a = d ~, where ~ is locally constructed 
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out of t/Jv and ¢/". As we shall see, the proof of the correspond­
ing result for the general case (where a is no longer assumed 
to be linear in ¢/" and its derivatives) relies heavily on this 
lemma. 

Lemma 1: Let Mbe an n-dimensional manifold and let a 
be a p-form (with p < n) of the form (2). Suppose that 
da = 0 for all cross sections ¢/". Then there exists a (p - 1) 
form (3 that is locally constructed out of ¢/" and the "back­
ground field" t/Jv-and, indeed, (3 is of the same general form 
as Eq. (2) except that the upper limit of the sum is k - 1-
such that a = d (3. 

Proof We take the derivative of Eq. (2), 

By hypothesis, the left side of this equation vanishes when 
totally antisymmetrized over the indices c,al, ... ,ap ' The 
right side of this equation can be reexpressed as a sum of 
terms multiplying the totally symmetrized derivatives of ¢/" 
up to order (k + 1). Since at each xeM each of the totally 
symmetrized derivatives of ¢fl may be specified independent­
ly, each of these terms must vanish separately when antisym­
metrized over a l , ... ,ap'c. We focus attention on the highest 
derivative term: 

Sal'''apc=A (k)al"'a
p

bl 
"b'flV(CVbl"'Vbk)¢/'" (5) 

Then, we have, 

S[al ... ape) = O. (6) 

We may write Eq. (6) in the form, 

A (k)[a .... a/ .. ··bklflI8dcJV(dVb, •• 'Vb,) ¢/" = 0, (7) 

where 8d
c denotes the identity map. However, since, at any 

xeM, V (d V b
l 
••• V b.) ¢/" can be chosen to be an arbitrary total­

ly symmetric tensor, Eq. (7) will hold for all cross sections 
¢/" if and only if we have, 

A (k) (b,"'b, s:::d) - ° (8) 
la .. ··ap Ifll u cJ - • 

We now contract Eq. (8) over the indicies c and d. 
When all of the terms resulting from the symmetrization and 
antisymmetrization are written out, the index d will appear 
on the tensor 8b a a fraction 1/ (k + 1) of the time, and the 
index c will appear on 8b 

a a fraction 1 (p + 1) of the time. 
Taking this into account, we obtain, 

[ 
n k P] 1'1 b,"b, -----+ - A 

(k+ l)(p+ 1) (k+ l)(p+ 1) (k+ l)(p+ 1) a,a" I' 

kp Alk) c(b"'b, 8b,) =0 
(k + l)(p + 1) c[ a.ap I' a, I ' (9) 

where the symmetries of A (k)a '''a bl'''b,,, [seeEq. (3)] have 
I p ~ 

been used. Thus we have shown that if a is identically closed, 
h ffi · A (k) bl'''b, f h h' h d' . t e coe Clent a "'a ,,' 0 t e 19 est envatlve 

I p ~ 

term in the expression (2) for a must satisfy, 
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We now prove our result by induction on the highest 
number of derivatives, k, of ¢/" appearing in Eq. (2). For the 
case k = 0, Eq. (10) simply reduces to, 

A (0) -0 
a "'a ,,- , I p~ 

(11 ) 

i.e., there are no nontrivial, identically closed, locally con­
structed p-forms that depend linearly only upon ¢/" and not 
upon its derivatives. Choosing (3 = 0, we see that our lemma 
holds for the case k = 0. 

Now, let k = m> 1 and assume that the lemma holds for 
all k < m. Define the (p - 1) form T by, 

m A (m) cb2"'bm V "'V ¢/" 
'Ta2 . ·ap n _ p + m ca2 ' 'ap fl b2 b",' 

(12) 

Then T is manifestly locally constructed from t/Jv, ¢/", and 
their derivatives, and, indeed, it is linear in the (m - 1)st 
derivative of ¢/". Most importantly, it follows directly from 
Eq. (10) that a and dT have precisely the same coefficient of 
the mth symmetrized derivative of ¢/". Now, let 

a' =a-dT. (13) 

Then, a' is locally constructed from t/Jvand ¢/", is linear in ¢/", 
is closed for all ¢/", but a' depends only on derivatives of ¢/" 
only up to order (m - 1). Hence, by the inductive hypothe­
sis, we have a' = dp for some p locally constructed from t/Jv 
and ¢/", and their derivatives. Furthermore, p is of the gen­
eral form (2), with the upper limit of the sum now extending 
to m - 2. Thus setting 

(3 = T + p, 

we obtain the desired result. 

(14) 

o 
Note that this lemma not only establishes existence of 

the (p - 1 )-form (3 but it also gives an explicit constructive 
procedure for finding (3: One simply writes a in the form (2) 
and defines the first contribution T to (3 by Eq. (12). Then 
one subtracts dT from a and repeats this procedure until a is 
reduced to zero. As already noted in the lemma, the (3 con­
structed by this means is linear in ¢/" and its derivatives and 
depends upon derivatives of ¢/" only up to order k - 1 
[where k is the number of derivatives of ¢/" appearing in the 
original expression (2) for a]. However, it should be noted 
that if a depends upon derivatives of t/Jv up to order s, then (3 
may depend upon derivatives of t/Jv as high as order 
s + k - 1, since each subtraction ofa term of the form "dT" 
in the procedure may introduce an additional derivative of 
t/Jv. 

Unfortunately, the direct proof given in the lemma does 
not appear to have an easy generalization even to the next 
simplest case where a is a quadratic (rather than linear) 
function of ¢/" and its derivatives. Remarkably, however, a 
simple proof for the general case can be obtained directly 
from the following lemma, which is essentially a corollary to 
the proceeding lemma. As we shall see in an application giv­
en at the end of Sec. III, this lemma is quite useful in its own 
right. 

Lemma 2: Let Mbe an n-dimensional manifold and let a 
be a p-form (with p < n) which is locally constructed out of 
the fields t/Jv, ¢/", and their derivatives in the sense explained 
above, so that 
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¢/"VAI'"",V(a, .. 'Vad ¢/'). (15) 

Suppose further that do. = 0 for all cross sections ¢/'. Let 
¢/'().) denote an arbitrary, smooth one-parameter family of 
cross sections and write 

. do. 
0.=:-. 

d)' 
(16) 

Then there exists a (p - 1) form "I that is locally constructed 
from the fields I/Iv, ¢/', and ¢;' =: d¢/' / d)' and their derivatives, 
i.e .• 

¢/',Va¢/',···,V(a, .. 'Va,) ¢/'; 

¢;"Va¢;" ... ,V(a, .. 'Vak _,)¢;')' (17) 

such that for the given I/Ivand for everyone-parameter fam­
ily ¢/'().) we have at each A, 

o.=dy. (18) 

Proof: We calculateo. using the chain rule. Since I/Iv is). 
independent we obtain contributions only from the depen­
dence of a on ¢/' and its derivatives, so the resulting expres­
sion is linear in ¢;' and its derivatives up to order k. We now 
view «as a p form that is locally constructed from I/Iv. ¢/', ¢;'. 
and their derivatives, where we view these three fields as 
independent. Since a is defined for all cross sections ¢/' and 
hence all one-parameter families ¢/'().), it follows that o. is 
defined for all ¢/' and ¢;'. Furthermore, since differentiation 

o.(I/IV,Va I/Iv,,,,,V(a, ., . Va,> I/Iv;).¢/' ,AVa¢/'"",).V(a,"·Vak ) ¢/') 

with respect to). commutes with exterior differentiation, we 
have, 

dO. = 0, (19) 

for all f' (as well as for all ¢/,). Thus o. satisfies all the 
hypotheses oflemma 1. with the role of I/Iv in that lemma now 
being played by I/Iv and ¢/', and the role of ¢/' now being 
played by ¢;'. The desired conclusion now follows immedi­
ately from that lemma. 0 

Note that if a depends upon derivatives of ¢/' up to order 
k, then by Lemma 1, "I may depend upon derivatives of f' up 
to at most order k - 1, as already indicated in Eq. (17). 
However, by the remark below Lemma 1, "I may depend 
upon derivatives of ¢/' as high as order r = 2k - 1. 

We now state and prove our principal result. 
Theorem: Let Mbe an n-dimensional manifold and let a 

be a p-form (with p < n) which is locally constructed out of 
the fields I/Iv, ¢/', and their derivatives and is such that do. = 0 
for all cross sections ¢/'. Suppose further that a = 0 for the 
zero cross section ¢/' =: O. Then there exists a (p - 1)· form f3 
which is locally constructed from I/Iv, ¢/' and their derivatives 
such that a = d f3. 

Proof: By Lemma 2. we know that there exists a 
(p - 1 )-form "I of the form (17) such that Eq. (18) holds 
for all one-parameter families ¢/'().). We apply this result to 
the family 

(20) 

where ¢/" is an arbitrary cross section. We thereby obtain, 

= dy( I/Iv.Va I/Iv •... ,V (a, ... Va
q

) I/Iv;).¢/"),Va¢/",,,,),V(a, ... V a,) ¢/';¢/', Va ¢/', ...• V (a, ... Vak _ ,) ¢/'), (21) 

where we have substituted the values ¢/'().) =).¢/' and f' = ¢/'in Eqs. (17) and (18). Now we simply integrate Eq. (21) over 
). from 0 to 1. Using the fact that a = o when ¢/'=:O, we find that the left side yields a evaluated for the fields I/Iv, ¢/'. To express 
the right side in the desired form, we define the (p - 1 )-form f3 by 

f3( I/Iv,Va I/Iv •...• V(a, ... Va,) I/Iv;¢/', Va¢/'"",V(a, .. , Va,) ¢/') 

= 11 d). y( I/IV,Va I/IV, ... ,V (a, ... Va.) I/IV;).¢/',)'Va¢/""',)'V(a, ... V a,) ¢/';¢/',va¢/' ... ·.v(a, ... Vak _ d ¢/'} (22) 

Then f3 is locally constructed out ofthe fields I/Iv. ¢/' and their 
derivatives. Since exterior differentiation commutes with in­
tegration with respect to).. we obtain, 

o.=df3 (23) 

as we desired to show. 0 
Note that the proof of our theorem also gives a construc­

tive procedure for obtaining f3 in the general case. We simply 
linearize a about an arbitrary field configuration ¢/' and ap­
ply the constructive procedure of Lemma 1 too. to obtain "I. 
Then we obtain f3 by performing the integral (22). Note that 
by the remark below lemma 2, f3 may depend upon deriva­
tives of ¢/' up to order r = 2k - 1. even though a depends 
upon the derivatives of ¢/' only up to order k. 

Finally. we comment upon the extent to which vector 

2382 J. Math. Phys., Vol. 31, No. 10. October 1990 

bundle structure for the fields I/Iv, ¢/' is needed for our results. 
There are three main places above where we made use of 
vector bundle structure. First. we used a linear connection 
(defined only for vector bundles) to define the notion of 
derivatives of fields used in the formulation of our If'! mas 
and theorem. However. as indicated at the beginning f this 
section. this use of vector bundle structure is not es ntial. 
i.e., one could formulate a suitable notion of derivatives of 
fields in the absence of vector space structure for the fibers. 
Second. Lemma 1 is formulated for the case where a is linear 
in ¢/' and its derivatives, a notion that makes sense only when 
vector bundle structure is present. Thus vector bundle struc­
ture clearly is essential for Lemma 1. However, the applica­
tion of Lemma 1 to the proof of Lemma 2 uses this vector 
bundle structure in an essential way only with respect to the 
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"linearized field" ;p. Such a linear structure for;P is always 
naturally present (even if the field 41' fails to have vector 
bundle structure), so the assumption of vector bundle struc­
ture for f/lv and 41' is not essential for the formulation and 
proof of Lemma 2. Finally, vector bundle structure for 41' 
was used to define the general prescription (20) for the one­
parameter family used in the proof of the theorem. This fam­
ily satisfies two key properties: (i) It provides a homotopy of 
any cross section 41' to a given, fixed cross section (in this 
case, the zero cross section). (ii) It is entirely "local" in 
character in that 41' (A.) and its derivatives at point xeM de­
pend only upon the corresponding value and derivatives of 
the original cross section 41' at x. Both of these properties 
play an essential role in the proof of the theorem. [If proper­
ty (ii) did not hold, we would be unable to write down a 
formula like Eq. (22) that defines 13 as a local function of 41' 
and its derivatives.] Thus for our theorem, in order to elimi­
nate the assumption of vector bundle structure for the field 
41', it would be necessary to introduce additional assump­
tions that would ensure existence of a one-parameter family 
satisfying these two properties. 

III. SOME APPLICATIONS 

Several representative applications of the theorem of the 
previous section were already mentioned in Sec. I. In this 
section, we will discuss some further aspects of the first two 
of these applications. 

Recall that the first application was to the proof of the 
gauge invariance of a charge Q associated with a gauge de­
pendent but identically closed (i.e., closed in all gauges) p­
form roo Here, it is assumed that the gauge transformations 
are generated by an arbitrary cross section, 41', of a vector 
bundle. In the case where the charge is obtained by integrat­
ing over a compact boundary less surface ~ the theorem of 
the previous section directly implies 

Q [41'] - Q [0] 

= L {ro[4I'] -ro[O]} = L 0:= L dP=O, (24) 

thus giving a very simple proof of the gauge invariance of Q. 
It is worth noting, however, that when ~ is compact the 

gauge invariance of Q also can be proven (at least in certain 
cases) in the following manner.9 Consider, first, the case 
where ~ can be deformed in M to a disjoint surface ~' such 
that ~ U~' comprises the boundary of a compact region. We 
wish to show that for any 41', we have Q [41'] = Q [0], 
where Q=Sl:.ro. To do so, we define the charge Q'=Sl:.·ro 
associated with the "deformed surface" ~' and choose an 
"interpolating field" ¢Y' so that fr = 41' in a neighborhood of 
~ but ¢Y' = 0 in a neighborhood of~'. Since ro [fr] is closed, 
we have 

Q'[fr] = r ro[fr] = r ro[fr] = Q [fr]. (25) 
Jl:.' Jl:. 

However, since ro is locally constructed from the fields upon 
which it depends, we clearly have 

Q'[¢Y'] = Q'[O] and Q [¢Y'] = Q [41']. (26) 

Finally, since ro[O] also is closed, we have 
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Q'[O] = Q [0]. 

Equations (25)-(27) prove the desired result, 

Q [41'] = Q [0], 

(27) 

(28) 

for the case we have been considering, namely, where ~ and 
~' are disjoint and ~U~' comprises the boundary ofa com­
pact region. In some cases, however, it may be impossible to 
deform ~ to a surface ~' that does not intersect ~. Neverthe­
less, it still should be possible to prove the gauge invariance 
of Q by applying the above type of argument to successive 
deformations of~, where the intersection points are varied 
in the successive deformations. 

Although the above argument succeeds in proving the 
gauge invariance of Q for compact ~ (at least when a ~' can 
be chosen disjoint from ~) without appealing to our 
theorem, for the case of noncom pact ~ the analysis of the 
gauge invariance of Q using our theorem can have a definite 
advantage over the corresponding analysis using the above 
type of argument. Namely, to treat the noncompact case by 
means of our theorem, we let a~ bound a compact region of 
~, and then take the limit as a~ "goes to infinity." If 
Sal:. 13-+0 in this limit for all allowed 41', then it follows from 
Eq. (24) that Q will be gauge invariant; if not, Q will be 
gauge dependent. Even if one does not employ the construc­
tive procedure described in the previous section to obtain an 
explicit formula for 13, it often will be possible to prove gauge 
invariance (for the given asymptotic conditions on the 
fields) by using the fact that 13 is locally constructed from the 
fields and their derivatives together with some knowledge of 
the kinds of terms that can appear in p. By contrast, if the 
alternative argument is used, one must analyze the asympto­
tic behavior of 0: for an "interpolating field" fr over a sur­
face joining a~ to a~', and it is likely to be more difficult to 
obtain as sharp a criterion for the gauge invariance of Q. 

We tum now to the second application discussed in Sec. 
I, namely, to the issue of obtaining an analog of magnetic 
charge for metrics, i.e., an identically closed (but not always 
exact) p-form (J' (withp < n) which is defined for all metrics 
(of a given signature) and is locally constructed from the 
metric and its derivatives. We discuss that application 
further here since it provides a good illustration of how the 
results of Sec. II can be applied in a case where the fields 
under consideration do not possess a natural vector bundle 
structure. 

The metrics of a given signature on a manifold M are, of 
course, a sub-bundle of the vector bundle of tensor fields of 
type (0,2). However, the fibers of this sub-bundle do not 
have a natural vector space structure, and (J' is defined only 
for cross sections of this sub-bundle. In particular, the zero 
cross section does not define a metric, so (J' will not be defined 
for the one-parameter family, Eq. (20), used in the proof of 
the theorem. However, this difficulty is easily remedied for 
the case of Riemannian metrics, since the Riemannian met­
rics at any point xeM comprise a convex subset of the tensors 
oftype (0,2) at x. Hence, we can simply fix an (arbitrarily 
chosen) Riemannian metric g(O) ab and instead consider the 
one-parameter family gab (A.) = A.gab + (1 - A. )g(O) ab for 
A.E [0,1 ]. Each member of this family is a Riemannian met­
ric. When applied to this family, the proof of the theorem of 
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the previous section now yields the result that 
0' [gab] - 0' [g(O) ab] is of the form d fl, where fl is locally 
constructed from gab and g(O) ab and their derivatives. In par­
ticular, this implies that the "charge" Q obtained by inte­
grating 0' over a p-dimensional compact surface must be 
metric independent, i.e., for all gab we have, 
Q [gab] = Q [g(O) ab]' 

The situation is somewhat more interesting for the case 
of Lorentzian metrics, which do not comprise a convex set. 
We can obtain some (fairly weak) results by applying the 
argument of the previous paragraph to certain convex sub­
sets of Lorentz metrics, e.g., those which possess a fixed 
timelike covector Wa in common. However, for the issue at 
hand, a much stronger result can be obtained by appealing to 
Lemma 2 rather than the theorem of the previous section. 
(As mentioned at the end of Sec. II, vector bundle structure 
is not needed for Lemma 2.) Consider two Lorentz metrics, 
g(O) ab andg(1) ab' which in a neighborhood of~ can be joined 
by a smooth homotopy of Lorentz metrics gab (A.). Let Q(A.) 
be the charge of O'[gab (A.)] for the compact surface ~, i.e., 
Q(A.) = S l: 0' [gab (A.)]. Then, according to Lemma 2, we 
have, 

dQ = r a = r dy = 0, 
dA. Jl: Jl: (29) 

which immediately implies that Q [g(O) ab] = Q [gO) ab]' 
that is, Q can depend only upon the homotopy class of the 
metric. Note that while this argument also implies that 
O'[g(\) ab] - O'[g(O) ab] is exact, it does not imply that it can 
be expressed in the form d fl, with fllocally constructed from 
g( I) ab' g(O) ab' and their derivatives. 

The fact that any gravitational analog of magnetic 
charge must be metric independent in the case of Rieman­
nian metrics and must depend only upon the homotopy class 
in the Lorentzian case puts strong restrictions upon any can­
didate expression for 0'. For example, from merely the invar­
iance of Q under a constant scale transformation of the met-
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ric, gab ..... kgab , it follows that any identically closed p-form 0' 

which is a polynomial in gab' ~b, the curvature of gab' and 
the covariant derivatives of the curvature must have degreeS 
N = P ifit is to have a possibility of yielding a nonidentically 
vanishing charge. (Here, N is defined as 2r + q, where r is 
the total number of curvature tensors and q is the total num­
ber of covariant derivatives in each term.) Since Unruhs has 
explicitly ruled out all candidate polynomials with N<5 for 
Lorentz metrics in four dimensions and only the case p< 3 is 
relevant in that case, it follows that no polynomial expres­
sion for a gravitational charge exists for 4-dimensional 
space-times. The k th Pontrijagin class (see, e.g., Ref. 10) 
provides an identically closed 4k-form that is polynomial in 
the curvature, thus providing nontrivial gravitational 
charges in dimensions greater than four. It seems possible 
that the Pontrijagin classes provide the only nontrivial ex­
amples of gravitational charges, but an analysis of whether 
this is the case is left for future investigations. 
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For a large system of independent diffusing particles, each of which is killed at a certain space­
time dependent rate, the conditional distribution of surviving trajectories in a bounded time 
interval is computed, given the approximate form of the initial and final empirical distribution 
of surviving particles. This generalizes a result for the Brownian case without killing, which 
was first obtained by Schrodinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1931, 
144]. 

I. INTRODUCTION 

Let p(s,x;t,y) be the fundamental solution of the heat 
equation (a las +!~ + c)p = 0, where c = c(s,x) is a 
bounded, continuous scalar field satisfying a Holder condi­
tion with respect to x on [0, T ] X Rd (these conditions actu­
ally guarantee the existence of p on [0, T], cf. Friedman, I p. 
23). Consider a probability measure Q * on path space 
n = C( [0, T],Rd

) , whose finite-dimensional distributions 
are of the form [where (Xt ) denotes, here and throughout, 
the canonical process on n] 

Q * [XoEdx,X,\ EdYI "",X'n EdYn,xTEdz] 

= p(O,x;tl 'YI)" 'p(tn,Yn;T,z)/Lo (dx)dYI .. 'dYn/LT(dz) 

for some measures /Lo, /LT on Rd. It turns out that Q * is 
Markovian; in fact, as proved by Jamison,2 it is the only 
Markovian among all "reciprocal" (i.e., two-sided Markov) 
distributions Q with two-sided transition density 

[l/p(s,x;u,z) ]p(s,x;t,' )p(t,' ;u,z) 

and with the same initial and final distribution as Q *. 
In the case c = 0, Schrodinger3 showed that Q * yields 

the most likely "intermediate" (one-time) distributions for 
a large number of independent and identically distributed 
(i.i.d.) particles with given (or measured) initial and final 
empirical distributions. Follmer4 gives a modern and rigor­
ous proof of this result in terms of large deviations. Consis­
tent with Jamison5 and Follmer4 and following Nagasawa6 

we will call Q * a Schrodinger process or Schrodinger bridge 
also in case of nonvanishing c. 

Wakolbinger7 showed that among all not necessarily 
Markovian diffusion processes with drift (Pt)' diffusion 
constant one, and prescribed initial and final distributions, 
Schrodinger's process minimizes the action functional 

Related variational characterizations have been obtained by 
Nagasawa,8 Zambrini,9 Cruzeiro and Zambrini,1O Blan­
chard et al., II Kime and Blaquiere,12 Dai Pra and Pavon; 13 

see also the references given there. In the present paper we 

give an extension of the Schrodinger-Follmer result to the 
case of non vanishing c. 

Consider a large number of i.i.d diffusing particles, each 
being killed independently with rate M - c(s,x), where the 
constant M is some upper bound of c. Then Schrodinger's 
process yields the most likely distribution of surviving trajec­
tories, given the initial and final distribution of surviving 
particles. (The case c = 0, M = ° corresponds to Schro­
dinger's result.) 

II. SCHRODINGER BRIDGES 

The basic object will be a strictly positive transition den­
sity p(s,x;t,y) obeying the Chapman-Kolmogorov equa­
tions 

f p(s,x;t,y)p(t,y;u,z)dy = p(s,x;u,z) 

for all x,zERd,Oo;;;s < t < u < T, 

but not necessarily obeying 

f p(s,x;t,y)dy = 1. 

Equation (1) implies that for all x,zERd: 

[l/p(O,x;T,z) ]p(O,x;tl 'Yl )P(tl 'Yl ;t2'Y2) 

.. 'p(tn,Yn;T,z)dYl .. 'dYn 

(1) 

(2) 

(3) 

defines a consistent system of probability measures. We will 
assume that for all x,zERd there exists a probability distribu­
tion P~ on n: = C([O,T];Rd) having (3) as its finite-di­
mensional distributions and obeying P ~ [Xo = x,X T 
= z] = 1. 

Definition 1: Any probability measure Pon n which is of 
the form 

P= f P~v(dx,dz) 
for some probability measure von Rd X Rd will be called a p 
bridge. 

[In the terminology of Jamison2 (resp. Zambrini9 ), 
(X, ,P) is a reciprocal (resp. Bernstein) process with recipro­
cal (resp. Bernstein) transition density [l/p(s,x;u,z) ]p(s, 
x;t, )p(t,;u,z).] 
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Proposition 1 (Jamison,2 Theorem 3.1, Zambrini,9 
Theorem 3.3): Ap bridge Qis Markovian ifandonly ifit isof 
the form 

Q = f P~l"o (dx)p(O,x;T,z)I"T (dz) (4) 

for some measures 1"0' I" T on Rd. 
Definition 2: A Markovian p bridge Q with marginals 

Q [XoE'] = vo, Q [XTE"] = VT will be called a Schro­
dinger process (or Schrodinger bridge) specified by p, vo, 
and V T . 

Remark: Projection of (4) to times 0 and T, respective­
ly, yields the so-called Schrodinger system: 

Vo (dx) = 1"0 (dx) f I"T(dz)p(O,x;T,z), 

vT(dz) = I"T(dz) f 1"0 (dx)p(O,x;T,z), 

(5) 

where vo' V T are the initial and final distributions of the 
Markovian p bridge Q. Hence, for any given vo, V T , obvious­
ly the following assertions are equivalent: (i) There exists a 
unique Schrodinger bridge specified by p, vo, and V T . (ii) 

There exists a solution 1"0' I" T of the Schrodinger system (5), 
and all its solutions are of the form Cl"o, (1/c)l"n c> O. 
Jamison2 shows that, for any choice of vo, V T , (ii) holds 
under the assumption that p(O, ·;T,·) is continuous. 

III. SCHRODINGER BRIDGES AND MINIMAL ENTROPY 

Let a be a fixed probability measure on Rd; assume that 

k: = f a(dx)p(O,x;T,z)dz< 00. (6) 

Put I"(dx,dz): = a(dx)p(O,x;T,z)dz and P: = SP~J.l(dx, 
dz); note that assumption (6) implies that P is a finite mea­
sure on n with total mass P( n) = I" (Rd X Rd

) = k. We put 
P: = [1/p(n) ]P, and recall that, for any two probability 
distributions QI' Q2 on n, the relative entropy of QI with 
respect to Q2 is defined by 

H(QI ,Q2): = f (In :~:) dQI 

[where H( QI ,Q2 ): = 00 if QI is not absolutely continuous 
with respect to Q2 ] . 

Proposition 2: Let vo, V T be given probability measures 
on Rd. 

The following are equivalent. There exists some proba­
bility measure von Rd X Rd with marginals vo, VT and 

(7) 

There exists some probability measure Q on n with mar­
ginals 

Q[XoE"] =vo, Q[XTE'] =VT, and H(Q,P)<oo. 
(8) 

In this case [i.e., if (7) and (8) hold], the minimization 
problem H( Q,P) = minimum over the probability measures 
Q on n with marginals 

Q [XoE'] = VO, Q [XTE'] = VT 

has a unique solution Q *, and Q * is a Schrodinger bridge 
specified by p, Vo and Vr-
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Proof (1) Let v be as in (7), and put 

Q: = f P~ v(dx,dz). 

Since 

P= l f P~I"(dx,dz), 
we get 

d~ (X) = k dv (Xo,XT ) Q - a.s., which shows that 
dP dl" 

Qobeys (8). 
(2) Conversely, let Q be as in (8), put 

v(dx,dz): = Q [XoEdx,xTEdz], and denote the disintegra­
tion of Q with respect to (Xo,x T) by (Q ~ ). Since 

- f ( dv) f ( dQ ~) H(Q,P) = In-- dv+ In- dQ~v(dx,dz), 
dl"/k dP~ 

(9) 
and since by assumption H( Q,p) < 00, and, moreover, the 
relative entropy is always non-negative, we infer that 

In k + f (In ~;) dv < 00; 

hence V obeys the requirements of (7). 
(3) With the same notation as in step 2, it follows from 

(9) that H( Q,P) will attain a minimum if and only if 

f(ln~)dV 
dJ.l/k 

attains a minimum and Q~ = P~ for v almost all (x,z) 
[since only in this case the second summand in (9) attains its 
minimum, namely zero]. Now assume that (7) holds. Then 
according to Follmer4 (Sec. 11.1.3) there exists, among all 
probability measures v on Rd X Rd with marginals vo, v T' a 
unique probability measure v* which minimizes 

f(ln~)dv, 
dl"/k 

and it is of the form 

V* (dx,dz) = !(x)g(z) (1/k)1" (dx,dz). 

Thus it follows that among all probability measures Q on n 
with marginals Q [XoE'] = vo, Qj XTE'] = VT there is a 
unique one which minimizes H(Q,P), and it is of the form 

Q* = f P~v*(dx,dz) 
= f P~(x)g(z) l a(dx)p(O,x;T,z)dz. 

Hence, by Proposition 1, Q * is a Schrodinger bridge speci­
fied by p, vo, and V T • • 

IV. THE FEYNMAN-KAC CASE: SCHRODINGER 
BRIDGES AND LARGE DEVIATIONS 

In an important class of examples, P and hence also the 
Schrodinger bridge occurring in Proposition 2 admit a natu­
ral probabilistic interpretation. 

Let «X, )o<s< T'P x) be the canonical model of an Rd val­
ued Markov process with continuous paths, generator Gs 
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and strictly positive transition densities. Let c = c(s,x) be a 
given bounded measurable scalar field, put 

P: = exp{i
T 

c(s,X, )dS}' Px (10) 

and write p = p(s,x;t,y) for the transition densities of P 
which remain to be strictly positive but do not obey (2) 
unless c = O. Using the notation ofSecs. II and III we have 

P = f P~O'(dx)p(O,x;T,z)dz, 
where 0' denotes the distribution of Xa under Px ' Note that 
(6) is valid due to boundedness of c. 

By the Feynman-Kac formula the semigroup belonging 
to p has generator G., + c(s,' )1, and under suitable smooth­
ness assumptions on G.s and c(s,x), p is the fundamental 
solution of 

(11) 

(cf. the remark at the beginning of the Introduction); this, 
I 

We will call P the distribution o/surviving trajectories. For 
the rest of the paper, we put p(dx,dz): 
= O'(dx)p(O,x;T,z)dz, and let Va'VT be two probability 
measures on Rd which obey (7). Proposition 2 now trans­
lates immediately into the following. 

Theorem 1: Among all probability measures Q on n 
with marginals Q [XaE'] = Va, Q [XTE'] = Vn there ex­
ists a unique Q * that minimizes the relative entropy with 
respect to the distribution P of surviving trajectories. More­
over, Q * is a Schrodinger bridge specified by p, Va, and Vp 

In order to obtain a statement on empirical distribu­
tions, we have to relax the side conditions on the "exact 
knowledge" of initial and final distributions. 

Proposition 4: For any fixed € > 0, there exists a unique 
solution Q E of the minimization problem H( Q,P) = mini­
mum over the set A E of those probability measures on n 
whose marginals Q [XaE'] and Q [X TE'] have a Prohorov 
distance less than or equal to € from Va and VT, respectively. 

Moreover, Q E is a Schrodinger bridge specified by p and 
its marginals Q E[ XaE'], Q E[ XTE']' 

Proof (1) We put 

H(A E,P): = inf H(Q,P). 
QEA' 

Since A E is convex and H(A E,P) <H( Q *,P) < 00, (where 
Q * is as in Theorem 1), there exists a uniquely determined 
probability measure Q € on n with the property that every 
sequence (Pn) in A E with H(Pn,P) -..H(A €,P) converges 
toward Q € in variation (cf. Csiszar,14 p. 769; there, Q E is 
called the generalized 1 projection of P on A E). A fortiori, 
any such sequence (Pn ) converges weakly toward Q E, and 
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however, will not be needed to derive Theorem 2 below. 
Let Mbe an arbitrary fixed upper bound of c, and let W 

be the process obtained by killing (X,Px ) with rate 
M - c(s,x,) between times 0 and T. We recall that 
W = ( W, )a<s<p where t is the time until which W survives, 
is constructed on the probability space (n X R + ,F), where 
F: = P x X 1T and 1T is a unit parameter exponential distribu­
tion, by putting 

t( (X,t»: = inf{ r > 0: L (M - c(s,xs ) )ds = t } /\ T; 

W,: = X" O<s<t«X,t». 

The probability measure P = [1/ P( n)]p is now character­
ized as follows. 

Proposition 3: P is the distribution of W conditioned that 
it survives up to time T. More precisely, for any measurable 
subset B of n there holds P[B] = F[XEB It = T]. 

Proof For any Borel set B of trajectories we have, using 
( 10) 

since A E is weakly closed, we infer that Q EEA E. 

(2) Combining formulas (1.5) and (1.6) of Csiszar, 14 
one obtains that H(Q€,P) = H(A €,P). On the other hand, 
any QEA E with the property H(Q,P) = H(A €,P) necessar­
ily coincides with QE due to uniqueness of the generalized 1 
projection. 

(3) Denoting the marginals Q €[ XaE'] and Q €[ XTE'] 
by v~ and vh respectively, we consider now the minimiza­
tion problem H( Q,P) = minimum over the probability mea­
sures Q on n with marginals 

Q [XaE'] = vg, Q [XTE"] = v~. 

We know from Proposition 2 that the solution (Q E) * of this 
problem exists and is a Schrodinger bridge specified by p, v~ 
and v~. Since H«QE)*,P)<H(QE,P), we infer from step 2 
that (Q €) * and Q E are equal. • 

Given a sequence X 1,x 2, ••• of i.i.d. random trajectories, 
each with distribution P, a set II of probability measures on 
n said to have the Sanov property with respect to P if 

lim J..- In prob[J..- ± OxtEll] = - inf H(Q,P). 
n-oo n n ;=1 QEII 

By Sanov's theorem (see Deuschel and Stroock,15 p. 70), a 
sufficient condition for II to have the Sanov property is 

inf H(Q,P) = inf H(Q,P), (12) 
QEint( II) QEcI( II) 

where int( ll) and cl( ll) denote the interior and the closure 
of II with respect to the weak topology. 

Proposition 5: The set A E defined in Proposition 4 has 
the Sanov property with respect to P except possibly for 
countably many € > O. 
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Proof The functions !(E): = inf H(Q,P) and 
Qeint(A ') 

g(E): = inf H(Q'p) both are nonincreasing and hence 
Qecl(A ') 

are continuous except possibly for countably many E. Now 
let E be a continuity point off Since cl (A €) is a subset of 
int(A 6) for all E < 8, then!(8) <g(E) for all E < 8, and thus 
also!(E) <g(E). TheinequalitY!(E);;.g(E) is obvious. Hence 
il: = A € obeys (12), and therefore has the Sanov property 
with respect to P. • 

The above results together with Theorem 1 of Csiszarl4 

(and the remarks following that theorem) imply immediate­
ly the following result. 

Theorem 2: Consider N i.i.d. particles in Rd
, each with 

initial distribution u, moving according to 0., and being 
killed independently with rate M - c(s,x), where the con­
stant M is some upper bound of c. Then the "surviving trajec­
tories" X 1 , .•. ,x n are, for N ..... 00, asymptotically quasi-inde­
pendent under the condition 

p(! itt 8xb'vo )<E' p(! itt 8X;r,vT )<E' 

and their limiting distribution (in the sense ofCsiszarl4 ) is a 
Schrodinger bridge specified by p and some v~ and v~ such 
thatp( vo,v~) <Eandp( VT'V~) <E (wherep denotes the Pro­
horov distance, and where E> 0 is chosen such that the set 
A € defined in Proposition 4 has the Sanov property with 
respect to P; cf. Proposition 5. For the notion of asymptotic 
quasi-independence and limiting distribution, we refer to 
Csiszar,14 Definition 2.1). 

We conclude by formulating a corollary to Theorem 2 in 
a more qualitative way. 

Let p be a fundamental solution of ( 11 ), let u be some 
probability distribution on R d

, put I-l (dx, 
dz): = u(dx)p(O,x;T,z)dz, and let VO, V T be given probabili­
ty distributions on Rd obeying (7). Consider N i.i.d. parti­
cles, each with initial distribution u, moving according to 0., 
and being killed independently with rate M - c(s,x), where 
M is some fixed upper bound of c. Then, for large N, the 
conditional distribution of the empirical distribution of sur­
viving trajectories, given that the initial and final empirical 
distributions of surviving trajectories are close to Vo and V T ' 
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respectively, is approximately a Schrodinger bridge specified 
by p and initial and final marginals which are close to Vo and 
Vp respectively. 
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This paper proposes an approach via the maximum entropy principle in order to determine the 
nonstationary solutions of the Fokker-Planck equation with time varying coefficients. The 
constraints are not the state moments (as usual) but their dynamic equations. The maximum 
entropy principle herein utilized is a slight extension of Jaynes' principle, which involves the 
"path entropy" of the stochastic process. 

I. INTRODUCTION 

The Fokker-Planck equation (FP equation in the fol­
lowing) is a basic tool of theoretical physics, and in many 
problems such as, for instance, the analysis of the effects of 
fluctuations close to the transition point, it is more suitable 
than the Langevin or Ito equation. It is also powerful in the 
study of stochastic porcesses, and for all these reasons, it is of 
paramount interest to have efficient methods for obtaining 
the explicit expression of its solution. 

Consider the one-dimensional FP equation 

at p(X,t ) = - ax [{(x,t ) p(x,t )] 

+ !axx [ g(x,t ) p(x,t ) ], (1) 

where at (resp.ax ) holds for the partial derivative w.r.t. t 
(resp. x) and axx represents the second partial derivative 
w.r.1. x; then loosely speaking, there are two main useful 
techniques that are utilized to find its solutions. 

The first one (see, for instance, Risken) t considers the 
special case when/ex) and g(x) are independent of time, 
and it consists of using eigenfunction expansions. In short, it 
works as follows: First, by making a suitable change ofvari­
able x' = y(x), one transforms Eq. (1) into 

(2) 

and then one looks for nonstationary solutions of (2) in the 
form 

p(y,t) = p(y)exp{ - At }, (3) 

where p(y) and A are the eigenfunctions and eigenvalues of 
the FP operator ( - ayf + !ayy ), with appropriate bound­
ary conditions. 

The second technique (see, for instance, Kree and 
Soize)2 refers to the general case when/(x,t ) and g(x,t ) 
depend explicitly upon time. Shortly, one first considers the 
function q(x,t ) defined as 

q(x,t): =p(x,t )[tP(x)]-t, (4) 

tP(x): = (21T)-t12exp{ -x2/2}, 

and one expands q(x,t ) in the form 

j= 00 ~(x) 
q(x,t) = I qj(t )--. -, 

j=O ,f[! 

(5) 

(6) 

where ~ (x),} = 0,1,2, ... denotes the Hermite's polynomi­
als [i.e., defined by the equation ~ (x)g(x) 
= ( - l)j(d Idx)j·tP(x)]. Second, we substitute (6) into 
( 1 ), we integrate over R w.r. 1. x, and we so obtain an infinite 
set of first-order linear differential equations to calculate the 
qj (t )'S. 

The troublesome point with this approach is its conver­
gence. Numerical experiments have shown that, as expected, 
the convergence is as much better as p(x,t ) is close to the 
normal law, but when it is not the case, this convergence 
becomes questionable. 

So, as an alternative, we shall herein suggest a new ap­
proach for solving the FP equation, which is mainly based 
upon the use of Jaynes3 maximum entropy principle. One of 
the main advantages of this technique if that it provides the 
solution in a compact form which is physically more mean­
ingful than the expression by means of series expansions and 
eigenfunctions, because it is defined directly in terms of the 
elements of the FP equations. 

II. THEORETICAL PRELIMINARIES 

A. A characterization of the Fokker-Planck equation 

1. Preliminary notations 

Let x(t )ER n, x T
: = (x t,x2, ••• ,xn ) denote a stochastic 

process with the probability density p(x,t ), and the incre­
ment z: = x(t + 1") - x(t ). Define the conditional proba­
bility density q(z,'T/x,t ) of z at t + 1" given the state x at t; 
define the multiindex k: = (k t,k2, ... ,kn ), ki>O for every i, 
define 

(7) 

and the moments 

(8) 

The conditional expectation of Wk(Z) given x at t will be 
denoted by (wk(z)lx,t) and furthermore the expression 
Ikl>Kwillbeshorthandforkt + k2 + ... + kn>K. We can 
now state the following results. 

Proposition 2.1: Consider the continuous stochastic pro­
cess above, and assume that it is Markovian and satisfies the 
following conditions: 
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(z;lx,t) = r h (x,t); i = 1,2, ... ,n, 

(z;z/X,t) = rgij (x,t); i,j = 1,2, ... ,n, 

(w~(z)/x,t) = o( r); Ikl ;;;.3. 

(9) 

(10) 

(11) 

Then the moments m k 's are given by the following dynami­
cal equations: 

m; (t ) = if; (x,t », i = (D li ,Dz;, ... ,Dn;), Iii = 1, 
(12) 

= :(Pk (x,t », k;;;.2, (13 ) 

with the notations a;: = a lax; and aij: = a 2/ax; aXj and 
where Dij is the Kronecker delta. • 

Proposition 2.2: Assume that the following conditions 
are satisfied 

(A 1) Conditions of proposition (2.1); 
(A2) h (x,t ) and aj; (x,t ) are continuous and bound­

ed for every pair (i,j) and every (x,t )eR n + I; 
(A3) gij (x,t), a k gij (x,t ), and aks gij (x,t ) are contin­

uous and bounded for every quartet (i,j,k,s) and every 
(x,t)eR n + l

• 

Then the moment equations ( 12) and ( 13) yield the FP 
equation 

n n n 

a,p = - L a;(/;p) + ~ L L + aij(gijp) (14) 
;= 1 ;= Ij= 1 

as a consequence, and conversely, the FP equation provides 
these moment equations. • 

Proposition 2.3: Assume that the following conditions 
are satisfied 

(B 1) Conditions of proposition (2.1); 
(B2) for every i,h (x,t ) is a polynomial in the form 

K j 

h(x,t)= ') i.k(t)Wk(X), 
Ikl=O 

(15) 

wherei.k(t) is bounded, V;k(t)I<M< + 00, O~t~ + 00; 
(B3) for every pair (ij), gij (x,t ) is a polynomial in the 

form 

(16) 

where the g ilk (t) are bounded. 
Then the moment equations ( 12) and ( 13) yield the FP 

equation as a consequence and conversely, the FP equation 
provides these moment equations. • 

For the proof, see for instance Ref. 4. 
These results show that, under some mathematical as­

sumptions which are not so much restrictive at all, there is a 
complete equivalence between the FP equation (14) on the 
one hand, and the moment equations (12) and (13) on the 
other hand, in such a manner that, in the following, we shall 
use the latter to solve the former. 
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III. SOLUTION VIA THE MAXIMUM PATH ENTROPY 
PRINCIPLE 

A. Extension of the maximum entropy principle 

Owing to the fact that the constraints (14) and (13) 
explicitly involve the derivative of the moments, that is to 
say a,p(x,t ), we shall first generalize the maximum entropy 
principle as follows. 

1. Maximum path entropy principle 

Assume that all we know about a stochastic process 
x(t ) is a set of constraints on its probability density p(x,t ). 
Then as an estimate of p(x,t ), we shall select that p(x,t ) 
which satisfies these constraints and maximizes the entropic 
function 

H(X;t',t"):= -f" f p(x,t)lnp(x,t)dxdt (17) 
t' JR" 

= r' H(X,t )dt, (18) 

for any arbitrary interval [t' ,t " ] . • 
The meaning of this statement is quite understandable. 

For a given fixed interval [t ',t"], if H(X,t ) is maximum for 
anytE[t ',t"], thenH(X;t ',t") is also maximum. Butthecon­
verse is not necessarily true, and this is the reason why we 
require that [t',t"] be arbitrary. 

Let us also remark that, by using physical and math­
ematical arguments, we5 have shown that H(X;t ',t")1 
(t" - t ') can be considered as the informational engropy of 
the portion of stochastic trajectory generated by x (t ) on the 
interval [t ',t"]; clearly, it is a path entropy H(X;t ',t"). 

B. General expression of the probability density 
estimation 

1. Preliminaries 

(i) In order to solve the FP equation (14), we shall 
rewrite the moment equations (12) and (13) in the form 

iJx;a,p(x,t) - h(x,t)P(x,t) ]dx = 0, (19) 

(20) 

where K is the order of the approximation, and we shall 
consider (19) and (20) as being the constraints. 

(ii) Next, we are estimating the solution ofthe partial 
differential equation (14), and for a given initialp(x,to), this 
solution is completely well defined at the instants t' and t " . 
As a result, we shall add the supplementary condition that: 
p(x,t ') and p(x,t ") have given fixed values. 

With these prerequisites, we shall proceed as follows. 
Step 1: By using the Lagrange multipliersAo(t ), A; (t ), 

and Ilk (t ), we shall maximize the quantity [indeed we have 
the additional constraint S p(x,t )dx = 11] 
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1" r"[ - p lnp + .:ioP + itl Ai(t )(xiatp - /;p) 

+ Ikt /tk (t )(wk(x )atp - PkP) ]dt dx = L (21 ) 

and the corresponding variational condition of optimizaton 
is 

-1" r"[lnp + 1 + .:io(t) + ~Ai(t)/; + ~k (t )Pk ] 

x~p(x,t)dtdx + L"rlfAi(t )Xi 

+ ~jtk (t )Wk(X) ]~(atP(X,t»dt dx = O. (22) 

Step 2: In order to manipulate the variation ~(atP(x,t », 
we shall write, for instance 

1 .. r" jtk (t )wk(x)~(atP(x,t »dt dx 

= i Wk(X){ [jtk (t )~p(x,t )]:: 
R" 

- f",uk (t )~p(x,t)}dx dt 

= - i .. r" ,uk(t )Wk(X)~p(x,t )dxdt. (23) 

Step 3: Substituting this result into (22), we obtain the 
general form ofthe estimate PK (x,t ) which is 

PK (x,t ) = exp{ - [Ao(t ) + itl Ai (t )/; (x,t ) 

K 

+ Ik~ 2 jtk (t )Pk (x,t ) 

+ itl Ai (t )xi + Ikt 2 ,uk (t )Wk(X) ]} , 

(24) 

where Ao(t ) holds for 

Ao(t): = 1 + .:io(t)· 

C. Determination of the Lagrange multipliers 

(25) 

Step 1: In order to determine the explicit expressions of 
the vectors 

and 

jtT(t ): = {Jtk, (t ),jtk, (t ), ... ) 

we shall substitute (24) into the constraints (19) and (20) 
to obtain a nonlinear vector differential equation in the form 

A (t,A.,jt)~ + B(t,A.,jt)A + C(t,A.,jt)A + D(t,A.,jt)Jt 

+ E(t,A,jt),u + F(t,A.,jt)jt = b(t,A.,jt) , (26) 

where the matrices A,B,C,D,E,F, and the vector b are de­
fined in terms of the expected values of functions which de­
pend upon both x and t. For instance one has 
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b T(t,A.,jt): = ( ... , if; (x,t » , ... , (Pk (x,t » , ... ). 

Step 2: The determination of the solution of (26) is es­
sentially a numerical computation problem, and for in­
stance, one can use the iterative procedure defined by the 
equation 

A (t,A.n,jtn )~n+ I + B(t,A.n,jtn )An+ I 

+ C(t,A.n ,jtn )An + I + D(t,A.n ,jtn )Jtn + I 

+ E(t,An,jtn ),un + I + F(t,A.n,jtn )jtn + I = b(t,A.n,jtn)' 
(27) 

Step 3. Initial conditions for A(t) and jt(t): In order to 
determine these parameters, we shall proceed as follows. 

(i) Let us refer to the initial conditionpo(x): = p(x,to) 
and let us assume that one has exactly 

Po(x) = exp{ - ± aixi - f. PkWk(X)} ' 
i=O Ikl =2 

then comparing with (24) directly yields 

Ao(O) = ao, 

Ai (0) = jtk (0) = 0, t~ 1, Ikl >2, 

and 

Ai (0) = a;. i = 1,2, ... ,n, 

(28) 

(29) 

(30) 

(31) 

(32) 

(ii) Assume now that Po(x) is not given in the special 
form (28), then by using a Galerking approximation, for 
instance, we shall determine a i and P k so as to minimize the 
criterion 

~~ L.[lnpo(X) - (~a/xi + ~PkWk(X») rpo(X)dX, 

(33) 

and we shall use the conditions (29) to (32). • 
Remark of practical interest: In order to initiate the iter­

ative procedure (27), we shall need initial estimates for 
if; (x,t», (Pk (x,t », and the like. To this end, one can se­
lectpo(x), and one will have, for instance 

if; (x,t »0 = r /; (x,t )Po(x)dx. 
JR" 

Another alternative is to make the approximation 

/; (x,t) ~X1fi (t ), 

gij(x,t ) ~gij(t ), 

and to take the normal distribution so defined by the corre­
sponding FP equation 

iJ 

For instance, if zero is an equilibrium position for the 
system in the absence of random inputs, one then has 
/; (O,t ) = 0, and one can select 

/; (x,t ) ~xTaJ: (O,t ). 

Regarding gij (t ), a possible choice is 

gij(t):= r gij(x,t)Px(x)dx. 
JR" 
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Illustrative example: In order to illustrate the proce­
dure, we shall outline the well-known special case defined by 
the one-dimensional FP equation 

a,P = - aAxJCt )p) + !axx(gCt )p) 

with the initial condition 

(34) 

p(x,O) = exp{ -! In (21Tif) - (x - xo)2/2if}. (35) 

We bear in mind that the solution of (34) is 

p(x,t) = [21TV(t )] -1/2exp{ - (x - m l (t »2/2vCt )}, 
(36) 

with 

vct ): = m2 Ct ) - m~ (t ), 

ml ct ) = JCt )m l ct), m l (0) = xo, 

m2Ct) = 2J(t )m2(t ) + g(t), m2(0) = if + X6· 

Let us seek the solution of (34) by applying the method 
above, and let us consider the approximation of the second 
moment. 

(i) One has 

J(x,t) = xJ(t ), 

g(x,t) = g(t ), 

Pdx,t) = kJ(t )xk + !k(k - 1 )g(t )xk 
- 2, 

and Eq. (24) yields 

P2(X,t) = exp{ - [Ao(t ) + J1-2(t )gCt )] 

- x[A I (t )J(t ) + AI (t )] 

- x2[2J1-2(t )J(t ) + ,u2]} (37) 

= exp{ - aU) - x/3(t ) - x 2yU )}, (38) 

where the definition of a(t ), /3(t ), and y(t ) is obvious. 
(ii) We now substitute (38) into the condition 

fp2 (X,t )dx = 1, (39) 

and the conditions (19) and (20), to yield 

ix + i3 (x) + y(x2) = 0, 

ix(x) + i3 (x2) + y(x3
) = - J(t ) (x), 

where (40) is obtained by deriving (39) w.r.t. time. 

(40) 

(41 ) 

(iii) The initial conditions on Ai (t ) and J1-2 (t ) are [see 
Eqs. (29) to (32)] 

..10(0) = - !In(21Tif) - (x6/2if), 

AI (0) = 0, AI (0) = xolif, 

J1-2(0) = 0, /t2(0) = - (l/2if). 

(43) 

(44) 

(45) 

(iv) In order to calculate a,/3,y; we need to determine 
estimates of (x'), i = 1, ... ,4 and to this end we shall take 
p(x,t) = p(x,O), therefore 

(x)o = xo, 

(x2)0 = X6 + if, 
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(46) 

(47) 

(x3)0 = x~ + 3ifxo, 

(x4
)0 = xci + 6x6if + 3u4

• 

(48) 

(49) 

(v) Substituting (46)-(49) into (40)-(42) yields 
(a,/3,y) I therefore (Ao(t ),..1 1 (1 ),J1-2(1 »1' 

( vi ) We now substitute (..10 (t ) ,AI (t ) ,J1-2 (t » I into the 
expression (37) of P2(X,t) and we can then calculate 
«x),(X2),(X3 ),(X4 » I therefore (a,/3,y) 2 and thence 
(..10 (t ) ,AI (t ) ,J1-2 (t )}z. 

And so on. 

IV. CONCLUDING REMARKS 

In the present paper, we have proposed a new method 
for determining the solution of the Fokker-Planck equation 
by directly referring to the dynamical equations of the state 
moments, considered as constraints in the application of the 
maximum entropy principle. 

The idea of using the moments to estimate the solution 
of the FP equation can be found in the literature, and Ris­
ken I has given some methods, but they deal mainly with 
stationary solutions on the one hand, and transition mo­
mentsJ(x,t ) andg(x,t ) in polynomial forms w.r.t. x, on the 
other hand. Recently Haken6 applied the maximum entropy 
principle to nonequilibrium phase transitions, but again in 
the special polynomial case (the laser equation), and by us­
ing a perturbation scheme around the stationary solution. 

In contrast, the novelty of our approach is the utiliza­
tion of the "path entropy" that provides the sought solution 
without referring to the values of the moments themselves. 
In order to obtain the Lagrange multipliers, we have to solve 
a set of implicit nonlinear differential equations, but ap­
proximate solutions can be easily derived. In addition, we 
have obtained the general form of the solution (even in the 
absence of the explicit determination of the Lagrange multi­
pliers) and this feature may be of interest in theoretical stud­
ies. On a rigorous standpoint, strictly speaking, we need all 
the constraints to correctly calculate p(x,t ), but numerical 
experiments have shown that, very often, the first five or six 
conditions are largely sufficient to achieve a good accuracy. 
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Symmetries of a two-body relativistic harmonic oscillator and a two-body relativistic Coulomb 
system are considered. It is shown that, in the harmonic case, the Lie algebra of first integrals 
includes Poincare algebra and u (3). In the Coulomb case, the Lie algebra of first integrals 
includes Poincare algebra and one of the algebras so ( 1, 3), so ( 4 ), or the algebra corresponding 
to the grou!' of rigid motions in R3. In both cases, the algebra generated by internal symmetry 
together with the complete space-time symmetry is infinite dimensional. 

I. INTRODUCTION, NOTATIONS, BASIC DEFINITIONS 

During the last 20 years, the relativistic theory of direct­
ly interacting particles has been intensely developed. I In this 
approach, the field that carries interaction is supposed to be 
eliminated, and one ends up with an effective action-at-a­
distance theory, relevant for a lot of situations in which the 
creation of particles is not significant whereas other relativis­
tic effects must be taken into account. A great advantage of 
this approach is the ability to deal with a finite number of 
degrees offreedom, in a manifestly covariant manner. Rela­
tivistic predictive mechanics,2 especially in its a priori Ham­
iltonian version,3 is a framework for such investigations. 
Many explicitly solvable models have been considered in this 
formalism,4,5 as well as in alternative but mostly equivalent 
formulations, based on the use of either the singular Lagran­
gian or constraints Hamiltonian dynamics.6 

In so far as we know, the Lie algebra generated by the 
first integrals of these models was never systematically in­
vestigated,7 although it should obviously help to understand 
the mechanism of dynamical symmetries from a relativistic 
viewpoint. In this article, we start such a study, considering 
only two-body systems. (Recall that one-particle problems 
are trivial from the point of view of predictive mechanics, 
and inadequate for our purpose, since the presence of an 
external field destroys space-time symmetry.) 

Our analysis will be devoted to the simplest cases of two­
particle systems, namely the relativistic oscillator and the 
system which corresponds to a Coulomb potential. The os­
cillator is of particular physical interest as it provides a clas­
sical prototype of the quark model. The other model is the 
most naive relativistic generalization of a Coulombian's two­
body system. We shall not try to use it for a realistic descrip­
tion of gravitational or electromagnetic interaction. Most 
probably, such a description involves this potential plus ex­

tra terms which cannot be neglected when relativistic veloc­
ities occur. 8 So, the naive Coulombian model can be used as a 
reference to which the results of a realistic description 
should be compared eventually. 

In the scope of the present work, the relativistic Cou­
lomb potential is mainly interesting because it shares with 
the harmonic oscillator the property of being exactly solv-

able in closed form. It is therefore natural to start our search 
for symmetries by a study of these two models. (Their non­
relativistic counterparts are well known to play particular 
roles.9 

These models are not only exactly solvable in abstract 
form (that is, in terms of abstract canonical variables), but 
also the so-called position equation which in predictive me­
chanics determines the relationship between the canonical 
coordinates and the physical coordinates is tractable in both 
cases. In fact, this equation was exactly solved for the oscilla­
tor, and more generally, for any potential which, in the nota­
tions below, writes VCr), this equation can be reduced to an 
ordinary differential equation of the Sturm-Liouville type. 

This Introduction will be completed by a survey of basic 
definitions used in our formalism. Sections II and III are, 
respectively, devoted to the oscillator and the relativistic 
Coulomb system. A general method for solving the position 
equations corresponding to a potential VCr) is indicated in 
the Appendix. 

We shall use the following notation. (a) Flat space-time 
(M4, g), where g is the metric tensor on M4 such that 
goo = 1, gij = - oij; all other components of g are equal to 
zero. (b) Greek subscripts run from 0 to 3, Latin from 1 to 3. 
(c) One-particle phase space TCM4 ) is identified with the 
product of M4 by the space offour-vectors. (d) Two-particle 
phase space Me T(M4 ) x T(M4 ). (e) Set of all smooth 
functions on M:Y(M). (f) Small characters for Lie alge­
bras, capitals for groups, example SO(4), so(4). (g) For 
each AI' , BI' , we will use: 

AflBI' =A·B. 

(h) Canonical coordinates qf, pf, q~, p~. (i) The projectors 
onto the space orthogonal to the total momentum: 

IIa
p = oap _ (papp /p2), 

where 

pa=pf+p~. 

(j) For each A fl, we define: 

A fl = IIfl A v v • 

Let us briefly recall the definition of two-particle sys-
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tems in predictive mechanics. We consider: (1) two-particle 
phase space M with canonical coordinates rtf, P~, q~, P~ and 
standard Poisson bracket, i.e., the two-argument map: 

{-, ·}:Y(M)XY(M) .... Y(M), 

such that 

{f,g} = - {g,J}, (1.1) 

{f,gh} = {f,g}h + g{f,h }, (1.2) 

{f,{g,h}} + {h,{f,g}} + {g,{h,J}} =0; (1.3) 

the only non vanishing Poisson brackets of the coordinates 
among themselves are 

{q~'PI/l} = {q~'P2/l} = 8p. (1.4) 

(2) Two Hamiltonians, i.e., two scalar functions HI and 
H 2 0verM. 

In this work, we consider essentially Poincare invariant 
interactions. Therefore, HI and H2 are Poincare invariant, 
i.e., 

{HI,pa} = 0, {H2,p
a} = 0, 

{HI,Map} = 0, {H2,M
aP} = 0, 

where 

pa=p~ +p~, 

MaP = qfpf - qfp~ + ~P'f - r/Ip~. 

( 1.5) 

( 1.6) 

( 1.7) 

Moreover, HI and H2 satisfy the predictivity condition: 

( 1.8) 

(3) Relationship between the positions x~,x~ and ca­
nonical coordinates is established by solving the position 
equations: 

{Ht>xn = {H2,xf} = 0. ( 1.9) 

For the reader who is not familiar with the formalism, some 
remarks are useful. 

First, we are dealing with a two-time formalism. The 
evolution of the system can be written in terms of two inde­
pendent parameters, each one associated with each particle's 
proper time. According to this point of view, the time devel­
opment is generated by two scalar functions HI' H2. These 
functions generate two Hamiltonian vector fields on the 
symplectic manifold M, which justifies our terminology. 

In this scheme, the Hamiltonians are interpreted as pro­
portional to the squared masses, which are automatically 
constants of the motion. (In contrast, the energy is simply 
the time component of the linear momentum. We do not use 
it as a generator.) 

In agreement with a famous theorem, to the physical 
variables XI' X 2 cannot be canonical. Thus the system is not 
completely defined unless a solution ofEq. (1.9) is chosen. 
In so far as solvable models are concerned, one usually de­
mands that XI' X 2 reduce to ql' q2 on the IS-dimensional 
manifold p. (q I - q2) = 0. This requirement is interpreted 
as an equal-time condition in the center-of-mass frame. 
There are cases where one may alternatively consider an 
asymptotic condition, namely, that XI - x2 coincide with 
gl - g2 at spatial infinity. Naturally, it is essential that the 
Poincare symmetry not be destroyed when passing from the 
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physical coordinates to the canonical ones. In other words, it 
must be possible to define the Poincare group equivalently 
by its quadratic invariants as well in terms of q, P as in terms 
of position and velocities. This condition ensures that P a and 
Ml'v are not only an arbitrary representation of the abstract 
Poincare Lie algebra, but are correctly related to space-time 
symmetry. Solutions based on invariant Cauchy data im­
posed on the invariant manifold p. (ql - q2) = ° obviously 
satisfy this condition. 

Finally, it is worthwhile to notice that, generally, our 
phase space M does not cover the whole T(M4 ) X T(M4 ). 

Consider for instance the oscillator. The potential 
k(gl - (2)2 is singular for null values of pa. The relevant 
part of T(M4 ) X T(M4 ) is necessarily an open set satisfying 
p 2 1=0. For obvious physical reasons, we actually define M 
by the condition that P 2> ° and P oriented toward the fu­
ture. Since P a is a constant of the motion, this restriction is 
consistent. Moreover, we shall see that the formula which 
solves Eq. (1.9) for this model blows up when P'PI or P'P2 
(which fortunately are constants of the motion) vanish. 
Hence, a further restriction of M, by the conditions P'PII=O, 
P·P21=°· 

For any two-body relativistic system formulated as in 
(1 ), (2), and (3), a first integral is by definition a function 
fEY (M) such that 

{f,H I } = {f,H2 } = 0. (1.10) 

From the Jacobi identity ( 1.3), it follows that such functions 
form a Lie algebra with respect to the Poisson bracket. This 
Lie algebra is the principal subject of our paper. Any subal­
gebra ofit is by definition a dynamical algebra. It is ofpartic­
ular interest to exhibit finite-dimensional dynamical alge­
bras. 

Equations (1.5) and (1. 8) together with the definition 
(1.10) show that, for each two-particle relativistic predic­
tive system the quantities, HI' H2, p

a, and MaP are first 
integrals. Since pa, MaP satisfy the commutation relations: 

{pa,PP} =0, 

{MaP,pY} = ~YpP _ gPypa, 

{MaP,My6} = _ gPYM a6 + gP6May 

+ ~YMP6 _ ~6MPY, 

( l.lIa) 

(1.11b) 

(1.11c) 

which are the well-known relations for Poincare algebra, it is 
clear that symmetries of each predictive two-particle system 
include Poincare algebra. 

Let us consider two particular predictive relativistic sys­
tems, namely, 

and 

HI = H!P+ y)2 + kz2, H2 = !OP- y)2 + kz2 
(1.12) 

1 (1 )2 a H I =- -P+y +--, 
2 2 FF 

H2 = .!.(.!. P _ y)2 + _a_ , 
2 2 FF 

(1.13) 

where k > 0, a are constants, and relative variables are intro­
duced through the notations 
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pa=pf +p~, Qa=!(qf +qn, 

ya = !(pf - pn, z" = qf - q~. (1.14 ) 

One can easily check that systems (1.12) and (1.13) satisfy 
conditions ( 1.5) and ( 1.8). They are natural relativistic gen­
eralizations of the two-particle nonrelativistic harmonic os­
cillator3

•
4 and the two-particle Kepler system, respectively. 

They reduce to the system of two noninteracting particles for 
k = ° and a = 0. In both cases, the interaction is carried by a 
potential, depending only on r, which is added to the free­
particle Hamiltonians. 

The position equation (1.9) has been explicitly solved 
for (1.12).4 For any potential of the form VCr), the general 
form of its solution is known, up to the determination of two 
scalar functions which depend on the shape of V. 11 We indi­
cate, in the Appendix, how each one of these functions can be 
separately calculated. The method applies, in particular, to 
the Coulomb case. 

A further motivation for the study of oscillator and 
Kepler potential is that their nonrelativistic counterparts are 
known to play particular roles with respect to dynamical 
symmetries.9 And, in fact, we shall see in the following sec­
tions that the Lie algebra of first integrals associated with 
(1.12), resp. (1.13), includes finite-dimensional subalge­
bras that are the same as in the relativistic analog. 

II. THE OSCILLATOR 

The system (1.12) describing the two-particle relativis­
tic oscillator was first suggested by one of us (D-V).3.4 In 
this model, the relative inertia-momentum tensor 

(2.1) 

is a first integral of the system (1.12). Looking for the Pois­
son brackets {N aP,N yo}, we see that it is convenient to intro­
duce the tensor 

(2.2) 

Since P a and MaP are first integrals of the system ( 1.12), we 
see that nail and Map are first integrals, too. 

Let us consider the Lie algebra generated by 
pa, MaP, NaP, and MaP and their Poisson brackets. We 
have 

{pa,pp} = 0, (2.3a) 

{MaP,pY} = gayp P _ gf3yp a, (2.3b) 

{MaP,Myl5} = _ gf3YMal5 + gf3i5May + ~YMf3Il _ ga15MPY, 

(2.3c) 

{NaP,Nyl5} = n PYM a15 + n f3llMay + n aYMPI5 + n a15MPY, 
(2.4a) 

{M aP,NYI5} = _ n PYNal5 _ n f3llNay + n aYNf3Il + n aoNP1', 
(2.4b) 

{MaP,Myl5} = _ n PYMal5 + npoMay 

+ naYMPI5 _ n a15MPY, 
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(2.4c) 

{MaP,Myl5} = _ gf3YMao + gf3i5May + ~YMf3Il_ ~OMPY, 
(2.5a) 

{MaP,Nyl5} = _ gf3YNal5 _ gf3i5Nay + ~YNf3Il + ~oNPY, 
(2.5b) 

{p Y,M ap} = 0, 

{p Y,N ap} = O. 
(2.5c) 

(2.5d) 

The expressions (2.3 )-(2.5) show that first integrals (1.6), 
(1.7), (2.1), (2.2), do not close to a Lie algebra. The Lie 
algebra generated by their successive Poisson brackets is in­
finitely dimensional. The cause of it is the appearance of 
projectors naP in the formulas (2.4), which spoils the paral­
lelism with nonrelativistic theory. But we shall show that 
these projectors can be avoided if, from the first integrals 
(1.6), (1.7), (2.1), and (2.2), we extract a suitable set of 
functionally independent (nonlinear) combinations. 

To see it, let us notice identities: 

paNaP = PPNap = 0, NaP = N{3a' 

paMaP = PPMap = 0, MaP = - Mpa· 

(2.6a) 

(2.6b) 

They show that NaP consists of six and MaP ofthree indepen­
dent functions. 

Let us now consider an arbitrary frame in space-time. 
Define the matrix All v such that 

AOIl = PIlI,{F, 

Ai
ll = {jill - PiAIl , 

where 

(2.7) 

In other words, A is a Lorentz matrix that transforms all 
tensors to the rest frame ofthe center-of-mass; M' and N' are 
just M and N transformed to this frame. This matrix has the 
following properties: 

All "AP u{j"a = gIlP, 

AOpnP
Il = 0, 

N np = N P Il Il' 
Aj"P" = 0, 

{All ",Map} = {All ",Nap} = 0. 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

Moreover, All v is a first integral of the system (1.12), be­
cause its matrix elements are functions of pa only. 

Using All v' we shall extract nine independent first inte­
grals from NaP and MaP. In order to do it, we define: 

N,aP = Aa AP Nil" Il " , 
M'aP = AaIlAP"MIlV. 

It is obvious that 
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and Eq. (2.8b) shows that 

M,o{3 = M'{3O = N ,o
{3 = N '{3O = 0. (2.11 ) 

The remaining components of N la{3 and M la{3 are first inte­
grals of the system (1.2) (they are built as products of first 
integrals) and satisfy the following relations: 

{M'ij,M 'k,} = 8ikMIiI _ 8iIM'ik 

_ tjik M Ijl + tjilM Ij\ 

{M'ij,N 'k,} = 8ikN 'il + 8iIN 'ik 

_ tjik N Ijl _ tjilN Ij\ 

{N'ij,N ,k,} = _ 8ikM'il _ 8iIM'ik 

_ tjik M Ijl _ tjilM Ij\ 

what can be checked using (2.8), (2.5), and (2.4). 

(2.12a) 

(2.12b) 

(2.12c) 

These are the familiar commutation relations for the 
U(3) Lie algebra.6 Expressions (2.3) and (2.12) show that 
the set of first integrals of our system includes a subalgebra 
(spanned by M'ij and N'ij) isomorphic to the Lie algebra of 
U(3). Because {Nt V ,MPU}:;6 0, the brackets {M a{3,M 'ij} are 
not linear combinations of pa,Mllv,Mlij,N 'kl, so the vector 
space spanned by Mlij,N 'kl and the generators ofthe Poin­
care group is not a Lie algebra. In contrast, the algebra gener­
ated by M'ij and N'kl can be trivially extended by a direct 
sum with the algebra of space-time translations. 

Notice that the separation of space from time among the 
components of A only depends on the choice of an arbitrary 
direction in space-time, which corresponds to the rest frame 
of some inertial observer. For each inertial observer, the 
above procedure associates a different dynamical algebra 
isomorphic to the Lie algebra of U (3). 

III. THE COULOMB-LIKE SYSTEM 

Let us take the most naive generalization of Coulomb 
interaction, given by the Hamiltonians (1.13). It is easy to 
see that the predictive relativistic analog of Runge-Lenz 
vector, namely, 

Ril = - Zil V + YMull , 

where 

V=a(-r)-I12 

(3.1) 

is a first integral of the motion generated by HI, H 2• Indeed, 
we can notice that only spatial relative variables are involved 
in Rw Thus the evolution of Ril is in fact governed by {Ril ,h} 
where 

2h =ji2 + 2V. 

With the help of the useful formulas: 

{za,ji{3} = na {3' 

{z,h} =ji, 

av 
{jia,h} = - aza' 

and setting 

p2= -r, 
hence 
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(3.2) 

ap 
-= 
ifiU 

we find 

1 _ 
--zu' 

P 

{RIl,h} = - jill (V + P ~;), 

which vanishes as a consequence of the "Coulomb" form 
assumed for V(p). A tedious but straightforward calcula­
tion, analogous to its nonrelativistic counterpart, provides 

{R {3,R.5} = _ 2hM{3.5. (3.3) 

In Eq. (3.3), we notice that h is a constant of the motion 
which, being manifestly invariant by rotation, has a vanish­
ing bracket with angular momentum. In particular, 

{h,Maf3} = 0. (3.4 ) 

This remark permits us to set Eq. (3.3) in a more convenient 
form. To do this, we introduce 

E= - sign h, 

that is to say 

E= -1,0, + 1, 

when h > 0, h = 0, h < 0, respectively. 
So doing, we split phase space into three invariant pieces 

M ( - ) ,M (0) ,M ( + ), which are manifolds of dimensions 16, 
15, 16, respectively. Here, M ( -) corresponds to the case 
where ji2 and V are of opposite signs (remind that ji2 cannot 
be positive according to the choice of signature). This occurs 
for a> ° (Kepler-like motion, attractive force), on the or­
bits where r remains bounded. 

By analogy with the well-known nonrelativistic theory, 
we define 

K a = R /.,ffiI, for E#O 

and simply 

Ka=R a, whenE=O. (3.5) 

Now, we compute {K a,Kf3} with the help of (3.3). Since 
{h,R a } vanishes, we obtain easily 

{Ka,Kf3} = Eif a{3. (3.6) 

Besides, it is straightforward to calculate 

{Ma{3,R.5} = g".5R {3 _ gP.5R a, 
which yields 

{M a{3,K.5} = g".5K{3 _ gf3.5Ka 

and, in particular, 

(3.7) 

{if a{3,K.5} = n a.5K{3 _ n{3.5K a. (3.8) 

Consider Eqs. (3.6)-(3.8) together with (2.4c). Similarly, 
as in the oscillator case, the appearance of the projector n a 

{3 

in (3.8) and (2.4c) forbids that the Poisson brackets of 
K a,M IlV close to a Lie algebra. However, using the matrix A 
defined in (2.7), we can eliminate as follows the projectors 
from (3.8), (2.4c). 

In order to do it, let us consider if I as in Eq. (2. 9b), and 
define 

(3.9) 
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Because of (2.8), we have 

K'O = M'aO = M,Oa = o. (3.10) 

Commutation relations between the remaining componen~s 
of K 'a and M laf3 are 

{K,i,K,j} = €M,ij, 

{M,ij,K,k} = _ tjikK'j + tjikK,i, 

{M'ij,M'kl} = tjikM,iI_ tjilM'ik 

(3.11a) 

(3.l1b) 

- tjikM,jl + tjiIM'jk. (3.l1c) 
These relations describe the following Lie algebras: 12 (i) 
so( 4) for € < O. (ii) For € = 0, we have the Lie algebra.sf of 
the semidirect product of SO (3) and a tridimensional Abe­
lian group (rigid motions in Euclidian space R3

). (iii) so ( 1, 
3) for €>O. 

Expressions (3.11) show that the first integrals of our 
system include a subalgebra, spanned by M,ij and K 'I, iso­
morphic to S04' .sf, so(1, 3), respectively, for € negative, 
zero, positive. Since the brackets {Maf3,M 'i!} do not produce 
linear combinations of P a, M p.v, M 'ij, N ,kl, the vector space 
spanned by M,ij, K,I, and the generators of the Poincare 
group is not a Lie algebra. In contrast, the algebra generated 
by M'ij and K,I can be trivially extended by direct sum with 
the algebra of space-time translations. 

IV. CONCLUSION AND OUTLOOK 

Finally, the Poincare algebra is combined with the Lie 
algebra of a symmetry of the relative motion (internal sym­
metry) through their embedding into a large infinite-dimen­
sional Lie algebra. 

The internal symmetry has the same abstract structure 
as in the corresponding nonrelativistic system. But, by a sort 
of degeneracy with respect to the case of Galilean mechan­
ics, the internal symmetry algebra is realized in infinitely 
many ways. Indeed, to each inertial observer corresponds a 
representation of the internal Lie algebra. In so far as we 
consider simultaneously all these algebras on the same foot­
ing, we preserve manifest covariance. 

In the present scheme, internal symmetries exactly com­
mute with spacetime translations, hencewithp 2

• Thus, if we 
anticipate quantization, it seems that (in spite ofthe fact that 
O'Raifeartaigh's theorem l3 does not deal with infinite-di­
mensional algebras) an eventual mass splitting of multiplets 
should be expected only if the potential is modified by extra 
terms. 

The possibility to combine space-time and internal sym­
metries within an infinite-dimensional Lie algebra has been 
considered already many years ago, but, soon faced the criti­
cism of a tremendous arbitrariness, especially with respect to 
the interpretation of the infinitely many additional genera­
tors that are necessary in order to span this big algebra. 14 

Here, in contrast, the only arbitrariness lies in the con­
struction of the relativistic dynamical system. Once the 
shape of the potential has been fixed, the structure of the 
algebra of first integrals is locally independent of the way in 
which the position equations are solved. But the dynamical 
interpretation of its generators is possible only after the posi­
tion equations have been solved (just like is possible the de-
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termination of the world lines). 
In the two examples treated above, a reasonable solution 

of the position equations is available in closed form. In such 
models, we can express each first integral in terms of phys­
ical positions and velocities, which permits us to assign a 
precise dynamical meaning to all the generators of the alge­
bra formed by these first integrals. We hope that these mod­
els illustrate the advantage of a true dynamical construction 
over purely group theoretical approaches. 

Further investigation is needed in order to determine if a 
part of the present analysis can be carried out in the global 
sense, looking for a symmetry group instead of a Lie algebra. 

For the moment, a quantum mechanical treatment 
seems more promising; then the introduction of an external 
field would be of great interest. 
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APPENDIX: SOLUTION TO EQS. (1.9) FOR V=F(.tZ) 

It has been proposed by one of us (Ph.D-V) to look for4 

solution of the form: 

XI = ql - (P'P2/P2 )«(fJ2Z + "'~), (AI) 

(A2) 

Since (fJ2' "'2 can be obtained from (fJ1' "'I by particle ex­
change, it is enough to look for (fJ1' "'1' Dropping the particle 
label, we shall write simply (fJ, ",. 

Let X be the Hamiltonian vector field generated by HI' 
that is 

XA = {A, HJ, VAE.7(M). 

Setting 

() = P'z/P'PI' (A3) 

we have 

X() = 1. (A4) 

It was shown in Ref. 4 that the equations in (1.9) which 
involve (fJ and", then become 

(fJ = -X"', 
(X 2 + 2F')", + 2F'() = 0, 

with 

F'= dF 
d(r) 

and that 

xz2 = - 21/>f2;( V-h) - F, 
with h defined as in (3.2), 

P. Droz-Vincent and P. Nurowski 
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(AS) 

and 

1/ = sign of z·y. 
For the Coulomb case, the equations of motion show expli­
citly that, if we allow P to vary, then z·y changes its sign 
when it vanishes (which occurs at perihelion and aphelion). 

Remark: P cannot be positive, and [2 cannot be nega­
tive, since z and yare space-like. 

Now, let us define X by 

~=O+~ (A9) 

Equation (6) gets simplified as 

(X 2 + 2E')X = O. (AlO) 

In the oscillator case, F' is a constant, and Eq. (A6) was 
explicitly solved by demanding that X depends only on 0 
(and possibly first integrals of the motion). But, in general, 
E' depends nontrivially on P, which makes such require­
ment inconsistent. In view of this difficulty, let us introduce 
a new quantity S which behaves like 0 under action of X: 

XS= 1, (All) 

but actually depends on P. It is easy to see that S must be of 
the form: 

s= f;, (A12) 

where! = xr is given by (A7), as an explicit function of (;. 
In general, X might depend on 16 independent variables 
which can be 0, S, and 14 independent first integrals of the 
motion. But we are not concerned with the most general 
solution of (A6). The one we look for must be as simple as 
possible and satisfy some reasonable boundary or asympto­
tic condition. So, let us assume additionally that X only de­
pends on S. (And possibly first integrals of our dynamical 
system. It is clear that the constants of the motion play the 
role of ignorable variables.) Now, Eq. (A6) reduces to 

( d2 ') ds 2 + 2F X = 0, (A13) 

in which F' must be considered as a function of S through the 
change of variable (A12), which implies a dependence on 
the first integrals hand [2 through Eq. (A7). Equation 
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(A 13) is an ordinary differential equation of the Sturm­
Liouville type. The behavior of its solutions depend on the 
shape of F' as a function of S, and can be analyzed by stan­
dard methods. 

Setting p = g, we have in the Coulomb case 

F' = (a/2)p - 3 (A14) 

and 

V(;=ap, 

!= - 21/D(p), 

where 

D = (2ap - 2h IP _[2) 112. 

So, Eq. (A12) yields 

s= - !1/I, 

where, for instance if h < 0: 

1= - (D /2h) - 2a( - 2h) - 3/210g(D - 4hp + 2a), 

which defines implicitly p(s), to be inserted in (A14). 

I Relativistic Action-at-a-Distance, Classical and Quantum Aspects, Lecture 
Notes in Physics Vol. 162, edited by J. Liosa (Springer-Verlag, Berlin, 
1982), and references therein. 
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On the mixing-enhancing structure of a class of quantum dynamical 
semigroups 
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A sufficient condition for a dissipative evolution to give rise to an ever more chaotic state is 
obtained and the structure of the corresponding density matrix is studied. As a byproduct, the 
equation of motion in the Schr6dinger picture is, in some cases, explicitly solved. 

I. INTRODUCTION 

It has been shown recently 1 under which optimal condi­
tions on the generator of a quantum dynamical semigroup 
does the entropy of a system increase. 

This behavior is by itself strongly indicative of irreversi­
bility and progressive loss of information about the system 
while it is evolving according to a semigroup of contractions. 

There exists, however, a deeper analysis of the amount 
of uncertainty inherent to the state of a quantum system that 
makes use of the concept of mixing enhancing.2

-4 

This is, in turn, connected with the possibility of partial­
ly ordering density matrices by considering their eigenval­
ues: it is indeed clear that with more states present in a mix­
ture our knowledge of the system is poorer. 5 

On the other hand, an increasing ofthe smaller eigenval­
ues together with a decreasing of the bigger ones until they 
eventually become equal should produce an ever greater lack 
of information, e.g., in finite systems the most mixed (chao­
tic) state is the trace if N, N being the dimension. 5 

This is the typical situation when a state (density ma­
trix) p suffers deleting off-diagonal elements in a given rep­
resentation as it happens in the usual scheme of a measure­
ment process: 

p .... L PjpPj , PjPj = {)jjPj' L Pi = identity; 
i 

or, when p undergoes a coarse graining: 5 

A "Tr Pjp 
p .... ~---P 

i TrPj " 

Since the time-decaying of the off-diagonal elements of p in 
the position representation is one of the main features of a 
model6 introduced recently to overcome the conceptual dif­
ficulties arising in connection with linear superpositions of 
far away localized macrostates, it seems to be appropriate 
discussing its properties from the point of view of mixing 
enhancing. 

More generally, it should be noticed that loss of infor­
mation in the sense sketched above is not a consequence but 
rather one of the possible reasons for the increasing of en­
tropy. 

II. MIXING-ENHANCING PROPERTY OF CERTAIN 
QUANTUM DYNAMICAL SEMIGROUPS 

In order to make more precise the basic ideas outlined in 
the Introduction, following Refs. 2-4 we will make the fol-

lowing statements. 
Definition 2.1: (i) Given two density matrices p and a 

whose eigenvalues {PJiEN and {U)jEN are arranged in de­
creasing order, p is defined to be more mixed than a (p I-a) if 

n n 

pen) == L Pi<,u(n) == L U o 'o'nEN. 
i= I i= 1 

(ii) A map T['] from the state space into itself, which trans­
forms density matrices into density matrices, is mixing en­
hancing if T[p] I-p for any density matrix p. 

Remarks 2.2: (1) The state space we are referring to is 
usually taken to be the self-adjoint part, BcW')~·a., of the 
Banach space of the trace-class operators, B(Yt") l' over a 
separable Hilbert space Yt". B(Yt")~a. is a real Banach space 
and the density matrices are its positive, normalized 
(Tr[] = 1) elements. 

(2) By a straightforward application of the min-max 
principle we can expressp(n) ==};;'~ lPi as follows: 

pen) = sup Tr.11' p, 
ff/l /I 

i.e., the trace is computed over a basis of an n-dimensional 
subspace of the Hilbert space Yt". 

(3) Important results stemming from the theory of 
Refs. 2-4 are: (i) I- is a partial order among the density 
matrices giving rise to equivalence classes of equally mixed 
states (there are, of course, density matrices whose eigenval­
ues cannot be compared in the above sense); (ii) 
Trj(jJ»Trj(a) for any concave function on R+ if and 
only if p I- a, p and a two density matrices [not only the von 
Neumann entropy S(jJ) = - Tr p Inp is bigger than Sea) 
but also all the so-called a entropies3 

Sa (jJ) = [1/0 - a)] In Tr pa, aER + -",,{l}, increase go­
ing from a to p]; (iii) pI-a if and only if 

p = weak lim L Aia UraaUia , 
a i 

Uja unitary operators Vi, a; O<'Aia <,l, };jAia = 1. [An ex­
ample is provided by the time-averaged density matrix 

p = ~ iT dt exp( - ~ Ht )p exp( ~ Ht) 

which is more mixed thanp, exp[ - (iHi)Ht] being the evo­
lution operator for a given Hamiltonian H.] 

The class of quantum dynamical semigroups we shall 
consider is the one that arises when the quantum system of 
interest is weakly interacting with an infinite reservoir. 
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Under certain conditions on the form of the coupling 
and the kind of the chosen reservoir, the reduced evolution 
for the state P of the (open) system is Markoffian7

,8 and 
generated by 

a,p, = -i[H,p,] -.!. 2: {B]Bj,pt} + 2: BjptB ] 
2 j j 

=L [Pt], (2.3) 

Bj' B], H = Ht, ~jB ]BjEB(J¥") (Banach space of bounded 
operators on J¥") . 

Remark 2.4: The rhs of (2.3) is the most general expres­
sion for the generator L [ . ] of a norm-continuous semigroup 
{r,}t>o of completely positive9 contractions on the state 
space (r ,p = P t ) .8,10 If the boundedness of the Hamilto­
nian, as it is often the case, is relaxed, then it could be proved 
that L [ .] is the generator of a strongly continuous semi­
group with respect to the trace norm:7 (i) Tr r,P = Tr P 
(probability preserving property); (ii) Ilr,plI, ..;lIplI, 

(110'11, = Tr~utu); (iii) rtOrs = r,+s; t, s;;.O (semigroup 
property); (iv) r, is completely positive, t;;.O; (v) 

1-0+ (-0+ 

IIrtP-plI, --+ O(insteadofthestrongerllr,-III --+ 0). 

Now we are in the position to claim the following propo­
sition. 

Proposition 2.5: If T [p] = ~jBjpB J is such that 
T[l] = I as a map from B(J¥") into B(YI') and 
~jB JBj = I, then the semigroup generated by 

L [p] = - i[H,p] - p + T [p] (2.6) 

is mixing enhancing. 
Remark 2. 7: The condition on T[ . ] is fulfilled by choos­

ing, for instance, Bj = B J with ~jB J = 1, e.g., a complete set 
of orthogonal projectors. 

Proof: According to Remark 2.4 L[·] generates a semi­
group {r,},>o of completely positive, trace preserving con­
tractionsonB(J¥")~·a. Moreover, T[I] = I, Vt;;.Owhen r, is 
extended on B(J¥")s.a. 

In the duality given by the trace we make correspond to 
r, a dual map 11:B(J¥")s.a--+B(J¥")s.a which is in turn com­
pletely positive, identity, and trace preserving. 

Given an initial density matrix p, set Pt = r, [p] and let 
t;;.O be s + 7' for s, 7';;.0. We now follow (Ref. 4, Chap. 2) and 
consider the family F N CB(J¥")s.a of positive operators of 
rank N, bounded above by the identity. Recall now Remark 
2.2.2 and note then 11 [F N ] r;,F N so that V N;;.I: 

p, (N) = sup Tr)YN rr [Ps] 
Yr'N 

= sup Tr 1: [D ]Ps"; sup Tr Bps = Ps (N» 
DeFN BEFN 

and hence: PI ~Ps if t;;.s;;.O according to Definition 2.1. 
Remark 2. 8: We have not used the complete positivity of 

y" but only the positivity which, together with 
Tr Yt [p] = tr p and r, [1] = 1, characterizes the "doubly 
stochastic maps" (Ref. 4, Chap. 2). On the other hand, if we 
require {rt},>o to be a norm continuous semigroup of mix-
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ing enhancing, completely positive trace-preserving maps on 
B(J¥")~·a., then r, must be doubly stochastic Vt;;.O (Ref. 4, 
Chap. 2). Thus rt [I] = I and, by Lindblad's theorem, 10 

L['] has the form (2.6). 
The two simple examples reported in Ref. 1 serve to 

illustrate the following mechanism: 
(1) 

B(J¥") I =B(J¥") =B(C2), 

H = 0, B = (~ ~) = B t, B t B = B 2 = 1, 

L [p] = - p + T [p] = - p + (~ ~)p(~ ~), 
T[I] = 1. 

Given the initial conditionp = (g ? _ p) the solution is 

= (P'oU) 0) 
P2 (1) . 

If P > 1/2 thenpI (t) >P2 (t)VtE[O, + 00). 

According to the notation introduced in Definition 2.1, 

PI(l)=PI (t) <PI (s)=p,.(1) <p=p(1), VO<s<t, 

PI (2) =PI (t) + P2 (t) 

= 1 =p,(2) =p(2), VO<s<t. 

Therefore PI ~Ps for any t;;'s;;,O. 
The smallest eigenvalue P2 (t) = ~ + [( 1 - 2p) /2] e - 21 

keeps on increasing and P2 (t) decreasing until, asymptoti­
cally, PI (00 ) = P2 (00) = 1/2 corresponding to the most 
mixed state i(~ n and to the maximal entropy 
S(p",)=ln2. 
(2) 

~) 

T [PI] = BpIB t is such that T[ 1] =f I. 
Given the initial condition p = (~ - p ~) the solution is 

A (1 -pe- I 

PI= o 
o ) = (PI (t) 0) 

pe - I 0 P2 (t) . 
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If P > 1/2 then we have a crossing at to = In 2p> O. 
For O.;;;;t.;;;;tOPI (t) ';;;;P2 (t) and O.;;;;s.;;;;t 

p,(I)=P2(t) =pe-'';;;;pe-' 

= P2 (s) =p, (1) ';;;;p=p( 1). 

Thus we have mixing enhancing in this time interval. 
For t;;.tOPI (t) ;;'P2 (t) and 

and we have the converse, namely, P, gets ever less mixed 
than Plo for t;;.to according to the fact that Plo =!1 is the 
most mixed state. 
Asymptotically P, reaches the least mixed state represented 
by the projector p", = a g ). 

For p < 1/2 we have no crossing and 1 - pe - '> pe - I 

for any t;;;.O. Hence, 

P,(l)=PI (t);;'PI (s)=p,(l);;'p(l), forany t;;;.s;;;.O 

and the uncertainty inherent to the initial state P starts de­
creasing at t = O. 

This example shows that the conditions of Proposition 
2.5 are, in a sense, optimal. 

III. STRUCTURE OF THE SOLUTION AND 
INVESTIGATION OF SOME EXPLICIT MODELS 

Now we want to consider a particular class of quantum 
dynamical semigroups that fulfill the conditions of Proposi­
tion 2.5. The purpose is exhibiting as explicitly as possible 
how mixing enhancing shows up when we are concerned 
with the solution ofEq. (2.3), namely, with the density ma­
trix at time t, i.e., P" 

According to Remark 2.2.3.iii, we should expect indeed 
that P, may be expressed by means of a linear convex combi­
nation of unitary transformations of the initial condition p. 

The semigroups at issue will be those generated by 

L [P,] = _.i.- [H,PI] - Ap, + A (_1_)3 
12 12J(iii 

X ( dp exp( - K) 
JRJ a122 

( ih)h ( ih) Xexp "i qp P, exp - "i qp , 
(3.1 ) 

where q= (ql ,q2 ,q3 ) is the three-dimensional position oper­

ator; A is a characteristic frequency, and 1/ra an intrinsic 
length of the model. 

By comparing (3.1) with (2.3) we recognize that 
T [ . ] = ~iBi [ . ]B i is replaced by 

(
_1 )3 ( dp exp( _ ~) 
12J(iii JR3 a12 

X exp( ~ qp) [ . ] exp( - ~ qp). 
Furthermore, ~iB ;B; now reads 
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(_1 )3 { dPexp(-K)i=i 
12J(iii JRJ a122 

as well as ~iBiB;' 
Hence T[ i] = i and thus the conditions of Proposition 

2.5 are met by generators of the above type where the dissipa­
tive part Ld [P,] = - Ap, + AT [P,] is once and for all 
fixed, whereas all the possible Hamiltonians can be consid­
ered. 

This non unitary modificat~n of the usual Schrodinger 
evolution, given by - (i/12)[H,], constitutes the comer 
stone of the so-called "quantum mechanics with spontane­
ous localization" (QMSL),6 which turned out to be a suc­
cessful attempt to lay down a reasonable dynamical way out 
of the puzzling situations connected with the quantum de­
scription of macrosystems, e.g., the pointers in the descrip­
tions of the measurement process. II 

The original equation at the basis of QMSL, as written 
down in Ref. 6, reads 

a,P I = _.i.- [H,p,] - Ap, + A ~ f + '" dx 
12 ~ff -00 

xexp( - ~ (q - X)2)pI exp( - ~ (q - X)2) 

(3.2) 

for a single quantum particle living in one dimension. That 
the processes 

T [P,] = ~ f _+ ",00 dx 

xexp( - ~ (q - X)2" exp( - ~ (q - X)2) 

that occur with mean frequency A, do actually provide loca­
lizations of the system is easily seen as follows: since 

(qIT[p]Jq) =exp[ - (a/4)(q-q)2](qlplq), 

it is apparent that off diagonalities in the position representa­
tion pretending to survive beyond the intrinsic length 

( ra) -I, are strongly damped by the exponential. 
Explicit solutions of (3.2) have been worked out in the fol­
lowing two cases: 

/'- ji moi h H = - + __ q2 (Ref. 12), 
2m 2 

(qlp, Jq) = - dx dyexp - ~ xy 1 f+oo f+oo (.) 
2ff1i - oc - '" 12 

X exp( - At + A L ds 

Fabio Benatti 2401 



                                                                                                                                    

X exp [ - : (x cos cut - :w sin wt YD mark 2.2.3.iii: it is a linear convex combination (in an appro­
priate weak-limit) of unitary transformations of the initialp. 

.(q+xlexp( - ~Ht).oexp(~ Ht)1 ti+x). 
Proof By considering the equivalent integral equation, 

p, = e-A'U(t)pU( - t) 

(3.4 ) + A L ds e- A(t-S)U(t - s)T [Ps] U(s - t), (3.7) 

Remarks 3.5: (1) Both solutions do reveal the presence 
of a damping factor quite explicitly. This, by itself, would be, 
of course, extremely dangerous if the parameters of the mod­
el could not be chosen such that the ordinary quantum de­
scription for a microsystem is affected only after enormous 
time. This is indeed the case, together with a surprising addi­
tive effect6 which makes the frequency A multiplied by N if 
we consider the modified quantum evolution of the center of 
mass of an N-particle system. An almost never felt damping 
effect for few particles becomes, on the contrary, heavily 
influencing macrosystems. 

(2) Equation (3.1) is just the generalization of (3.2) to 
the three-dimensional case,13 only involving a Fourier trans­
form of a Gaussian on R3 in the expression for T[ . ]. 

U(t) = exp[ - U!fz)Ht], 
after iterating we end up with 

PI = e-A.IU(t) kto A k f dSk ~.[p] U( - t), (3.8) 

f dso ~ [p] =p, 

1'~, [p] = U( - SI ) T [ U(SI )pU( - SI )] U(SI ), 

r'k 
~Jp] = U( -Sk) Jo dSk _ 1 

X T[U(sd~k-=:[P]U( -Sk)]U(Sk)' 

Since T[ .] is a contraction (see Remark 3.5.ii) As written in (3.1), it is, however, easier to recognize 
that (i) T[ .] can be physically interpreted as a process kick­
ing the system and changing its momentum by an amount P 
with a Gaussian probability. This meets classical explana­
tion (in the free case) as a Markov process on the phase 
space with a stochastic kernel that leads to the same interpre­
tation. 14 (ii) T[ .] is a contraction on 
B s .•. (JY) 1:11 T [&-]111 .;;; 11&-111 and mixing enhancing owing to 
Remark 2.2.3.iii, without paying any reference to its com­
plete positivity and to the fact that T[ i] = 1. 

Proposition 3.6: The solution of Eqs. (3.1) (for any 
choice of Hamiltonian H) can be expressed by means of 
trace-norm convergent series that actually agrees with Re­

I 

hence the series in (3.8) turns out to converge with respect to 
trace norm. Let q(t) indicate the position operator at time 
t:q(t) = U( - t)CiU(t), W(a,b) the Weyl operator 
exp( (i/~)(ap + bq» and let W, (a,b) be 
U( - t) W(a,b) U(t) = exp{(i/~) [ap(t) + bq(t)]}, then 

~k [p] = fk dSk _ I ... f2 dSI U( - Sk) T [ U(Sk) T [ ... U( - SI ) T [ U(SI )pU( - SI ) ] U(SI )] ... ] U(Sk) 

( 1 )
3ki Sk i S2 L L (k IP.1

2

) = -- ... dpk'" dpi exp - L -'-
~,j(iii 0 0 R' R' i= I a~ 

. Ws, (O,Pk) Ws , (O,PI )pWI, (O,PI)'" WI, (O,Pk)' 

Let T[···] be the time ordering defined by 

{ 
W, (0,P2)'" W;, (0,P2)' if t2 > t l , 

T [W (0 ) W (0 ) A wt (0 ) W t (0 )] _ 2 -
12 ,P2 I, ,PI P I, ,PI '2 ,P2 - W (0 ) ... Wt (0 ) 

I, ,PI I, ,PI' if tl > t2 

and remark the symmetry of the Gaussian with respect to the momenta Pj's. Hence, 

i' ( 1 )31; 1 i' i' i i (k Ip 12) dsk'< [p] = -- - dSk '" dSI dpk ... dpi exp - I -'-
o ~,j(iii k! 0 0 R' R' i = 1 a~2 

·T [ W" (O,Pk ) .. -p'" W;, (O,Pk ) ] 

and, finally, 

oc A k i' i' i i exp - ~ k ( 1 P 12 / a~2) p,=e-A'U(t) L - dsk '" dS I dpk'" dpI ,=1, . 
k=O k! 0 0 R' R' (~,j(iii)3k 

'T[ W,' (O,Pk)" -p'" W;, (O,Pk)] U( - t). (3.9) 
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Remark 3.10: Although very complicated-the coeffi­
cients A;'S in 2.2.3.iii depending now on discrete and contin­
uous indices mixed together-it is nevertheless true that 
they are positive, normalized, and actually the weights of 
unitary transformations of the initial p as given by the time 
ordering T[" .p ... ] of the various Weyl operators. 

A more transparent evidence of the mixing enhancing 
structure of the evolution can be obtained trying to connect 
the series (3.9) with the solutions in the cases (3.3) and 
(3.4) . 

The huge difficulties arising from noncommutativity in 
the time-ordered terms of the series can be overcome if the 
Weyl operators keep their form under the time evolution. 
Such a situation occurs when the Hamiltonian, being at most 
quadratic in the positions and momenta, gives rise to linear 
Heisenberg equations: free particle and harmonic oscillator 
are two simple examples, and in the Appendix it is shown 
how to go from the series (3.9) to the solutions (3.3) and 
(3.4). Linear equations of motion in the Heisenberg picture 
lead to solutions at time t(q(t),p(t» which are linearcombi­
nations of the initial conditions (q,p), agree with the classi­
cal solutions and involve only a redefinition of the param­
eters in passing from W(a,b) to 

W, (a,b) == U( - t) W(a,b) U(t) = W(a(t),b(t», 
3 

qj(t) = L n~(t)qj + n~(t)pj + F:(t), 
j= I 

i = 1,2,3, 
3 

.oj (t) = L n~ (t)qj + nt (t)Pj + F;(t), 
j=1 

being a symplectic 6 X 6 matrix, 

[
F:(t)] 
F;(t) 

exp( - ~ qp )I1 W(a,b)exp( ~ qp) 

(3.11 ) 

an inhomogeneous term, coming from analogs in the Heisen­
berg equations. 

Following the result in the Appendix let us now make 
the ansatz that the solution of (3.1) is given by 

p, =-I-fff r dXdyd~dffexp( -~y~) (2~)6 JR' ~ 

xexp( - ~ Xff )F(A'~'ff,t) W(x,y) 

X U(t)pU( - t) Wt(x,y), (3.12 ) 

where the if in 

U(t) = exp[ - (i/~)Ht ] 

is at most quadratic. Using the cyclicity of the trace and the 
Weyl relations we have that a Weyl operator W(a,b) evolves 
according to 

I1W(a,b) = F(A,a, - b,t) U( - t) W(a,b) U(t), (3.13) 

which derives from the definition of "dual" evolution, 

tr pI1W(a,b) = Tr r,pW(a,b), 

for any p in B(JY)~·a .. 

Also, 11 W(a,b) must satisfy the "dual" equation of motion 
[dual to (3.1) ] 

i A 
a,I1W(a,b) =- [H,r~W(a,b)] -AI1W(a,b) 

~ 

+ A r dp exp - IpI2/a~2 
JR' ( ~J(iii) 3 

xexp( - ~ qp)r~W(a,b)exp(~ qp} 

(3.14 ) 

By means of the linear solutions (3.11) we obtain 

= F(A,a, - b,t){Wt(O, + p) U( - t) W(a,b) U(t) W(O, + p)} 

= F(A,a, - b,t) U( - t) wt(~( - t,O, + p),ff( - t,O, + p» W(a,b) W(~( - t,O, + p),ff( - t,O, + p»U(t) 

= F(A,a, - b,t) U( - t) W(a,b) u(t)exp{ ~ [aff( - t,O,p) - b~( - t,O,P)]} 

where 

3 

Si ( - t,O,p) = L nJ; ( - t)Pj' 
j=1 

i = 1,2,3. 
3 

1T; ( - t,O,p) = I nJ; ( - t)Pj' 
j=l 

Notice that the inhomogeneous terms give rise to phases that cancel each other. 
Inserting the above result into (3.14) we continue to the following equation for the function F( ... ): 
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atF(A,a, - b,t) = - AF(A,a, - b,t) 

+ A exp( - (a/4) Is( - t,a, - b) 12)F(A,a, - b,t), (3.15 ) 
3 

SiC - t,a, - b) = L [O:k( - t)ak - O~d - t)bd, i= 1,2,3. 
k=1 

With the initial condition 11'=0 W(a,b) = W(a,b) we get 

F(A,a,b,t) = exp{ - At + IL f ds exp( - ~ Is( - t,a,b) 12)}. (3.16 ) 

Remarks 3.17: (1) If H = ji 12m then 

[
1 tim] 

O(t) = ° 1 

and S( - t,a,b) = a - bt 1m, if H = jil2m + (mw2/2)f/ 
then 

[

COS w! 
OCt) = . 

- mw SIn w! 

sin wt Imw] 
cos w! 

and S ( - !,a,b) = a cos w! - (b I mw ) sin UJt, in agreement 
with (3.3) and (3.4), respectively. 

(2) The nonintegrability of the function F("') with 
respect to the variables a and b implies that its Fourier trans­
form in (3.12) has to be understood in the distributional 
sense, the test function being represented by 

<t/JI W(x,y) U(t)pU( -!) Wt(x,y) It/J) 

for some state It/J) in the Hilbert space JY. The whole inte­
gral makes sense through a weak-limit procedure as well as 
the formal manipulations in the Appendix. Within this 
scheme the Fourier transform of the function F(IL,a,b,t) ap­
pears to be the weight in a linear convex combination of the 
initial p transformed unitarily by means of the Weyl opera­
tors. 

IV. CONCLUSIONS 

We have given a sufficient condition under which a 
quantum dynamical semigroup does enhance the mixing of a 

I 

APPENDIX: HARMONIC OSCILLATOR 

Let us consider H = p2/2m + (mw2/2)f/ for which 

I 
quantum system in the sense of the ordering among density 
matrices. Mixing enhancing shows up explicitly in the struc­
ture of the solution for generators whose dissipative part has 
been chosen to be a Gaussian distributed kicking process 
changing the momentum of the single particle quantum sys­
tem and leading to localization in position. 

This behavior is even more evident if we look at the 
solutions of the modified quantum evolutions (3.3) and 
(3.4). They happen to be particular cases of a more general 
class of solvable equations of motion where the Hamiltonian 
is at most quadratic. 

The structure of the solutions reveals a common behav­
ior that leads to decaying of off-diagonal matrix elements in 
the position representation, together with general decreasing 
of information about the system. It is also clear that the lin­
earity of the Heisenberg equations of motion and thus the 
equivalence of classical and quantum solutions, besides al­
lowing us to solve the modified dynamics, characterizes the 
damping factor in the weight function. How far this is relat­
ed to the classical limit in Ref. 14 would be a matter of subse­
quent investigation. 
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q, = q cos w! + (jJlmw )sin wt, P, = p cos UJt - mwq sin UJt, 

and 

W, (O,p) = U( - !) W(O,p) U(t) = exp( ~ pq,) = w(:w sin w!,P cos wt ). 

Using the Weyl relation we get 

T[ W" (O,h)'" W,' (O,PI )pW~, (O,PI)'" Wr. (O,Pk)] 

(
k P k ) (k P k ) = W L -' sin WS;, L P; cos WS; pW t L -' sin WS;, .L P; cos WS; . 

; = I mw ; = I ; = I mw , = I 

Hence 
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i' 1 1 i' i' f + 00 f + 00 (k p2) dSk1"~,[p] =, k dsk ••• dS 1 dPk··· dpl exp - L ~ 
o k. (fz.J(iiT) 0 0 -00 -00 ;=la-li 

·--2 dx dy dq dpexp _..!...-p x- L _' sinws; . 1 f+oo J+oo J+oo J+oo [. ( k P )] 
(21rli) - 00 - 00 - 00 - 00 -li;= 1 mw 

.exp [ - ~ q(y - ;t/;cosws;)] W(x,y)pWt(x,y) 

1 1 f+oc f+oo f+oo f+oo (i) ( i ) =,---2 dx dy dq dpexp --px exp --qy 
k. (21rli) - 00 - 00 - 00 - 00 -Ii -Ii 

·n { r'dSj _1_ f+ 00 dpj exp( - P7
2

) exp(~ Pj [1- sin wSj + q cos WSj ])}. W(x,y)pwt(x,y) 
J = 1 Jo fz.J(iiT - 00 a-li -Ii mw 

1 f+oc J+oo f+oo J+oo (.) ( . ) =, dx dy dq dp exp - ..!...-px exp - ..!...-qy . 
k. -00 -00 -00 -00 -Ii -Ii 

. {L ds exp( - ~ [q cos ws + :w sin ws r) r W(x,y)pWt(x,y). 

Finally, 

P, =e- AI dx dy dq dpexp _..!...-px exp _..!...-qy f +OO J+oo f+oo J+oc (.) ( . ) 
-00 -00 -00 -00 -Ii -Ii 

The use being made of Dirac deltas, the exchange of integrals among themselves and with the sum are justified by going in a 
representation with suitable vector states in the Hilbert space JY' and by remarking the trace-norm convergence of the series 
(3.9). 

Since 

U(t) W(x,y)pwt(x,y) U( - t) = W _I (x,y) U(t)pU( - 1) wt_ 1 (x,y), 

where 

W _ t (x,y) = W [x cos wt - (ylmw) sin wt,y cos wt + mwx sin wt], 

after a coordinate transformation, we end up with 

1 f+oo f+oo f+oo f+oo (i) ( i ) P, =---2 dx dy dq dpexp --qyexp --px 
(21rli) - 00 - 00 - 00 - 00 -Ii -Ii 

X exp{ - At + A L ds exp( - ~ [q cos ws - :w sin ws f)} W(X,y) U(t)pU( - 1) wt (x,y), 

which agrees with (3.4) as we can see by working out (qlp,lq). The weight function is now 

-- dq dpexp _..!...-qy exp _..!...-px F(A,q,p,t) , 1 f+oo f+oo (.) ( . ) 
(21rli)2 _ 00 - oc -Ii -Ii 

F(A,q,p,t) = exp{ -At+A L dsexp[ - ~ (q cos ws- :w sinws)]l 

and is to be understood in a distributional sense. 
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This paper contains a series of remarks about the concept of Complete System of Observables 
(CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch 
[Helv. Phys. Acta 33, 711 (1960)] and the other by Prugovecki [Can. J. Phys. 47, 1083 
(1968) ]. 

I. INTRODUCTION 

As is well known, the concept of Complete System of 
Observables (CSO) was introduced in quantum mechanics 
by Dirac l based on rather heuristic considerations on the 
problem of assigning unambiguous elements of a Hilbert 
space to sets of measurements on a physical system. Dirac's 
formulation becomes rigorous only in a few cases, for in­
stance, when the dimension of the Hilbert space in consider­
ation is finite, in which a self-adjoint operator has real pure 
point spectrum. 

In general, Dirac's formulation is not suitable in infi­
nite-dimensional Hilbert spaces and a new definition is need­
ed if the CSO concept is to be applicable in quantum me­
chanics; this problem was considered by Prugovecki2 and 
Jauch3 in the 1960s, but it seems that it has not been ana­
lyzed recently. 

In this section we give the definitions of Prugovecki and 
Jauch. In Sec. II some ideas supporting these definitions are 
presented, as well as some physical aspects of the CSO con­
cept. In Sec. III we analyze the relations between these defi­
nitions and we also show that one definition implies the oth­
er under a suitable assumption; such an assumption was 
presented in Ref. 4 but not in Ref. 2, although it should have 
been presented. In Sec. IV some remarks concerning the 
CSO concept are given. 

From now on JY' will represent a separable complex 
Hilbert space and all measures in this work are O'-finite posi­
tive Borel measures on !1lIn

• If (A I , ... ,An) is a set of commut­
ing self-adjoint operators in JY' (two self-adjoint operators 
commute iff their spectral families commute), the spectrum 
of A; will be denoted by A; and its spectral projections by 
EA;(B), where B denotes any Borel set in!1ll. 

As we consider here two definitions of CSO they will be 
distinguished as P-CSO and J-CSO, after Prugovecki and 
Jauch. 

Definition 1 (Prugovecki2 
): The set (AI , ... ,A n ) of com­

muting self-adjoint operators in JY' constitutes a P-CSO iff 
there exists a unitary transformation V:L:, (A) -+JY', where 
A = AI X ... X An is the support of j.l, such that the opera­
tors V - IA; V are the multiplication operators 

dome V -IA; V) 

= {lJId! (A):l x/llJI(x) 12 dj.l(X) < oo}, 

(V - IA; VIJI)(x) = x;lJI(x), IJIEdom( V - IA; V), 

for l.;;;;i.;;;;n, x = (XI , ... ,xn ). 

Now we turn our attention to Jauch's definition. If Wis 
a set of operators in JY'its commutant W' is defined as the set 
of all bounded operators that commute with all the operators 
in W. If W contains only self-adjoint operators W', W", 
W"', ... are von Neumann algebras4-6 (a set of continuous 
operators ~ is said to be a von Neumann algebra if 
~" = ~); W" is the smallest von Neumann algebra con­
taining all the spectral projections of the operators in Wand 
it is called the von Neumann algebra generated by W. A von 
Neumann algebra ~ is Abelian if ~ C ~' and, if, in addi­
tion, ~'= ~, ~ admits no Abelian extension and it is 
called maximal Abelian. 

Definition 2 (Jauch3 ): The set G = (A I , ... ,An) of com­
muting self-adjoint operators in JY' constitute a J-CSO iff the 
von Neumann algebra generated by G( G ") is maximal Abe­
lian. 

II. COMMENTS ON THE DEFINITIONS OF CSO 

The existence of a CSO is tacitly made in quantum me­
chanics; this concept arises from the problem of assigning 
unambiguous elements of a Hilbert space to sets of measure­
ments on a physical system, thus it is postulated the exis­
tence of a complete set of independent measurements that 
provide the maximum amount of information about the sys­
tem. As each observable in quantum mechanics is represent­
ed by a self-adjoint operator in a Hilbert space, one arrives at 
the problem of characterizing a maximal set of self-adjoint 
operators. 

The original formulation of the CSO concept given by 
Dirac I was developed based on properties of self-adjoint op­
erators in finite-dimensional Hilbert spaces. The Hilbert 
spaces of quantum mechanics are, in general, infinite dimen­
sional and some modifications are necessary to have this no­
tion extended to the general case. 

Jauch and Prugovecki redefined the concept of CSO in 
the finite-dimensional case in an equivalent way, which 
could be generalized to infinite-dimensional Hilbert spaces. 
Let us summarize the situation in the finite-dimensional 
case: According to Dirac's formulation a set (FI , ... ,Fn ) of 
commuting self-adjoint operators forms a CSO in the finite­
dimensional Hilbert space % if there is only one simulta­
neous eigenstate belonging to any set of eigenvalues. One can 
show that this definition is equivalent to any of the following 
assertions. 

(a) (Refs. 2 and 4) There is a unitary mapping 
V:L! (A) -+%, such that 

(V - IF; VIJI) (x) = x;lJI(x), 
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where f..l is a finite measure and x = (XI , ... ,xn). 
(b) (Ref. 3) There is a vector 5"E.A'" such that every 

element 'YJE% can be represented in the form 
'YJ = p(FI , ... ,F,,)5" with some polynomial p(FI , ... ,F,,); 
Jauch3 remarked that the set of such polynomials consti­
tutes the von Neumann algebra generated by (FI , ••• ,F" ) and 
this algebra is maximal Abelian. 

The above assertions support the definitions of P-CSO 
and J-CSO. The definition of J-CSO is based on purely alge­
braic considerations and it also works for an arbitrary set of 
commuting self-adjoint operators. 3 

III. ON THE EQUIVALENCE OF J-CSO AND P-CSO 

In this section we prove the equivalence (under certain 
assumptions) of the two CSO definitions given in Sec. I, but 
before this the definitions of P -CSO and J -CSO are related to 
the existence of cyclic vectors with respect to certain sets of 
operators. 

Definition 3: Let G = (A I , ... ,An ) be a set of commuting 
self-adjoint operators in 2. A 5"E2 is P-cyclic with respect 
to G iff 5"Edom(p(AI , ... ,An») for any polynomial 
p(AI ,···,An) and the linear manifold spanned by all vectors 
of the formp(A I , ... ,An)5" is dense in 2. 

Definition 4: Let G = (A I , ... ,An ) be a set of commuting 
self-adjoint operators in 2. A 5"E2 is J-cyclic with respect 
to G iff the linear manifold spanned by the vectors (T5": 
TEG If) is dense in 2. 

Now we dwell on the explanation of an assumption 
needed for the validity of the "if part" of Lemma 1 below and 
of the spectral representation presented in Ref. 4. 

If A:dom A ...... 2 is self-adjoint and 'YJEdom A we have 
(by the Spectral Theorem7 

) 

('YJIA'YJ)=iXdu,:(X), (1) 

where v:' (B) = ('YJIEA(B)'YJ) for any Borel setBin~; if'YJ is 
J-cyclic we can follow the arguments given in Ref. 4 and 
conclude that A acts as a multiplication by the independent 
variable in L 2 ,,(~n). 

Let (AI ' .. :·~n) be a set of n commuting self-adjoint op­
erators in 2. There exists4 a unique spectral measure S de­
fined on the u algebra generated by the Borel rectangles of 
the product space 

A=.AI X···XAn , 

such that 

S(BI X··· XBn) = EA'(BI )·· ·EA"(B,,) 

for any Borel rectangle BI X··· XBn in A. 
For each 'YJE2 we consider the u-finite measure f..l71 on 

the Borel sets of A, characterized by 

f..l 71 (B) = <'YJIS(B)'YJ) 

for any Borel set B. For a convenient spectral representation 
of the elements of (AI , ... ,An) we should have4 

(2) 

where 5"E2 is J-cyclic with respect to (AI , ... ,An) and 
X= (xl, ... ,xn ). [It will be shown that if assumption (3) 
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holds, there exists a vector that is P-cyclic and J-cyclic with 
respect to (AI , ... ,An ).] 

If Ai is to be represented by the multiplication by Xi> we 
see that we should have4 

r Xi dv;' (Xi) = r Xi df..ls (X), JA, JA (3) 

and this will be supposed to be satisfied. It is worth noting 
the two following points. 

(i) Assumption (3) is satisfied if f..ls is absolutely con­
tinuous with respect to the product measure (see Ref. 4), 

A A 
vs' X··· XVs"· 

(ii) In Ref. 2 relation (3) should be supposed to be 
satisfied for measure f..l in Definition 1 [for instance, in Eq. 
(23) ], and it is necessary for the validity of the "if part" of 
Lemma 1 below. 

From now on we suppose that assumption (3) holds. 
Lemma 1:2 The set (AI ,. .. ,An) of commuting self-ad­

joint operators in 2 is a P-CSO iff there exists a vector P­
cyclic with respect to (AI , ... ,An). 

Lemma 2:3 The set (AI , ... ,An) of commuting self-ad­
joint operators in 2 is a J-CSO iff there exists a J-cyclic 
vector with respect to (AI , ... ,An). 

Suppose (AI , ... ,An) is a P-CSo. Let E>O and 'YJE2be 
given. By Lemma 1 there is a 5"E2 P-cyclic, so there is a 
polynomialp(AI , ... ,An) such that 

IvY(A I ,···,An )5" - 'YJII < E/2. (4) 

Let II CI2 CI3 C ... measurable bounded sets in ~n such 
that 

U/"=I ~ =~n. 

Using Lemma 1 and the representation of (AI , ... ,A,,) given 
in Definition 1 we have 

IIx Ii (A I , ... ,A" )p(A I ,.··,An)5" - peA I ,···,An )5"11 2 

= i IXI(XI , ... ,X" )p(X I , ... ,X,,) 
A I 

- p(X t , ••• ,Xn) 12 df..l(x i , ••• ,x,,), 

where A = At X ... X An and X I denotes the characteristic 
function of the set l. Since 

Ix Ii (XI , ... ,x" )p(x t , ••• ,X" ) - p(x i , ••• ,x" ) 1

2';;;4Ip(x l , ••• ,X,,) 12 

and Ip(x i , ••• ,X,,) 12 is f..l integrable we can apply the Domi­
nate Convergence Theorem and conclude that there is a nat­
ural number k such that 

Ilx h (A I , ... ,A" )p(A I , ... ,A" )5" - peA I , ... ,A" )5"11 < d2. 

Combining Eqs. (4) and (5) we have 
(5) 

IlxI, (A I , ... ,A" )p(A I , ... ,A,,)5" - 'YJII < E. 

Taking into account that the von Neumann algebra gen­
erated by G = (A I , ... ,A" ) consists precisely of the set of es­
sentially bounded functions4 of (AI , ... ,A,,), we see that 
XI, (AI , ... ,A" )p(A I , ... ,A,,) is an element of Gil. Hence we 
conclude that 5" is a J-cyclic vector with respect to G, and 
according to Lemma 2, G is a J-CSO. 

Now, suppose that G = (AI , ... ,An) is a J-CSO. Under 
assumption (3) Jauch and Misra4 have shown that there is a 
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unique class ~ of equivalent measures on the a algebra gen­
erated by the Borel rectangles of A, such that a measure pE~ 
ifithastheformp(B) = <5 IS(B)5) for someJ-cyclic 5EYt"; 
moreover, for any f-LE~, JY is unitarily equivalent to L! (A) 

and Aj corresponds to the multiplication by Xj in L! (A). 
Hence G is also a P-CSO. 

As a direct consequence of Lemmas 1 and 2, and the 
above paragraph, we have the following. 

If 1] is a J-cyclic vector with respect to the J-CSO 
G = (AI , ... ,An), there is a P-cyclic vector 5 with respect to 
G, which is also a J-cyclic vector with respect to G. We have 
proved the following proposition. 

Proposition 1 [under assumption (3)): The set 
G = (AI , ... ,An) of commuting self-adjoint operators in JY 
constitutes a J-CSO iff G is a P-CSO iff there is a 5EYt" that is 
J-cyclic and P-cyclic with respect to G. 

IV. FURTHER REMARKS 

In this section some remarks concerning the CSO con­
cept are presented. 

(i) The definition of J -CSO works for an arbitrary set of 
commuting self-adjoint operators,3 as well as Lemma 2; but 
it does not seem to exist examples in quantum mechanics in 
which an infinite number of observables is necessary to con­
stitute a CSO. 

(ii) Assumption (3) is not necessary for the proof of 
Lemma 2. 

(iii) Now we prove that if (AI,. .. ,An) constitute a J­
CSO and/or a P-CSO, then any other observable that com­
mutes with AI , ... ,An is a function of AI , ... ,An· 

Proposition 2 [under assumption (3)): Let (AI , ... ,An ) be 
a J-CSO and/or a P-CSO. If Tis a self-adjoint operator in JY 
that commutes with AI , ... ,An, then there exists a function! 
such that T = f(A I ,···,An ). 

Proof Suppose, to begin with, that T is bounded. By 
Proposition 1; there exists a P-cyclic vector 5 with respect to 
(AI , ... ,An)' Thus there is a sequence of polynomials 
(Pj (A I , ... ,An» such that 

Pj(A I , ... ,An)5-+TS, j-+oo. 

Since 

IlPj (A p ···,An)1I
2

= i Ipj(xWdf-Ls-(x), 

where x = (xp ... ,xn), it follows that (Pj(x» is a Cauchy 
sequence in L !JA), and by the Riesz-Fischer Theorem 
there exists a gd !; (A) such that 

Pj -+g in L!. (A). 

Hence 

IlPj(AI ,···,An)5 - g(A I ,···,An)5 112 

= i IPj(X) -g(x)1 2df-Ls-(x)-,O, 

and we have 

pj(A p ... ,An)5-+g(A I , ... ,An)5, j-+oo. 

Let 1]EYt". There is a sequence of polynomials 
(qk (AI ,···,An» such that (qk (AI ,···,An )5) converges to 1]; 
since T is continuous and any function of commuting self-
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adjoint operators is a closed operator, it is clear that 
Tqk (AI , ... ,An)5 -+ T1] 

and 

g(A I ,.··,An )qk (AI ,···,An)5 = qk (AI ,···,An )g(AI ,···,An)5 

= qk (AI , ... ,An) TS 
= Tqk (AI ,···,An )5; 

hence we have 1]Edom(g(A I , ... ,An» and 

g(A p···,An )qk (A I ,···,An)5 -+g(A I ,.··,An )1]; k-+ 00; 

therefore 

T = g(A I , ... ,An). 

Finally, let Tbe an unbounded self-adjoint operator and 
(E J:yER) its spectral family. According to the above result, 
for each yER there is a function/y such that 

EJ =/y(AI,···,An)· 

Since u;,:yER) characterizes uniquely 7 the operator T 
we may define the function 

!(A I , ... ,An ) == f ydy [/y (A I ,···,An )] 

= f ydy [ E J] = T. 

(iv) Proposition 2 gives us a pleasant result from the 
physical point of view and justifies the word "complete" in 
the expression CSO; in fact, the result of Proposition 2 was 
considered by Mackey8 as a convenient definition of CSO. 

(v) Suppose the position operators QI , ... ,Qn of a quan­
tum system in R n constitute a J-CSO and/or a P-CSO, then 
QI, ... ,Qn are represented by the multiplication by XI "",xn' 
respectively, in L! for some finite measuref-L. If the momen­
tum operators are defined as the generators of the transla­
tions 

U(, .... ,(,,\{I(x I , •.• ,x,,) = \{I (XI - tl , ... ,X" - t,,), 

\{Id!, we have to assume that U(, .... ,(" are unitary operators, 
since the momenta are observables (by The Stone 
Theorem 7 

); hence the sets of f-L measure zero must be trans­
lation invariant, which implies that f-L is equivalent to the 
Lebesgue measure. Therefore f-L and the Lebesgue measure 
are in the class ~ mentioned in Sec. III, so we can take the 
Hilbert space of the quantum system as L 2(:71"), with the 
Lebesgue measure, and QI, ... ,Q" as the multiplication by 
XI , ••• ,Xn , respectively; of course, this is the usual framework 
of the textbooks on quantum mechanics (also see Ref. 8). 

(vi) As a final remark, we observe that in the case that a 
single operator A is a J-CSO and/or a P-CSO, Eq. (3) is 
always satisfied and Definition 1 express the so-called "ca­
nonical form" of the self-adjoint operator A.7 Jauch and 
Misra4 have announced examples where Eq. (3) is not satis­
fied. 

V. CONCLUSION 

We have discussed the concept ofCSO in quantum me­
chanics from the mathematical and physical points of view; 

Cesar R. de Oliveira 2408 



                                                                                                                                    

special attention was given to the definitions and results of 
Jauch and Prugovecki. Many results obtained here were im­
provements of previous results and remarks given by other 
authors, but here it was possible to collect them together. An 
assumption made in this work was identity (3), and if identi­
ty (3) holds it was possible to prove the equivalence of J­
CSO and P-CSO; we could think of identity (3) as a condi­
tion of independence of the operators in the CSO. 

From the practical view, remark (v) in Sec. IV is out­
standing, but it seems necessary to do analogous studies 
when other sets of operators are supposed to constitute a 
CSO, particularly sets containing the energy operator; in our 
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opinion, there are physical aspects of the CSO concept not 
explored yet. 
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The potential interaction ..1x2/ (1 + gx2), g> 0, of the harmonic oscillator Ho = - d 2/ dx2 + x2 

considered as an operator in the space L2 ( - 00, 00) is bounded. This together with the 
nondegeneracy of the eigenvalues implies that the eigenvectors of the perturbed harmonic 
oscillator as functions of the parameters A and g are strongly differentiable. The eigenvalues 
are therefore differentiable functions for every real A and every real g> O. In particular, the 
first eigenvalue EI (A) as a function of A is strictly concave (E;' (A) < 0). This paper, exploiting 
the above properties, aims at several inequalities for the eigenvalues of Ho + ..1x2/ (I + gx2), 
g> O. Emphasis is given to the inequality that follows from the strict concavity of the function 
EI(..1). 

I. INTRODUCTION 

A great amount of work has been devoted in the last few 
years to the investigation of the eigenvalues of the perturbed 
harmonic oscillator: 

( - d 22 + x2 + ..1x2 2)r/J = Er/J; A> 0, g> 0 . 
dx 1 +gx 

(1.1 ) 

See Ref. 1 and the references therein. 
A significant approximate relation for all eigenvalues 

En' n~O, has been found in Ref. 2 for sufficiently small val­
ues of A/g. This relation is 

E 1 A A 1-2n I - II n=2n+l+----h'1T n.) ,,, 
2 g g 

( 1.2) 

where 

(1.3 ) 

with n = 0, 1, 2, ... and Hn (x) the Hermite polynomial of 
degree n. 

The above approximation scheme, however, does not 
say how small are the values of A /g for which (1.2) holds, 
and also, it is not apparent whether the approximation taken 
from ( 1.2) approximates the true eigenvalues from below or 
from above. 

In this paper, we prove that for the first eigenvalue rela­
tion (1.2) is a strict inequality. In fact it is an upper bound 
and holds for every A > 0 and g> O. This has been achieved 
by proving that the first eigenvalue is a strictly concave func­
tion of A in the interval [0,00). The method we follow is 
based on the fact that the eigenfunctions of ( 1.1) are strong­
ly differentiable functions with respect to A in the space 
L2 ( - 00, 00 ). 

The nonstrict concavity alone (without differentiabil­
ity) can also be proved by the use of the minimum principle 
for the first eigenvalue. 

The strict inequality in (1.2) is proved in Sec. III after 
giving some preliminaries in Sec. II. In Sec. IV a general 
comparison principle is proved from which several bounds 
for all the eigenvalues follow easily. In Sec. V numerical re­
sults are used for the estimation of the first eigenvalue 
EI (..1,g) for several values of A and g. 

II. PRELIMINARIES (ONE-PARAMETER 
PERTURBATION THEORY) 

Suppose that H( v) is a family of self-adjoint operators, 
bounded or unbounded in a separable Hilbert space H, de­
pending on a real parameter v in some open interval 10 of the 
real axis. Suppose also that an isolated eigenvalue E( v) of 
H( v) exists for every v in the open interval 10 corresponding 
to the normalized eigenvector x ( v) ; H ( v) x ( v) 
= E(v)x( v). 

In Ref. 3, under the additional assumptions that 
(i) H ( v) as a function of the real parameter v is differ­

entiable' with respect to the operator norm, for every v in 10 , 

and the derivative 

H'(v) = dH(v) 
dv 

is a uniformly bounded operator, i.e., IIH' (v) II <K < 00, on 
every compact subinterval of 10 ; and 

(ii) the eigenvalue E( v) is simple (nondegenerate) for 
every v in 10 , it has been proved that the corresponding eigen­
vector x ( v) as a function from 10 into H, x ( v):lo -+ H, is 
strongly differentiable and the derivative x' (v) is given by 

x'(v) = - R(v)P(v)H'(v)x(v); Ilx(v)1I = 1, (2.1) 

where P( v) is the orthogonal projection on HO{x( v)} and 
R (v) is the inverse of H - E( v)I, restricted on HO{x( v)}. 

Now, from the relation 

E(v) = (H(v)x(v),x(v», Ilx(v)11 = 1, 

it follows immediately that E( v) is differentiable and the 
derivative E' ( v) is given by 

E'(v) = (H'(v)x(v),x(v», IIx(v)11 = 1, (2.2) 

because H( v) is self-adjoint. 
The relation (2.2) is called in quantum chemistry a 

Hellman-Feynman theorem and it was known formally 
many years ago.4 Formally, it was also known the relation 

d2~jV) «H"(v)xl(v), xl(v», (2.3) 

for the first eigenvalue EI (v) in case where H( v) IS un­
bounded,5 and the relation 
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(2.4 ) 

for the last eigenvalue EI (v) in the case where H( v) is 
bounded. See Ref. 3 for rigorous proofs. 

Moreover, in the case whereH( v) has, for every yin /0' a 
complete orthonormal system of eigenvectors Xn (v), 
n = 1,2, ... , which correspond to the simple (nondegenerate) 
eigenvalues En ( v), one has from the above relations (2.1) 
and (2.2) the expression3 

d
2
Edv) " dv = (H (V)Xk(V),Xk(v» 

- 2 i: 1 
n= I En (v) - Edv) 
n#k 

(2.5) 

from which one obtains the so-called curvature theorems 
(2.3) and (2.4) for the first and the last eigenvalue, respec­
tively. In Ref. 3 has been proved something more, that in the 
case where H' ( v) has purely continuous spectrum the strict 
inequalities in (2.3) and (2.4) hold. 

We now consider the particular case of the operator 
H( v) in which we are now interested: 

H(v)=Ho+vA, H'(v)=A, H"(v) =0, O,v,l. 
(2.6) 

In (2.6) Ho is a self-adjoint operator with a complete 
orthonormal set of eigenvectors en' n = 1,2, ... , correspond­
ing to the eigenvalues C I <C2 <C3 < ... <CII ----+ 00, and A is a 
bounded self-adjoint operator. 

From the above we conclude the following. 
The first eigenvalue E, (v) of the operator Ho + vA is 

strictly concave, i.e., 

I 

d
2
E, (v) 0 ~O dv <, v".- , (2.7) 

whenA has no eigenvalues. Note that strong differentiability 
of the eigenvectorsxn (v), n;;. 1, implies weak continuity and 
this, together with the simplicity (nondegeneracy) of eigen­
values, leads to the fact that the variation of the parameter v 
does not change the order of the eigenvalues 

O<EI(v) <E2(v) < ... <En (v) < .... 

Indeed, E,(v) <E2(v) and E,(/-l);;.E2(/-l), /-l>V, implies 
that there exists a number 5 between v and /-l such that 
E, (5) = E2 (5)' But for /-l near 5, EI (/-l) =1= E2 (/-l). This 
means that 

(XI (/-l),x2(/-l» = 0, 

and for /-l----+ 5, 
(XI (s),x2 (S» = 0, 

contrary to the degeneracy of the eigenvalues. Thus En (v) 

remains the nth eigenvalue for all v. Also we have that 
En (0) = Cn and Xn (0) = en' From (2.7) and (2.2) we ob­
tain 

(2.8) 

so that for the first eigenvalue EI (v) of Ho + vA we have 
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(2.9) 

Then the first eigenvalue E, (1) of Ho + A satisfies the in­
equality 

EI(l) =EI <CI + (Ae"e l ). (2.10) 

Note that relation (2.10) says something more than the infi­
mum principle: 

EI = inf «Ho+A)f,J)/(f,J) 
JEH 
J#O 

,«Ho+A)e"e l ) 

= c, + (Ae"e,) . 

III. THE UPPER BOUND ON THE FIRST EIGENVALUE 
E,(J..} 

The one-dimensional Schr6dinger equation 

[ -:;2 + Vex) ]¢(X) = E¢(x) , (3.1) 

with an interaction of the type 

V(X) =x2+,1x2/(l +gx2), g>O, ,1>0, (3.2) 

takes exactly the form of an eigenvalue equation of the oper­
ator Ho +,1A, 

H(,1) =Ho+,1A =Ho+,1 [X2/(l +gx2
)] , (3.3) 

H(,1)x" (A) = En (,1)x" (A) , 

considered here as a function of the potential parameter ,1. 
Here, Ho is taken as the harmonic oscillator operator 

d 2 
, 

Ho = - -2 + x-; Hoe" (x) = (2n - 1 )en (x); n = 1,2 ... , 
dx 

with 

ell(x)=[ 1 ]1/2e-X'12Hn_I(X) (3.4) 
2,,-I(n-l)lfo 

the corresponding normalized eigenfunctions, and A as the 
perturbation operator 

A: Af(x) = [x2/(l + gx2)] f(x) (3.5) 

in the space L2 ( - 00,00). This is the case of the above con­
sidered particular form of the operator H ( v); 

H(v) = Ho + vA, Eq. (2.6) 
Now, assumption (i) is satisfied because the operator A 

in (3.5) is a bounded operator on L 2 ( - 00,00). Assump­
tion (ii) is also satisfied for all eigenvalues En (,1)"in the case 
of the one-dimensional Schr6diner equation. 

Chaudhuri and Mukherjee2 in their study of the prob­
lem (3.3), in order to obtain the energy eigenvalues, have 
developed a simple approximation scheme only for small 
values of k = A /g and have been led to 

En(k)=.2n -1 +ik-k [for-I(n -1)1]-'1n _ 1 , 

(3.6) 

where 

l"" 1 - gx2 

1n_, = 0 exp( _x2)H~_1 (x) dx, 
1 +gx2 (3.7) 

with n = 1, 2, ... and Hn (x) is a Hermite polynomial of de­
gree n. 
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Proposition 1: The relation (3.6) is a strict upper bound 
for the first eigenvalue EI (A) for every k = A /g and can be 
expressed as follows: 

EI(A) < 1 + ; [1_1T1/2g-1/2el/g( 1 - erf ~)]. 
(3.8) 

Proof The first eigenvalue EI (A) of the operator 
Ho + AA is strictly concave, i.e., 

(3.9) 

because the operator A, defined by (3.5), has no eigenvalues. 
Since here CI = 1 and e l (x) = 1T- 1/4 'e - x'12 relation (2.9) 
leads to 

EI(A) < 1 + ~[1 _1T- 1/2 2 foc e-
X

' 2 dX] . (3.10) 
g Jo 1 +gx 

Relation (3.8) follows by expressing the integral in (3.10) in 
terms of the error function. 6 

On the other hand, the relations (3.6) and (3.7) give for 
the first eigenvalue EI (A) the following approximate expres­
sion: 

EI (A) = 1 + 1 k - k [~] -I/O 

= 1 + J.. ~ _ ~ 1T- 1/2 foc 1 - gx2 e - x' dx , 
2 g g Jo 1 + gx2 

(3.11 ) 

which after some manipulation can take the form 

This shows that Chaudhuri and Mukherjee's relation (3.11 ) 
is in fact a strict inequality holding for every k = A/g. 

Remark 3.1: Inequality (3.8) follows from the strict 
concavity of the function EI (A). In general, concavity or 
convexity is impossible for all eigenvalues of the parameter 
problem (Ho + AA )x(A) = E(A )x(A). In fact, in a finite­
dimensional space the first eigenvalue is concave and the last 
convex. 3 However, in infinite-dimensional spaces, there are 
cases where concavity holds for all eigenvalues, as we know 
from examples. 

We believe that in the present case of the perturbed har­
monic oscillator concavity holds for all eigenvalues and 
therefore the strict inequality in (3.6) holds for every 
n = 1,2, .... 

IV. SOME MONOTONICITY PROPERTIES LEADING TO 
UPPER BOUNDS ON THE EIGENVALUES 

The comparison principle we give below follows easily 
from those results of Ref. 3 that are briefly presented in Sec. 
II. This is given here in a general form and may be viewed as 
a generalization of a well-known comparison principle in the 
Sturm-Liouville eigenvalue problem. 7 

Proposition 2: Assume that the self-adjoint operator Ho 
is bounded below with compact resolvent, so that the spec­
trum of Ho + A consist only of eigenvalues, for every bound­
ed self-adjoint operator A. Assume also that the eigenvalues 
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of Ho + A are nondegenerate and remain so if A is replaced 
by a + f3A, a;>O, f3;>0, a2 + f32=1=0. Then A<B in the sense 
(A/,f)«Bf,/)impliesEn (A)<En (B), where En (A) and 
En (B), n;> 1, are, respectively, the eigenvalues of the prob­
lems (Ho+A)/=E/, (Ho+B)/=E/. Also the strict 
inequality holds, if A < B. 

Proof Consider the parameter eigenvalue problem 

[Ho + (1 - v)A + vB ]xn(v) = En (v)Xn (v) , 

(4.1 ) 

so that En (0) = En (A) and En (1) = En (B), n;> 1. From 
(2.2) we obtain 

dEn (v) 
---= «B-A)xn(v),xn(v»;>O. 

dv 
Thus 

En (1) ;>En (0) or En (A) <En (B) . (4.2) 

Applying this proposition to the eigenvalue problem (3.3) 
we obtain the following results: 

( 1) for every A > ° and g > ° the eigenvalues Ell (A,g) of 
(3.3) satisfy the inequality 

En (A,g) < (2n - 1).JT+Y, n;> 1, A> 0, g> 0. 
(4.3) 

This follows by comparing the interaction in (3.3) with the 
interaction Ax2(g = 0) and is appropriate for every A and 
small g, because for g = ° the equality holds. 

(2) The eigenvalues Ell (A,g) , for fixed A, decrease as g 
increases and for fixed g increase with A. 

(3) For every A and g=l=0 

En (A,g) <2n -1 +A/g, n;>l. (4.4) 

This follows because 

Ax2 A gx2 A 
1 + gx2 g 1 + gx2 < g . 

Note that the inequalities (4.3) and (4.4) are well known.s 

V. NUMERICAL RESULTS 

In Table I the upper bounds for the first eigenvalue 
EI(A) have been determined from the inequality (3.8) 
which is in fact relation (3.10) expressed in terms of the 
error function. The numerical results are almost the same as 
those found in Ref. 2 by using a different expression of the 
integral in the right hand of (3.10). 

Table II compares the upper bounds given by (3.8) for 
several values of A and g with the upper bounds obtained in 

TABLE I. Upper bounds for the first eigenvalue. 

g 

0.5 
1 
2 
5 

10 
20 

100 
500 

Upper bounds of Ref. 2 

1 + 0.314 5246,1 
1 + 0.242 1296,1 
1 + 0.172 1604,1 
1 + 0.097 9383,1 
1 + 0.059 4434,1 
1 + 0.034 3377,1 
1 + 0.008 411A 
1 + 0.001 8451A 

Upper bounds given by (3.8) 

1 + 0.314 6656 98,1 
1 + 0.242 127848,1 
1 + 0.172 1602 21A 
1 + 0.097 9382 51A 
1 + 0.059 4434 92,1 
1 + 0.034 3373 26,1 
1 + 0.008 4110 713,1 
1 + 0.0018491602,1 
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TABLE II. Comparison of the upper bounds given by (3.8). TABLE II. (Continued.) 

g=0.5 g= 50 
A=O.1 1.03121 1.031 466 569 0.000 256 569 A=O.1 1.001 56 1.001 569622 0.000 009 622 
A=0.2 1.06196 1.062933 139 0.000 973 139 A=0.2 1.003 13 1.003 139 244 0.000 009 244 
A =0.5 1.15156 1.157 332 849 0.005 772 849 A=0.5 1.00784 1.007848 11 0.00000811 
A=1 1.29295 1.314 665 698 0.021 715698 A=1 1.01569 1.015696221 0.000 006 221 
A=2 1.55104 1.629 331 396 0.078291 396 A=2 1.031 38 1.031 392442 0.000 012 442 
A=5 2.192 11 2.57332849 0.38121849 A=5 1.07840 1.078481 105 0.000 081 105 
A= 10 3.01685 4.14665698 1.12980698 A = 10 1.15667 1.15696221 0.000 292 21 
A=20 4.25506 7.293313 96 3.03825396 A=20 1.312.75 1.313 92442 0.00117442 
A=50 6.792 78 16.7332849 9.940 5049 A = 50 1.777 48 1.784811 05 0.00733105 
A= 100 9.692 15 32.4665698 22.7744198 A= 100 2.540 1 2.569622 1 0.0295221 

g=1 g= 100 
A =0.1 1.024 10 1.024212784 0.000 112784 A =0.1 1.000 84 I. 000 841 107 0.000 001 107 
A=0.2 1.04801 1.048 425 569 0.000 415 569 A=0.2 1.00168 1.001682214 0.000002214 
A =0.5 1.11854 1.121063924 0.002 523 924 A=0.5 1.00420 1.004 205 535 0.000 005 535 
A=1 1.23235 1.242 127 848 0.009 777 848 A=1 1.00841 1.008411071 0.000 001071 
A=2 1.44732 1.484255 696 0.036935 696 A=2 1.01682 1.016822 142 0.000 002 142 
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The S matrix of the Schrbdinger equation, regarded as a function on the real axis with values in 
the group of unitary operators L 2(§2)r--->L 2(§2), where §2 is the unit sphere in R\ is factorized 
in two different ways. One of these is a standard Wiener-Hopf factorization with respect to the 
real line. The other is the kind of factorization that defines the Jost function and which has 
been found to be a useful tool for the solution of the inverse scattering problem. A number of 
results are given that relate the two factorizations, their existence as well as the indices they 
give rise to. Some known theorems on the standard factorization lead to new results for the 
three-dimensional inverse scattering problem for the Schrbdinger equation with a noncentral 
potential; in particular, a characterization of admissible S matrices is obtained. 

I. INTRODUCTION 

As is well known, the Jost function.t;(k) plays an im­
portant role in scattering theory, and particularly in the in­
verse scattering problem at a fixed angular momentum, for 
the Schrbdinger equation with a central potential. Under 
very general conditions this function is the continuous 
boundary value of an analytic function that is holomorphic 
in C + and approaches unity at Ik 1-+ 00. Furthermore, it has 
a finite number of simple zeros on the positive imaginary axis 
at points iKm ifand only if - K;n is an eigenvalue of the radial 
Schrodinger equation of that particular angular momentum. 
The eigenvalue S/(k) = /iD/(k) of the S matrix correspond­
ing to angular momentum I can be factored as 

SI (k) = [11ft (k)].t; ( - k), 

in which the first factor is merom orphic in the upper half­
plane and the second factor is holomorphic in the lower half­
plane. Of course, one can also isolate the zeros and poles so 
that the remaining factors are holomorphic and free of zeros. 
One then has a standard Wiener-Hopf factorization of the 
symbol SI' which in this case is of modulus unity. For com­
plex-valued functions such a factorization is trivial and can 
be done explicitly by quadrature. 

When the potential in the Schr6dinger equation is not 
central, on the other hand, matters are more complicated. If 
the particle described by the Schrodinger equation has an 
intrinsic spin then the direction dependence of the potential 
may be caused by its spin dependence so that the equation is 
form invariant under rotations and the total angular mo­
mentum is conserved. In that case the Schrbdinger equation 
is still separable but with coupling between different orbital 
angular momenta. The S matrix for a given total angular 
momentum will then be a finite-dimensional square matrix, 

,,) Preliminary versions, without proofs, of various parts of this paper were 
presented at the summer research conference of the American Mathemat­
ica� Society "Inverse Problems in Partial Differential Equations," Arcata, 
CA, July 1989; the "Rencontre Interdisciplinaire, Problemes Inverses," 
Montpellier, France, November 1989; and the "International Conference 
on Differential Equations and Mathematical Physics," Birmingham, AL, 
March 1990. 

and so will the Jost function. In such a case, the Wiener­
Hopf factorization is no longer trivial. \,2 

In the most general case of a potential that depends on 
xER3 the Schrodinger equation cannot be separated and the 
S matrix is a function on R with values in the group '11 of 
unitary operators L 2(§2)r--->L 2(§2), where §2 is the unit 
sphere in R3. Physically, each point on §2 stands for the 
asymptotic direction of the momentum of a particle. (If the 
Schrodinger equation is used for the description of waves 
other than quantum mechanical, then each point of§2 stands 
for the direction of a wave vector.) In any case, the factoriza­
tion of this operator-valued function remains an important 
tool in the study of the Schrbdinger equation and particular­
ly for the solution of the inverse-scattering problem. One 
kind of factorization leads to the generalization of the Jost 
function; another is a standard Wiener-Hopf factorization 
with respect to the real line. A third kind of factorization was 
introduced by Faddeev3.4 (see also Ref. 5) in connection 
with another solution of the inverse scattering problem. We 
will not be concerned with that but will confine our attention 
to factorizations in which the factors are regarded as func­
tions of the wave number (or the square root of the energy) 
and are continuous boundary values on the real line of ana­
lytic functions of that variable, 

In Sec. II the two kinds of factorization of S that are of 
interest here are precisely defined; one is a standard Wiener­
Hopf factorization with respect to the real line and the other 
is the J ost function factorization. Each leads to the definition 
of an index, one of which we call the Wiener-Hopfindex and 
the other the Jost index. Some new results on the Jost factori­
zation and, particularly, on the relation between the two fac­
torizations are given; the most important one is Theorem 
2.11. In Sec. III the Jost function factorization is implemen­
ted by the known technique of the generalized Marchenko 
equations and new results are contained in Theorem 3.1. Up 
to this point no assumption has been made about the admis­
sibility of S as an S matrix of the Schrbdinger equation. In 
Sec. IV this assumption is added and a third index, the Le­
vinson index, is defined. Theorem 4.7 is the principal result 
of this section. In Sec. V the results of Secs. III and IV are 
applied to the inverse scattering problem and a new neces­
sary and sufficient condition for the admissibility of a given S 
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matrix is presented. Section VI contains all the proofs that 
are too long to be included in the earlier sections. 

Notation: A and A denote the operators whose integral 
kernels are, respectively, the transpose and the complex con­
jugate of that of A; A t is the adjoint of A; nul A is the null­
space of A, ran A is its range, tr A is its trace, and I is the 
identity operator. We will usually denote operators by the 
same letters as their integral kernels. Iffis a function on R 
thenf# (k): = f( - k); if g is a function on the unit sphere 
§2 in R3 then the operator Q is defined by (Qg)( e) : 

= g( - e);o will denote both a point on §2 and the corre­
sponding unit vector in R3. 

II. FACTORIZATIONS DEFINED 

Let us begin by defining a class of functions (sometimes 
called symbols in this context) in whose factorization we are 
interested. 

Definition 2.1: SE@:i if and only if S(k) 
= 1 - (k 121Ti)A (k), where 1 is the unit operator and the 

following six conditions are satisfied: 
(i) The kernel A (k,e,e ') that defines the operator fam­

ily A (k), kER, with values in the ring of bounded operators 
L 2(§2)f-+L 2(§2), is a continuous, uniformly bounded, dif­
ferentiable function R X §2 X §2f-+C; 

(ii) QAQ = A; this is called reciprocity; 

(iii) A( - k) = A(k); 
(iv) st S = sst = 1; unitarity; 
(v) liS - IIiEL 2(R); 11'11 here is the operator norm; 
( vi) the operators f§ and f§ # defined by (1), (2), and 

(3) in terms of A are compact. 
We need the following functions: 

G(a,e,O '): = _i -2 f"" dk kA (k, - e,o ')e - ika, (1) 
(21T) - co 

f§ (a,e;/3,O ') : = G(a + {J,e,e '), a,{3E R+, e,e 'E§2, (2) 

f§#(a,e;/3,e ' ): = G( - a - {J,e,e ' ), a,{3E R+, e,e 'E§2, 

(3) 

K(a,e;/3,e ' ):=G(a-{J,e,e ' ), a,{3ER+, e,e 'E§2. (4) 

These integral kernels define the operators f§, f§ #, 71"; the 
first two are self-adjoint and the unitarity of S implies that 
II f§211";; 1 and II f§#211";; 1, whereas 71"# =,7t"f (Ref. 5). Item 
(vi) and these operators will playa role in the implementa­
tion of the needed factorization, to be discussed later. 

If Sis admissible as an S matrix of the Schrodinger equa­
tion with a potential that is in a specified class, then SE@:i. For 
example, the following class will do. 

Definition 2.2: ro = {VI VER,limlxl~"" Vex) = 0, and 
3a,C,E> 0, such that for all xER3, IVV(x)I<C(a 
+lxl)-4-E}. 

This class is smaller than it needs to be but it is easy to 
define. A larger class, called 'Jr, which contains '1/0 and 
which also guarantees that SE@:i, is defined in Ref. 5. 

A standard left Wiener-Hopf factorization of S (also 
called proper) 6-9 with respect to the real line is a decomposi­
tion of the form 

S= W+DW_, 

where 
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(
k + i)PI D=Po+L~ --.. 

j;;d k - I 
(5) 

The p·I" 1, are mutually orthogonal one-dimensional 
projections, p. = PJ, tr Pj = 1, PjPi = 0 if i=l=j, and 
Po = I - :Ij > I Pj ; W ± is holomorphic and invertible every­
where in C ±, lim 1k I ~ co II W ± - III = 0, and the par~ial.in­
dices p. are nonzero integers. If D = 1 then the factonzatlon 
is called canonical (or regular). Whereas the partial indices 
are uniquely determined by S, the factors W ± and D are not. 
(However, if a canonical factorization exists, it is unique.) 
The sum of the partial indices is called the total index or the 
sum index. We shall call it the Wiener-Hopfindex and de-
note it by 

indwH S: = Lpj. 
j 

It was proved by Aktosun and van der Mee lO that if the 
potential underlying a given S is in a class that they specified 
(VEro would do if zero is not an exceptional point of.the 
Schrodinger equation) then S has a left standard factonza­
tion. They also showed that if S = QS # - I Q (which is the 
case if SE@:i) and S has a left standard factorization 
S = W + D W _ then it is always possible to choose the fac­
torization in such a way that W _ = QW! - IQ, in other 
words, 

S = QWQDW# - 1. (6) 

It follows that in that case DQ = QD, because D # = D - I. 

It is a characteristic of the standard factorization that the 
poles are in fixed positions at ± i and of a standard form. 

The Jost function factorization, on the other hand, 
which is needed for the solution of the inverse scattering 
problem, is of a different kind. Here the facto~s are req.u~red 
to be merom orphic with simple poles at specified posItions 
(on the imaginary axis) that are not standard, and moreover 
the residues are to be operators that have specified finite­
dimensional ranges. II These data are collected in the follow­
ing set. 

Definition 2. 3: The set YJ consists of all finite sets u of p" 
pairs {Km '~m} consisting of a positive number Km and a 
o -dimensional subspace Km of L 2 (§2) (Om < 00 ). The set 
{6m } will be denoted by N" and their sum by n", n" = :Iom ; 

the set {Km} will be called P ,,' 
It is important for the inverse scattering problem that 

the set OEYJ that specifies all the bound-state data can be 
determined from the scattering amplitude. 5 However, for 
our purposes here that fact is of no significance. 

We also need to define a class of relevant functions. 
Definition 2.4: JI + is the set of all functions Rf-+L 2(R) 

with values in the ring of bounded operators 
[L 2 (§2)f-+L 2(§2») that are boundary values of analytic 
functions, meromorphic in C + , and whose operator norm 
approaches zero at infinity there. Similarly, uY + is the set of 
functions in JI + that are holomorphic in C + . 

One then poses a Riemann-Hilbert problem with opera­
tor-valued solutions. 

Problem W ~ (S): Let SE@:i and OEYJ be given. Find F 
such that 

(i) F - lEJi +, with simple poles at the points iKm, 
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KmEP a' and residues there whose ranges equal dYm ; 

(ii) on R, F satisfies the equation 

F# = QS#FQ. (7) 

If the set u is empty, we shall denote the corresponding prob­
lem by W ~, and if, in addition, (i) reads FEJI + , we denote it 
by wg. 

If this problem has a solution that is invertible, with an 
inverse that is holomorphic in C + , then this inverse is the 
Jost junction and we have achieved a factorization of the 
form 

S= QFQF#-I. (8) 

This is very similar to (6), except that the prescribed poles 
are in the factor function F itself and their form is more 
specifically given. 

The factorization defined by W ~ is not necessarily 
unique: For given Sand u the problem W ~ (S) may have 
more than one solution; moreover, in general more than one 
set u exists such that W ~ (S) has a solution for a given S. The 
following lemma will be proved in Sec. VI. 

Lemma 2.5: Suppose that the problem W ~ (S) has a 
holomorphically invertible solution. Then for every choice 
of P!1 with P!1 <,na there exist sets f-lE&l with nit = na such 
that W:, (S) also has a holomorphically invertible solution. 

In other words, the pole positions in u can be shifted at 
will without destroying the existence of a holomorphically 
invertible solution, and, as the proof shows, so can the ranges 
of the residues to a certain extent. The latter, however, can­
not be changed completely freely. 12 The sum of the dimen­
sions of the ranges of the residues, on the other hand, is fixed, 
as the following proposition asserts. 

Proposition 2.6: Suppose that the problem W ~ (S) has a 
holomorphically invertible solution. Then 

(i) a necessary condition for another problem W~ (S) 
to have a holomorphically invertible solution is that 
na = nit; 

(ii) there exists another set f-lE&l with Pit and 
n!1 = na + m (where m is a non-negative integer) arbitrar­
ily given, such that W:t (S) has a solution F whose inverse 
F - I has m simple poles in C + . 

Proof The first part of this theorem combines Lemma 
2.5 and the Index Theorem 2.6.8 of Ref. 5. To prove the 
second part we add and remove poles and zeros (i.e., poles of 
the inverse) just as we remove poles and add new ones in the 
proof of Lemma 2.5. • 

The second part of this theorem tells us that if we are 
willing to allow zeros in the solution, in the sense that its 
inverse has poles, then we can arbitrarily increase the num­
ber of poles in the solution sought. The first part of the 
theorem justifies defining a non-negative integer which we 
call the Jost index, by the following. 

Suppose that W ~ (S) has a holomorphically invertible 
solution F. Then 

indJ S: = na' 

In other words, indJ S is the sum of the dimensions of the 
ranges of the residues of F at all its (simple) poles in C + . 

The following lemma, which was first proved as Corol­
lary 5.2 of Ref. 10, relates the canonical factorization of 
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S to the problem Wb (S). (Recall that if SEiS then 
S -I = QS#Q.) 

Lemma 2. 7: Suppose that S - I = QS # Q. Then S has a 
left canonical factorization S = W + W _ if and only if 
W b (S) has a solution F that is holomorphically invertible. 
We then have F = QW + Q, W _ = QW! - IQ, and Fis the 
unique solution of W b (S). 

A convenient tool in the study of the more general case 
with poles is the reduction method. 13.5 It utilizes the rational 
function 

( 
k + iK2) X I-B +B .... 

2 2 k . 
-IK2 

(9) 

Here, the Bj are self-adjoint projections that are successively 
constructed so that the function Fred: = ITa- IF is free of 
poles. They are uniquely determined by the spaces dYm in u. 
The solvability of W ~ (S) may thus be reduced to the exis­
tence of a canonical factorization of the reduced S matrix. 

Lemma 2.8: If W ~ (S) has a holomorphically invertible 
solution F then S red: = QITa- I Qsrr;!l' has a left canonical fac­
torization; conversely, if S red has a left canonical factoriza­
tion, then W ~ (S) has a unique solution F and the inverse 
F - I is holomorphic in C + . Here, ITa is the factor of the 
form (9) appropriate for W~. 

Proof Suppose that S red has a left canonical factoriza­
tion. Then by Lemma 2.7 W6 (sred) has a unique solution 
Fred, F:=ITa Fred solves W~(S) uniquely, and 
(F - I - 1 )~.V + . Conversely, if W ~ (S) has a holomorphi­
cally invertible solution F then Fred: = IT u- IF solves 
W 6 (S red) and is holomorphically invertible. Hence, by 
Lemma 2.7 sred posesses a left canonical factorization. • 

If a left standard factorization exists, however, the most 
powerful procedure is to reduce the solvability of W ~ (S) to 
a similar problem for the diagonal factor, which is a rational 
function. We prove the following in Sec. VI. 

Lemma 2. 9: Suppose that S = QS # - I Q has the left 
standard factorization S = W + DQW! - IQ. Then the fol­
lowing holds. 

If W ~ (S) has a unique solution then there exists a set 
U'E&l with Po' = P a and No' = Na such that W ~ (D) has a 
unique solution, and vice versa. 

If W ~ (D) has a unique solution then 3o'E&l with 
Po' = P a and No' = Nu such that W ~ (S) has a unique so­
lution. 

The same holds if "unique" is everywhere replaced by 
"holomorphically invertible." 

The problem W ~ (D) for the rational function D, on the 
other hand, is solved by the following result. 

Lemma 2.10: Suppose that 

D=Po + LPj(k+~)PJ#I' 
j;-I k-I 

Pj = PI, tr Pj = 1,I~ 1, Po + ~j;-IPj = 1, PjP; = 0 if i#j, 
all the Pj are nonzero integers, and QD = DQ. A necessary 
condition for the problem W ~ (D) to have a holomorphical­
ly invertible solution is that (1) eachpj is even and positive, 
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and (2) nu = ~~jPj' Conversely, ifeachpj is even and posi­
tive, then there exists a set 0Ef!lJ with nu = i~jpj such that 
the problem W~ (D) has a holomorphically invertible solu­
tion. 

This, too, is proved in Sec. VI. 
The combination of Lemmas 2.9 and 2.10 allows us to 

conclude the following theorem. 
Theorem 2.11: Suppose that S = QS # - lQ has a left 

standard factorization. Then the following two conditions 
are necessary for the problem W ~ (S) to have a holomorphi­
cally invertible solution: 

( 1 ) either S has no left partial indices, or each left partial 
index of S is even and positive; 

(2) nu = ~ indwH S. 
Conversely, if (1) holds, then there exists a set 0E!lJ 

with nu = ~ indwH S and arbitrarily prescribed P a such that 
the problem W ~ (S) has a holomorphically invertible solu­
tion. 

It should be noted that the set u for which W ~ (S) has a 
holomorphically invertible solution is not entirely freely at 
our disposal once a left standard factorization is given. That 
is why these results always refer to the existence of a set OEYJ 
such that W ~ has a holomorphically invertible solution. 
They do not assert that such a solution exists for all 0Ef!lJ 
with nu = ~ indwH S. 

Ill. IMPLEMENTING A FACTORIZATION 

The solution of the problem W ~ (S) is implemented by 
Fourier transformation as follows. 5 Define nu functions 
R+ X §2f---+C, 

y~ (a,O) = y~," ( - O)e - aKm, (10) 

where the functions Y~m' b = 1, ... , 8m , span the space Y1" m 

and KmEP u' Let the functions z[~J span the null spaces of 
(1 ± [1#), respectively. Then define the matrices s± with 
the elements 

Sn~mb = (z[~J, y~) + , 

and the column matrices c ± (0) with the elements 

c[~I(O): = (z[~J,G: )+(0). 

(11) 

(12) 

Here, (-,.) + is the inner product on L 2 (R + X §2) and 
G#(a,O',O): = G( - a,O',O) is to be regarded as a 
family of vectors in L 2(R+ X§2) parametrized by 
OE§2;G ± : = Gi(l ± Q). 

The generalized Marchenko equations then are the fol­
lowing two Fredholm equations of the second kind on 
R+X§2: 

(1 + [1 ) r ± = ± G ± ± (Q + Y1") '2?1 ± ' (13 ) 

where r = r + + r _ is related to the sought solution F( k) 

of W~(S) by 

rca) =-I-f'" dk [F(k) _l]e- ika, (14) 
211 - 00 

'2?1 ± (a,O,O'): = IY~n(a,O)p~b(O'), 
m,b 

and the functions p~b are to be determined by the set of 
linear algebraic equations 
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CI~1 (0) = 2 I S'~mbp~b(O). (15) 
m,b 

Remark: Clearly, the unique solvability of Eqs. (15) 
depends on the invertibility of the matrices s ± . Let us call V 
the linear span of the functions y~ defined in (10). Then we 
may state the existence of inverses of the matrices s ± geo­
metrically: The matrices s ± are invertible if and only if 
V 1 U nul (1 ± [1 #) = {O}, respectively. Since [1 # is self-ad­
joint and hence nul (1 ± [1 #) 1 = ran (1 ± [1 #), this may 
also be stated in the equivalent form: The matrices s ± are 
invertible if and only if V U ran (I ± [1 #) = {O}, respective­
ly. 

A part of the following theorem was proved in Ref. 5 
and the rest of it will be proved in Sec. VI. 

Theorem 3.1: The following three statements are equiv­
alent: 
(a) The problem W~ (S) has a unique solution F. 
(b) The problem W ~ (S) has a solution F that is holomor­
phically invertible, i.e., (F - 1 - 1 )s.A/' + . 
(c) The following three conditions hold: 

(i) the operator [12 does not have the eigenvalue 1, 
(ii) dim nul(l + [1#) = dim nul(l- [1#) = nu, 
(iii) the matrices s ± of ( 11 ) are invertible. 

If one of the conditions (a)-(c)is satisfied then the solution 
F is obtained from the solutions of (13) by 

F(k,O,O') = 1 + 1'" da eikar(a,O,O') 

yb (O)plnb(8') 
+I-· .. ·---

m.b i(k-iKm) , 

where r = r + + r _ andpmb: =p'''( +p,:.b. 
Note that if S is given, then [1 and [1 # are given, and 

hence, so are the null spaces of 1 ± [1 #. Therefore, the num­
ber neT = indJ S of the problem W ~ (S) that has a unique 
solution, if it exists, can be determined directly from S. The 
question is, does such a problem W ~ (S) always exist if [12 
does not have the eigenvalue I? First, we have the following 
result, which will be proved in Sec. VI. 

Lemma 3.2: Given Sand P u in a set 0Ef!lJ with 
nu = dim nul (1 + [1#) = dim nul(l- [1#)"~pu' there 
always exist nu functions y~," so that the matrices s± de­
fined in (11) are invertible. 

As a consequence, the following proposition holds. 
Proposition 3.3: Suppose that SE@5 is such that the opera­

tor [12 does not have the eigenvalue 1 and 
dim nul(l + [1#) = dim nul(l- [1#): = N. Then there 
exists a set OEYJ with n(J = N such that the problem W ~ (S) 
has a unique solution. Moreover, the set P u can be chosen at 
will, so long aspu<na' 

IV. ADMISSIBLE S MATRICES 

We have, so far, made no assumptions concerning the 
admissibility of the given symbol S, i.e., we have not assumed 
that it is a Schrodinger S matrix for which there exists an 
underlying potential. If a potential exists, for example in 
r o, and it causes Nbound states of negative energy (let us 
assume that zero is not an exceptional point) then this num-
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ber can be recognized from S by means of the generalized 
Levinson theorem. This leads to the definition of a third kind 
of index in terms of the total phase change of the Fredholm 
determinant of S. Since that Fredholm determinant general­
ly does not approach unity as k-+ 00 even though liS - 111 
approaches naught, we have to proceed with caution. 

Definition 4.1: The function S:!RJ--+ Ci6' is in II if and only 
if it has the following properties: 

(i) S is continuous; (ii) S # = S; (iii) 
limk_oIIS(k) - 111 = 0; (iv) foreachkER the Fredholm de­
terminant det S exists; (v) 3c l , C2 such that as k-+ 00 

8(k) =c1 k+c2 +0(1), 

where 8(k) =! arg det S(k) is defined to be continuous, 

det S(k) = e2i{)(k). 

The operator S - 1 being compact if SE~, the unitary S 

has a point spectrum only. Its eigenvalues /iT/" define the 
eigenphase shifts 'TJn' Since lim1k 1_ 00 liS - 111 = 0, each ei­
genphase shift can be defined so as to approach naught as 
I k 1-+ 00. The phase 8 defined above is related to the eigen­
phase shifts by 8(k) = ~'TJn (k), but the convergence of the 
series is not uniform in k: Even though limk _ 00 'TJn (k) = ° 
for each n, their sum grows linearly as k -+ 00 • If the potential 
VEro then SEll, c2 is an integral multiple of 1T, and it is 
always permissible to choose C2 = ° (Ref. 5), which we shall 
do. Item (iii) in the above definition implies that there are no 
half-bound states. We now define the Levinson index of Sby 

indL S: = (l/1T)8(0). 

A three-dimensional generalization of Levinson's theorem 13 

can then be stated in the following form. 
Generalized Levinson's theorem: If Sis the S matrix ofa 

potential VE?'r that produces N bound states (counting 
their multiplicities) and there is no half-bound state, then 
indL S= N. 

Thus if S is admissible and there is no half-bound state, 
then indL S is a non-negative integer. It is related to the 
Wiener-Hopf index by the following result, which will be 
proved in Sec. VI. 

Lemma 4.2: If S = QS # ~ IQ, SEll, and it has a left stan­
dard factorization thenindL S = !indwH S. 

Now, if we are given an S matrix that is admissible, with 
a potential that leads to N bound states, then we seek a fac­
torization with N poles; in other words, we pose W ~ (S) 
with na = N. By Theorem 3.1 we then need 
N = dim nul(l + ::1#) = dim nul(l- ::1#). The follow­
ing lemma assures that this requirement is, in fact, satisfied; 
it will be proved in Sec. VI. 

Lemma 4.3: If S is admissible and the underlying 
potential causes Nbound states of negative energy (counting 
their multiplicities) then dim nul(l + ::1#) = dim nul(1 
- ::1#) = N. 

The following lemma will also be proved in Sec. VI. 
Lemma 4.4: If S is admissible then the matrices s ± de­

fined in (11) are invertible. 
Let us define 

Sx (k,e,e'): = S(k,e,e' )eikx
' (0 ~ 0'), xER3, (16) 

which is the S matrix of a potential shifted by x; 
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Ax = (21Tilk) (1 - Sx) is the corresponding scattering am­
plitude. The number of bound states produced by a potential 
is invariant under such a shift. Lemma 4.3 therefore has the 
following corollary. 

Corollary 4.5: Suppose that ::1 corresponds to the S ma­
trix S x defined in ( 16), where S is admissible, and thus ::1 # 
depends on x. Then the dimensions of the null spaces of 
(1 ± ::1 #) do not depend on x. . 

Finally, we have an important result whose proof is 
based on a known theorem for the standard Wiener-Hopf 
factorization, as well as on Lemmas 4.2 and 4.3. 

Lemma 4. 6: If S is admissible with a potential VE'lr and 
no exceptional point at k = 0, then II ::111 < 1. 

Proof' Since the unitarity if the S matrix implies that 
II ::111 < 1 and since ::1 is compact if SE~, the theorem follows 
if we prove that ::1 2 does not have the eigenvalue 1. The 
following formula follows directly from Theorem 1.1 of Ref. 
9, p. 165, and formulas (2.26) and (2.28) of Ref. 5. 

dim nul( 1 - ::1 #2) - dim nul ( 1 - ::1 2) = indwH S. 

Using Lemma 4.3 we get 

dim nul(l- ::1 2) 

= dim nul (1 - ::1 #2) - indwH S = 2N - indwH S, 

where N is the number of bound states (counting their multi­
plicities). Therefore, the desired result follows from the gen­
eralized Levinson theorem together with Lemma 4.2. • 

The following theorem now is a direct consequence of 
Lemmas 4.3, 4.4, 4.6, and Theorem 3.1. 

Theorem 4.7: If S is admissible as an S matrix of the 
Schrodinger equation with a potential in 'lr that causes n" 
bound states (counting their multiplicities 8m ) with data 
collected in aE.9J (in the sense that P a consist of the Km if the 
eigenvalues are - K~n and the JY'm are the spans of the corre­
sponding characters), then W ~ (S) has a unique (and hence 
hOlomorphically invertible) solution. 

V. APPLICATION TO THE INVERSE SCATTERING 
PROBLEM 

The results we have obtained answer some important 
questions left open in our previous studies of the inverse scat­
tering problem for the Schrodinger equation in R3. In partic­
ular, this includes the existence of the Jost function (and 
thus of the "regular solution"S ) and the unique solvability of 
the generalized Marchenko equation. The vector version of 
the latter, which is the equation needed for the solution of the 
inverse-scattering problem by the generalized Marchenko 
method, is obtained by letting Eqs. (13) act on the vector 1 
which is defined as the constant function identically equal to 
1, and setting 'TJ: = r + i and g: = G + 1. Lemmas 4.6, 4.3, 
and 4.4, together with Theorem 2.4.7 of Ref. 5 then imply the 
following necessary and sufficient conditions for the exis­
tence of an underlying potential. 

Theorem 5.1: Let S be the S matrix of the Schrodinger 
equation with a given potential in 'lr that has the following 
bound-state properties: 

(*) it causes N bound states (counting their multiplic­
ities) of negative energies - ~ with eigenfunctions pmb(x) 
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and characters Y~,..<e), and k = 0 is not an exceptional 
point. 

Define Sx as in (16) and the operators f.1 and f.1 # by 
(1), (2), and (3) in terms of Ax = (21Tilk)(l-Sx) (so 
that they depend parametrically on xER'). Then the follow­
ing conditions hold: 

(i) SE<5; 
(ii) indLS = N; 
(iii) Ssatisfies item (viii) of Definition 1.5.15 on p. 28 of 

Ref. 5 (forward analyticity); 
(iv) if N = 0 then f.1 # does not have the eigenvalues 

± 1; if N> 0 then :g # has the eigenvalues ± 1 and each of 
the two corresponding eigenspaces is N dimensional; 

(v) the generalized Marchenko equation has a unique 
solution: 

1J=g+ (Q+Jf')~+ f.11J, 

where ~ is given by 

~(a,e): = LY~n(a,e)pmb 
m,b 

(17) 

and the pmb are the unique solution of the set of linear alge­
braic equations 

Cllli = 2 ~ s+ pmb. 
~ I1,mh , 

(18) 
m.b 

here, S,;:'nb are given by (11), the zl~1 form a basis in the 
eigenspace of f.1 # at the eigenvalue - 1, the functions Y~n 
are defined by (10), and the numbers cllli are defined by 
(12); in other words, the operator f.1 does not have the 
eigenvalue 1 (so that II f.111 < 1) and the matrix s + is invert­
ible; moreover, this solution is miraculous (i.e., the right­
hand side of (19) is independent of e) ; 

(vi) the Jost function with all the required properties 
exists. 

Conversely, let Sbe given and let Sx be defined as before. 
If Sx satisfies conditions (i)-(v) for almost all xER\ then 
the function tf; defined by 

tf;(k,e,x) = eiW
'
x + (oo eika1J(a - e'x,e,x) Je.x 

mb( )yb (-e) ~ p x K", i(k _ ;'(",)()'X 

+""-' e, 
m.b i(k - iKm) 

in terms of the unique solution 1J of (17) andpmb of (18) 
satisfies the Schrodinger equation with the potential 

VeX) = - 200V[ 1J(a = 0 + ,e,x) 

- LY~n( - e'x,e,x)pmb(x)] , (19) 
m,b 

which has the bound-state properties (*). Moreover, tf; satis­
fies the scattering boundary condition and the function 
A = (21Tilk) (l - S) is the corresponding scattering ampli­
tude. 

Except for the lack of specification of the class in which 
the potential lies, this theorem constitutes a necessary and 
sufficient condition for, and thus a characterization of, the 
admissibility of a given scattering amplitude or S matrix. 
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VI. PROOFS 

Proof of Lemma 2.5: Assume that F solves W ~ (S), in 
which one of the poles is stipulated to be at k = iK, and let the 
residue of F there be R. Define F + : = F( 1 ± Q)/2, so that 
F! = ± QS # F ±' and F = F + + F _; define also 
F'± :=F± TI±, 

TI±:=l+C± [(,r-v)/(k 2 +v)]. 

Let R ± be the residue of F ± at k = iK and take C ± so that 
R + (1 - C + ) = O. Then F '+ are hoI om orphic at k = iK. 
Si~ce R± ::R(l±Q)/2, -we define C± =C 2± to 
be projections (but not necessarily self-adjoint) whose 
null spaces equal those of R ±' and so that 
C ± = (1 ± Q) C ± 12 = C ± (I ± Q) 12, which is always 
possible. This implies that C + C _ = C _ C + = 0 and 
C: = C++ C _ is also a projection. We then define 
F':=F'+ +F'_ =FTI, where 

TI = I + C[(,r - v)/(k 2 + v)] 

and find 

F'# =F': +F'! =F! TI+ +F**- TI_ 

= QS # (F + TI + Q - F _ TI _ Q) Q, 

and one easily sees thatF + TI + Q - F _ TI _ Q = F'. There­
fore, F' satisfies (7). 

The functions F '± have poles at k = iv and their resi­
dues there are R'± = F ± (iv) C ± . Thus F' has a pole there 
with residue 

R' = R '+ + R'_ = F + (iv)C + + F _ (iv)C_ 

= F(iv) [(l + Q)C + 12 

+ (l - Q)C _/2] = F(iv)C. 

Therefore, since F(iv) is invertible, the dimension of the 
range of R ' equals that of the range of C. Note that if F is 
holomorphically invertible, then clearly so is F'. 

Since nul R = ran(l - C) = nul C and C is a projec­
tion, nul Rnran C = {o}. It follows that R = RC implies 
that the range of C has the same dimension as the range of R. 
Therefore, dim ran R = dim ran C = dim ran R '. Thus we 
conclude that F' is a solution of W! (S) in which one of the 
poles has been shifted to a new position, but the dimension of 
the range of the new residue is the same as that of the old. 
The range of the residue at the new pole can be almost arbi­
trarilyassigned (except for its dimension) by proper choice 
of the range of C ± since F(iv) has an inverse. There is, 
however, one restriction: The range of C ± must not be a 
subspace of its null space. This puts a restriction on the range 
of the residue R " the precise nature of which is unclear but of 
no consequence here. 

Suppose, on the other hand, that we choose nul C 
= ran(l- C) ::>nul R with m: = dim ran C <dim ran R. 

Then F still has a pole at k = iK with a residue R (I - C) 
such that dim ran R (1 - C) = dim ran R - m and it also 
has a simple pole at k = iv with residue F( iv) C such that 
dim ran F(iv)C = m. Hence the sum of the dimensions of 
the ranges of the residues is unchanged. 

Ifwechooseran (1 - C) Cnul R with dim ran C> dim 
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ran R then F - 1 will have a pole at k = iK, which we do not 
want. 

So we now know how to reduce the dimension of the 
range of the residue at one pole and to produce a new pole 
elsewhere, with no change in the sum of the dimensions of 
the ranges. (One may thus split off all poles so that they have 
residues with one-dimensional ranges.) How do we increase 
the dimension of the range of a residue? 

Suppose that F has a simple pole at k = iv, so that 

F = R [1/ (k - iv)] + A + ... 
and F - 1 is holomorphic there. Suppose further that F has a 
simple pole at k = iK with residue R o' whose range may be 
assumed to be one-dimensional. In order to remove the pole 
at iK and increase the range of the residue at iv we form 

F': = F(l + C [(K2 - v)/(k 2 + V)]) 

with the projection C chosen so that Ro (1 - C) = 0 with 
dim ran C = dim ran Ro (see the above argument) so as to 
remove the pole at iK. If C is chosen so that RC = 0 then F' 
has a simple pole at k = iv with the residue 

R' = R + AC [(K2 - V)/2iv]. 

The fact that F - 1 is holomorphic at iv implies that 3D, 
Esuch that 

RE+AD=ER +DA = 1, 

which, in turn, implies that nul R nnul A = {a} and the 
ranges of A and R decompose L 2 (§2). Therefore, 
dim ran A C = dim ran C = dim ran Ro and dim ran R ' 
= dim ran R + dim ran AC = dim ran R + dim ran Ro. 

Thus the sum of the dimensions of the ranges of the residues 
is preserved. 

Finally, we may change the range of the residue of any 
pole without changing its position and dimension by shifting 
it first to a new position and then back. In this manner we 
may change the positions and ranges of the residues of all 
poles of a solution of W ~ (S) so as to become a solution of 
W ~ (S), so long as ncr = nil- and the spaces Jf'm are properly 
chosen. • 

Proof of Lemma 2.9: Suppose that W~(D) has the 
unique solution f= IT}', where/' -IEA"+ (see Defini­
tion 2.4) and IT' has the structure (9) appropriate to W~. It 
then follows thatF: = QW + IT}'Q satisfiesF# = QS#FQ. 
There exists a function IT of the same structure as (9), with 
poles in the same positions and with projections on spaces of 
the same dimensions as those of IT' , such that 
W + IT' = IT W'+ . Therefore, F uniquely solves the problem 
W ~ (S), where the set (7' consists of the same pole positions 
as (7 and the dimensions of the corresponding spaces Jf'm are 
the same. Since both D and IT' are meromorphic functions 
with finite numbers of poles and residues of finite-dimen­
sional ranges, they are equivalent to finite-dimensional ma­
trices, and so is/,; hence it is invertible and/, - 1 - 1 is in 
J( +; by Lemma 2.6.5 of Ref. 5, therefore, /' - 1 - 1 is in 
v,Y + and so is F. 

Conversely, suppose that Funiquely solves the problem 
W~ (S). We then reverse all the steps of the above argument 
and conclude that W~. (D) must have a unique solution! 
Again this solution is rational and "like a matrix," and hence 
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invertible with f - 1 - 1 in ff +. The second part of the 
proposition is proved similarly. • 

Proof of Lemma 2. 10: Suppose that the problem 
W~ (D) has a holomorphically invertible solution F, so that 

F#=QD#FQ 

with the appropriate analyticity and asymptotic properties. 
Multiplying the equation on the left by Pj and on the right by 
P, leads to 

PjF#P, = {(k - i)/(k + i)Y'PjFP" 

since QD = DQ implies that the one-dimensional projec­
tions Pj,j';P 1, are such that QPj = Pj. The requirement that 
limlk 1_ '" IIF - 111 = 0 leads to PjFP, = 0 for I i= j, since the 
homogeneous Riemann-Hilbert problem defined by that 
equation has only the trivial solution. So we have 
F = Po + 'LjPj 1;, where each 1; solves the simple scalar Rie­
mann-Hilbert problem 

f# = {(k - i)/(k + i)Y'j, 

in which f is to have simple poles and no zeros in C + . 

(Zeros would produce poles in F - I.) This problem has no 
solution unless p is a positive even integer. (For p = 0 the 
solution is f = 1, and that can be taken to be part of Po.) If 
p = 2m then a solution without zeros in C + must have m 
poles and it is of the form 

f = (k + i)2m/(k 2 + ~) ... (k 2 + K7n). 

Therefore, we may conclude that all the Pj must be even, 
Pj = 2mj' and the holomorphically invertible function F 
must be 

It is easily seen that this F is such that 

I dim ran ResK , = ncr = indJ D = I mj = 1.- indwH D. 
j j 2 

Conversely, if each Pj is even then the function F given 
by (20) satisfies the equation F# = QD # FQ, is holomor­
phically invertible, and furthermore the sum of the dimen­
sions of the ranges of the residues at its simple poles equals 
~~. . 

Proof of Theorem 3.1: Most of this theorem coincides 
with Theorem 2.6.15 in Ref. 5. Item (b), however, is new. 
For the proof of this part we need the following two lemmas. 

Lemma 6.1: If W ~T (S) has a unique solution then 
W ~ (S #) has a solution. 

Lemma 6.2: If W~(S) and W~T(S#) have solutions 
FI and F2, respectively, then (F 1- 1 - 1 )E.,tr + and 
(F 2- 1 - 1 )str + . 

Assume that S has property (a), i.e., that W~ (S) has a 
unique solution Fl' Then by Lemma 6.1 W ~ (S #) has a 
solution F2 , and hence by Lemma 6.2 (F 1- 1 - 1)E.JI + . By 
item (v) of Lemma 2.6.5 of Ref. 5 this implies that 
(F 1-

1 -I)E.V+. Thus (a) implies (b). The converse, 
namely the statement that if W ~ (S) has a holomorphically 
invertible solution then its solution is unique, follows direct­
ly from Lemma 2.8. 

There is, in addition, a gap in the proof of Theorem 
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2.6.15 in Ref. 5 [which is Theorem 3.1 without statement 
(b)]. Suppose that conditions (i) and (iii) of statement (c) 
are satisfied, but one of the elements of p ± «() vanishes for 
all (). Then the sum of the dimensions of the range of a pole of 
the solution F of W ~ (S) is lower than the dimension of the 
null space of 1 + ~#, contrary to (ii). Since 
p ± «() = !s± -'e ± «(), P"-± «() =0 implies that there ex­
ists a constant vector a such that ae ± «() =0 for either + 
or - (or both). By definition (12), in turn, this would 
mean that there exists a vector z + Enul(1 + ~#) [or 
z _ Enul(l- ~#)] such that (z+ ,G! ) + =0 for all () (or 
(z _ ,G'! ) + =0 for all (). It follows from Lemma 2.6.10 of 
Ref. 5 that (z ± ,G~ ) + «() =0 for every 
z + Enul(l + ~#) and for every z _ Enul(1 - ~#). 
Hence, the vanishing of one element of p + for all () would 
imply that (z± ,G#)+«()=Oforsomez; orz_. Thefol­
lowing Lemma rules this out and thereby closes the gap in 
the proof of the theorem. • 

Lemma 6.3: Suppose that 11$~(~2) and IE~(~#2) 
with (1 ± ~#)z± =O,z± #0. Then (z± ,G#)+«()=:;EO. 

We must now prove Lemmas 6.1,6.2, and 6.3. 
Proof of Lemma 6.1: By Lemma 2.6.14 of Ref. 5 the 

generalized Marchenko equation always has a solution. Fur­
thermore, if 11$~(~#2), where ~(~#2) is the spectrum of 
~ #2, then the Fourier transform of every solution of the 
generalized Marchenko equation 

(l+~)r± = ±G±, 

r=r + +r_, F=l+SO'daeikar(a), solves Wb(S), 
by Lemma 2.6.12 of Ref. 5. 

Now ~ is related to S precisely as ~ # is to S #. Sup­
pose, then that W ~ (S) has a unique solution; then it follows 
that IEf~ ( ~ 2) and hence W ~ (S #) has a solution. • 

Proof of Lemma 6.2: Ff = QS#F\Q and 
F f' = QSF2 Q imply that l' f F f' = Q1'\ F2 Q. Since the left­
hand side is meromorphic in C - and the right-hand side in 
C + it follows by Liouville's theorem that 

1',F2 = 1 + L (~- QRj~): =R(k), 
j k - IKj k + IKj 

where the sum is over the (finite number of) poles specified 
in 0' and R j is the residue of 1', F2 , which has a finite-dimen­
sional range. Thus there is a finite-dimensional subspace that 
contains the range of R - 1 for all k; hence, R is equivalent 
to a finite-dimensional matrix. It follows that R - t is a mer­
omorphic function of k and hence 1', has a merom orphic 
right inverse IR with IR - 1E..--t{ + . 

On the other hand, limlkl_oo IIF, - 111 = 0, which im­
plies that for I k I sufficiently large, 1', has a holomorphic 
inverse. This inverse, being equal to F2 R -, in an open set, 
can be analytically continued to all ofC + . Hence, 1', and F, 
have inverses that are meromorphic in C + with a finite num­
ber of poles. It follows similarly that F2 has a meromorphic 
inverse. • 

Proofof Lemma 6.3: Note that it follows from 

z ± (a,() 

= + (00 d{J ( d()'G( -a-{J,(),(}')z± ({J,()'), Jo JS2 
(21) 

2421 J. Math. Phys., Vol. 31, No.1 0, October 1990 

for a;;;'O, in the limit as a --+ 0 that 

z ± (O,() = += I"" d/3 L d() 'G( - /3,(),(} ')z ± (/3,()') 

and hence (z + ,G#) + =0 is equivalent to z + (O,() = 0 for 
almost al18ES2 if (I ± ~#)z + = O. -

Suppose first that for air nontrivial solutions z ± of 
(l±~#)z± =0 we have (z±,G#)+ =0. Let z± be 
such a nontrivial solution. Differentiate (21 ) with respect to 
a, calling z~ (a,(}): = a / aaz ± (a,(}), and integrate by 
parts: 

z'± (a,() 

= + (00 d/3 ( d(}' ~ G( - a - {J,(),() ')z ± ({J,()') 
Jo JS2 a/3 

= ± (00 d{J ( d()'G( -a-/3,(},()')z'± (/3,(}'), Jo JS2 
which means that (1 + ~#)z'± = O. Since z ± (O,(}) =0, 
z'± =0 would imply z ± =0, which is not the case, by as­
sumption; therefore z'+ does not vanish identically and 
(I + ~#)z'± = O. No~, since by assumption (z,G#) + =0 
for all solutions of (1 ± ~ #)z = 0, it follows that 
z'± (O,() =0 and we may repeat the argument for the second 
derivative, and so on. Let us concentrate on z + . 

Since the null space of (1 + ~ #) is finite-dimensional, 
the derivatives of z + must eventually become linearly de­
pendent and we must have two linear relations of the form 

N 

" c( t )Z(211) (a (}) = 0 L.J II +, , 
11=0 

N 
" C(2)Z(211 + ') (a (}) = 0 
L 11 + ' , 

,,=0 

and also z(~)(O,() =0, n = 0, ... ,2N, where zt;): 
= a nz + ;aan

• These systems have only the trivial solution 
z+ (a,() = O. Similarly, for L (a,() = O. We conclude that 
it is impossible that all solutions of (I ± ~ #)z ± = 0 satis­
fy (z ± ,G#) + =0. 

Suppose next that for one solution we have 
(z + ,G#) + =:;EO. Let {zl~I}, n = 1,oo.,N, be orthogonal 
basis sets in nul(l ± ~#) so that (zI11,G#) + =:;EO, 
(zl~I,G#) + =0, and (zl~I,G#)=:;EO, n> 1. If we pose 
W ~ (S) with na = 1 then Eq. (13) can always be solved for 
any given '?I/, since lE£~(~2). For na = 1 we have 
'?I/ ± = yp ± and Eqs. (15) with (11) and (12) read 

(z[~1 ,G! ) + = 2 (z[11 ,y) +P+, 

0= (zl~l,y)+p_, 

0= <z[~l,y)+p±, n> 1. 

Therefore, ifyis chosen so that (z I11,y) + #0, (zl~l,y) + #0, 
and (zl~1 ,y) + = 0, n> 1, (which is always possible) then 
p + is uniquely determined and the solution of ( 13) leads to 
a unique solution of W ~ (S) with na = 1. The same would be 
true if we had chosen (z _ ,G#) + =:;EO instead of 
(z + ,G#) + =:;EO. 

Next, suppose that na = 2. Then '?I/ ± = ylt Jpl~J 
+ y12Jpl~J leads to 

Roger G. Newton 2421 



                                                                                                                                    

2 

I s;fp'f:. = Ci±, i = 1,2, 
j~1 

where 

s;f: = (zl~ ,yUI) +, cI±: = (zl~1 ,G! ) + ~o, 

± «2) G#) -0 
C2 = z±' ± + = . 

If the functions y' i(, i = 1,2, are chosen in such a way that 
det s ± =1= 0, then the plJ are uniquely determined. They also 
satisfy the remaining equations if the yl il are chosen so that 
(z'2 ,yUI) + = 0, i> 2, j = 1,2. The final constraint on the 
y1il-is that (s:;: I) il =1=0, i = 1,2, so that pl~ ~O, i = 1,2. The 
large class from which the functions y may be chosen make 
such choices always possible. Thus we get a unique solution 
of W ~ (S) with nu = 2 as well as a unique solution of 
W~ (S) with nJ.t = 1. Since lE!:~(y2) it follows from 
Lemma 2.6.14 of Ref. 5 that W6 (S#) has a solution. [Re­
member that Y corresponds to S as Y # does to S #.] There­
fore, by Lemma 6.2, the solutions of W ~ (S) and W ~ (S) are 
meromorphically invertible. It then follows from Lemma 
2.6.8 of Ref. 5 that this is impossible: Two problems with 
unequal numbers of poles cannot both be uniquely solvable. 
Therefore, it cannot be the case that (z ± ,G#) + =0 for all 
but one z ± . Similar arguments rule out any other number, 
and we may conclude that for all z ± we must have 
(z ± ,G#) + ~O. • 

Proof of Lemma 3.2: We shall fix our attention on s + 

and z + , leaving off the +; the same argument holds for -. 
Let n = dim nul (1 + Y # ). The equation sa = 0 means that 
(zr,jia) + = 0 for all 1 <r<n, i.e., there exists a linear combi­
nation of n functions y~ as in ( 10), with given numbers K m , 

that lies in fl: = [nul(l + .c1 #) L = ran(l + .c1 #). As­
sume that the lemma is false. Then, no matter how the n 
functions Y ~m are chosen, there always exists such a linear 
combination. So choose an arbitrary set of n functions Y ~ ; 
then 3{amb } such that '" 

Now choose another arbitrary set, but with one of the func­
tions Y~", the same as before; again, 3{a:nb } such that 

It follows by subtraction that for any arbitrary set of one 
member less than before, 3{a:~b} such that 

This process is repeated until we arrive at the statement that 
for any arbitrary function Y~ and any arbitrary K: 

Y~( - O)e-aKefl. 

But these functions span all of L 2 (§2 X R + ); hence 
L 2 (§2 X R + ) en is implied, which is false since 
codim n = n. This proves the lemma. • 

Proof of Lemma 4.2: It follows from the well-known 
formula 
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tr[ dS S - I] = ~ In det S 
dk dk 

that if the eigenvalues of S are li'1n then 

tr f: 00 dk S'(k)S -l(k) 

= 2i + f: 00 dk TJ~ (k) = 4i + [TJn (k)]; 

= - 4i I TJn (0) = - 4i8(0) = - 417i indL S, 
n 

since S( - k) = S(k) and by the definition of the Levinson 
index. Now if S = QS # - IQ and it has a left standard fac­
torization then the factorization can be chosen so that 
W _ = QW! - I (Ref. 10). Then 

tr f: 00 dk S'S - I 

=tr f:oo dkD'D-I+tr f:oo dkW'+ W::;:I 

+ tr f: oc dk W'_ W = I 

=tr f:oc dkD'D -I +2tr f:oc dk W'+ W::;:I, 

and by closing the contour of integration in the upper half­
plane it follows from the analyticity and asymptotics of W + 

that 

Joc dkW' W- I 
+ + 

- oc 

= [W + (k) ]':. oc + f: oc dk W'+ [W::;: 1_ 1] = o. 

On the other hand one readily computes from the form (5) 
of D that 

tr f:oc dkD'D -I = -217iIpj· 

As a result we have 

tr f: oc dk S' S - I = - 217i indwH S, 

a formula that was first given by Gohberg and Leiterer in 
Ref. 14. It follows that indL S = ~ indwH S. (It would be 
desirable to find a more rigorous proof that is based on spe­
cific properties of S and of V if S is admissible. ) • 

Proof of Lemma 4.3: Suppose that u is an eigenfunction 
of .c1 # with the eigenvalue - 1. Then its Fourier transform 
f solves wg ( - S) and satisfies the equationf# = - QS! 
Use this function to define 

cp(k,x): = f dOf(k,O)f/!(k,O,x), 

where f/! is the outgoing-wave solution of the Schrodinger 
equation and the integral extends over S2. It follows that cp is 
a solution of the Schrodinger equation that is an odd func­
tion of k, and if there are no bound states (which we shall 
assume to begin with), it is an entire analytic function of k 
that is o( Ik Ir) as Ik I ..... 00, where r = Ixl. By the Paley-Wie­
ner theorem its Fourier transform vanishes for I t I > r and it 
may be written in the form 
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rp(k,x) = J~ r dt s(t,x) sin kt . 

Use of the SchrOdinger equation and two integrations by 
parts lead to the hyperbolic partial differential equation 

[A - :t22 
- V(X)]s = 0, t> - Ixi . (22) 

Furthermore, we must have 

s( - r,x) = 0, lim s(t,x) = o. (23) r-oo 
This quasi-Goursat problem has only the trivial solution. An 
outline of the proof (the details of which will be given in a 
subsequent paper) of this assertion is as follows. 

One first proves that the system 

[A - :t22
] g = 0, xER3

, t> -lxi, 

gl,- - Ixl = gllxl- 00 = 0 , 

(24) 

(25) 

has only the trivial solution. This, in turn, is proved by ex­
panding the angle dependence of g on spherical harmonics 
and proving that the system 

has only the trivial solution. 
The case with V #0 is then proved by assuming that s 

satisfies the system (22), (23) and setting s = 0 for 
t < - 14 Then the function 

F(t,x): = s(t,x) 

+ J dy V(y) s(t -Ix - yl,y) 
417'IX - y 

is seen to satisfy the system (24), (25) and hence must van­
ish. Therefore, s satisfies a homogeneous integral equation 
the Fourier transform (with respect to t) of which is the 
homogeneous form of the Lippmann-Schwinger equation. 
It follows that s = O. Consequently, rp(k,x) = 0 and hence 
f(k,O) = 0, contrary to assumption. Therefore, if V causes 
no bound states then [1 # cannot have the eigenvalue - 1. 

Consider now the case with bound states. In that case 
the function rp has simple poles at the points k = iKII with 
residues ~bh !u! (x), where u! (x) is a bound state eigen­
function of the Schrodinger equation with the eigenvalue 
-~ and 

h ~: = J dO fUK,O) Y! ( - 0), (26) 

Y~ being a bound state character. Now the Fourier trans­
form of rp is 
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s(t,X) =~foo dke-ik1rp(k,x). 
17' -00 

When t> r the contour may be closed by a large semicircle 
in the lower half-plane and one obtains 

s(t,X) =2 r h~",u~m(x)e-Kml:=so(trX). (27) 
b,Km 

Therefore, 

rp( k,x) = L dt sin kts(t,x) + LX> dt sin ktso (t,x). 

Insertion of rp in the Schrodinger equation now results in the 
hyperbolic equation for - r<J<.r 

[A-~- v]s=o 
at 2 ' 

s( - t,x) = - s(t,X) , and the boundary condition at 
t = r,(a /ar){r[ s(r,x) - So (r,x)]} = 0, which implies that 
s(r,x) = So (r,x). The earlier argument shows that the solu­
tion of this problem is unique. 

Suppose that there are Nbound states. Then there are N 
linearly independent functions u~ and hence N linearly inde­
pendent functions So (t,x). This leads to exactly N linearly 
independent solutions s(t,r) because the previous argument 
showed that So = 0 implies s = O. But the number of linearly 
independent functions s equals the number of linearly inde­
pendent functions rp, which, in turn, equals the number of 
linearly independent functions/, the Fourier transforms of 
eigenfunctions of [1 # with the eigenvalue - 1. Therefore, 
the total number of eigenvalues of the Schrodinger equation, 
counting their degeneracy, equals the dimension of the ei­
genspace of [1 # at the eigenvalue - 1. 

The proof for the eigenvalue + 1 is the same, except 
that then s( t,x) is an even function of t and sin kt is replaced 
~~h • 

Proof of Lemma 4.4: Assume that s + is not invertible. 
This implies that there exists a set of N complex numbers an 
such that ~nansn;mb = 0 for all N values of the pair m,b. 
Hence, there is a vector z = ~nanz[~lEnul(l + [1#) such 
that 

<z,y~) + = 0 (28) 

forally~ defined by (10). Letf(k,O) be the Fourier trans­
form of z. A short calculation shows that (28) is equivalent 
to 

L dO Y!", ( - O)f{iKm ,0) = 0 

for all K m EP u and all the character functions Y!m' We take 
this f to be the function used in the proof of Lemma 4.3. 
Then it follows that alI'the functions h!m defined by (26) 
vanish. Consequently, So of (27) vanishes, and hence by the 
first part of the proof of Lemma 4.3 we have s(t,x) = 0 and, 
hence, f = 0 and z = 0, contrary to our initial assumption. 
The proof that s - is invertible is similar. • 
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A new three-parameter family of cosmological models is found, which are solutions of 
Einstein-Maxwell equations in a space-time filled with electrically neutral stiff matter. They 
generalize an anisotropic homogeneous cosmology without electromagnetic field by Vajk and 
Eltgroth [J. Math. Phys. 11,2212 (1970)] and support a conjecture about proportionality of 
electromagnetic four-potential of an Einstein-Maxwell solution and the Killing vector of a 
corresponding space-time with stiff matter. This conjecture turns out to be the clue to a new 
solution-generating method of Einstein-Maxwell fields with sources. 

I. INTRODUCTION 

A new method of generation of electrovacuum solutions 
in general relativity was proposed recently by Horsky and 
Mitskievic. I This method does not remove the necessity of 
solving Einstein's equations, but it simplifies (sometimes 
quite considerably) the manipulations with Maxwell's equa­
tions, reducing them, in fact, to a certain kind of condition 
(we call them Maxwell's conditions). It is applicable to 
vacuum seed solutions of Einstein's equations possessing at 
least one isometry (in contrast with many other methods 
that depend on the existence of two Killing vectors). 

We propose now a generalization of this method to a 
case when the seed solution (still possessing one isometry as 
a minimum) corresponds not to a vacuum, but to a stiff 
perfect fluid (p = f.-l). The resulting self-consistent system 
includes gravitational and electromagnetic fields, as well as 
electrically neutral stiff matter. 

In Sec. II we discuss the main ideas of the generation 
method (as well as of its further generalizations). In Sec. III 
we generate a new three-parameter family of metrics by ap­
plying this method to a specific seed solution, namely to that 
found by Vajk and Eltgroth. 2 These authors have also pre­
sented superpositions of a magnetic field and perfect fluid, 
but not in the case when p = f.-l; moreover, our solutions 
show greater anisotropy than those considered by them, 
even when the electric field is switched off. The latter sub­
case as well as other limiting cases are considered in Sec. IV. 
In the same section we determine the Petrov types of our 
solutions. A final discussion of the results is given in Sec. V. 

Greek indices run from 0 to 3, the space-time signature 
is (+ - - -). 

II. TEST ELECTROMAGNETIC FIELDS ON THE 
BACKGROUND OF SPACE-TIMES WITH ISOMETRIES 
AND TRANSITION TO A SELF-CONSISTENT SYSTEM 

On the background of a space-time admitting a Killing 
vector g, we consider an electromagnetic field with four­
potential A = kg that satisfies the usual Lorenz condition,3 

A a;a = 0 (k is an arbitrary constant). Then, by virtue of the 
properties of Killing vectors, 

F':;,v = (A V;f' - A f';V);v = 2kgv;f';v = - 2kgARAf' 

= 2kKgA (TAf' - ~ TgAf') = - 41Tif" (1) 

In a vacuum, Tf'v = 0, this leads to the well-known conclu­
sion4 that a Killing vector of a vacuum space-time generates 
a test sourceless electromagnetic field on the background of 
the same space-time. In the case of a nonzero stress-energy 
tensor of a perfect fluid, Tf'v = (f.-l + p) uf' Uv - pgf'V' the test 
electromagnetic field corresponds to the four-current den­
sity 

if' = - (kKI21T) [(f.-l + p)UAgAUf' -! (f.-l- p)gf']' 
(2) 

which is also a test Object with respect to the space-time 
geometry. However, the already mentioned case of a source­
less test electromagnetic field still can be generalized to such 
a non vacuum gravitational field, if two conditions are satis­
fied: 

ulg and f.-l=p. (3) 

This means that the KiIIing vector under consideration is 
spacelike and the perfect fluid (the source of the background 
metric) is stiff. 

Otherwise we have a test electromagnetic field with 
sources, and, if we would like to contact them with the back­
ground perfect fluid, we have either to consider it to be stiff, 
or to admit the Killing vector to be proportional to the four­
velocity u of the fluid (then the space-time is stationary). 
Below we consider only the case of a stiff matter and glu. 

In Ref. I it is noticed that the timelike Killing vectors of 
the Schwarzschild and Kerr fields coincide (up to a constant 
factor) with the electromagnetic four-potentials of the 
Reissner-Nordstf0m and Kerr-Newman fields, respective­
ly, and other examples of such a correspondence are found. 
Thus a conjecture was formulated that a Killing covector of 
a seed space-time represents (up to a constant factor) an 
electromagnetic four-potential which belongs to a new self­
consistent system of gravitational and electromagnetic 
fields. When the electromagnetic field is switched off (this is 
done by tending a parameter to zero, say, k), the initial seed 
metric is recovered. It is worth emphasizing that the both 
cases, those of the test and nontest fields, are interconnected 
in such a simple way only in their covariant, and not contra­
variant, representation, since raising indices should be per­
formed with the help of different metrics thus breaking the 
similarity between corresponding quantities. 

In solving the problem of generation of Einstein-Max­
well fields on the basis of this conjecture, further steps in-
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volve some natural assumptions as to the structure of the 
new metric. Usually, it is merely enough to introduce some 
new functions, which are to be determined by solving Ein­
stein's equations (instead of the functions already existing in 
the seed metric, but without changing the general structure 
of it). 

In the following section a detailed example is given that 
shows how this new method of generation of Einstein-Max­
well fields works. 

III. COSMOLOGY WITH A SUPERPOSITION OF 
NEUTRAL STIFF MATTER AND ELECTRIC FIELD 

We shall now apply our method to a seed solution ob­
tained by Vajk and Eltgroth,2.5 

dSl = dt 2 _ t 2/(1 + 2A) dx2 _ t 2V(I + 2A) d;? 

(4) 

where A. is a free parameter, A. > 0 or A. < - 2. Then the 
stress-energy tensor corresponds to a stiff matter with 

/l = P = (2 + ..1)..1 /Ko(1 + 2A.)2t 2. (5) 

Here we shall make use of one of the (spacelike) Killing 
vectors of the solution (4), S = - ay , or, as a one-form, 
S = t 2..1. I( 1 + 2A) dy, thus taking a four-potential covector 

A = kS = kt 2V(I + 2A) dy, k = const. (6) 

Since the conditions (3) are satisfied, this field is a solution 
of sourceless Maxwell equations on the background of the 
metric (4): this is our test electromagnetic field. The covec­
tor (6) can be brought to a simpler form, 

A =ktdy, (7) 

by another choice of the coordinate t. Then the Maxwell 
tensor becomes 

! Fl'v dxl' 1\ dxv = k dt 1\ dy. (8) 

Let us now consider a generalized metric 

(9) 

where a, /3, y, and {j are functions of the coordinate t, that 
leads to a natural orthonormal tetrad, 

() (0) = ea dt, () (I) = ef3 dx, () (2) = eY dy, () (3) = efj dz. 

In this space-time, 

lFI'Va a k - 2a - 2ya a 
2 I' ® v = e [y ® t J' 

so that Maxwell's equations are supposed to yield 

!!..(e- a+f3 - Y +fj) =0 
dt 

( 10) 

(11 ) 

in agreement with the property of the Killing field S on the 
background of the seed metric (4), and as a result of the 
Horsky-Mitskievic conjecture. This is equivalent to 

e - a + f3 - Y + fj = A = const, (12) 
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which we call Maxwell's condition, with A = 1 (without any 
loss of generality). Now, the electromagnetic field invariant 

F FI'V= _ 2k2e-2a-2y I'V 

being negative, this is an electric-type field, not a magnetic­
type one. 

Components of the stress-energy tensor of this electric 
field with respect to the orthonormal tetrad (10), 

T~I') (v) () (1') ® () (v) 

= (k 2/8tr)e - 2a - 2y[ () (0) ® () (0) + () (I) ® () (I) 

_ ()(2) ® ()(2) + ()(3) ® ()(3)], (13) 

reflects the minimal possible anisotropy of the space-time 
geometry under consideration. When k = 0, the electric 
field is switched off. 

The tetrad choice (10) leads to the following curvature 
two-forms: 

0(0)( 1) = e - 2a(/J + p 2 _ ap )()(O) 1\ ()(\), 

0(0)(2) =e- 2a(r+f- a r){}(0)1\()(2), 

0(0)(3) = e- 2a(8 + lP _ a~){}(O) 1\ ()(3), 

0(1) (2) = Pre - 2a() (I) 1\ () (2), 

0(1)(3) = p~e - 2a() (1) 1\ () (3), 

0(2\3) = r~e - 2a() (2) 1\ () (3), (14) 

(differentiation with respect to t is denoted by an overdot). 
The stress-energy tensor of a stiff matter (/l = p) has the 

form 

T'(a)({3) () (a) ® () ({3) = P [() (0 ® () (0) + () (I) ® () (I) 

+ () (2) ® () (2) + () (3) ® () (3)], (15) 

wherep is the proper stress (and the proper density) of the 
perfect fluid. 

Einstein's equations then read 

e - 2a(Pr + P~ + r~) = K(p + (k 2/8tr)e - 2a - 21'), (16a) 

e - 2a (ar + a~ - r~ - r - f - 8 _ ~2) 
= K(P + (k 2/8tr)e- 2a - 21'), (16b) 

e - 2a (ap + a~ - P~ - /J - P 2 - 8 _ ~2) 
= K(P - (k 2/8tr)e- 2a - 21'), 

e - 2a (ap + ar - Pr - jJ - P 2 - r - f) 
= K(P + (k 2/8tr)e - 2a - 21'). 

(16c) 

(16d) 

Maxwell's condition (12) and Einstein's equations (16) 
form a self-consistent system that is equivalent to the system 
of the Einstein-Maxwell equations. Next, we consider the 
subtraction of these equations from one another: 

e-2a[e-a+f3+y+fj(~ - 1')]' = (Kk 2/4tr)e- 3a +f3 - y+D, 
(16c-d) 

[e-a+f3+y+fj(r+~)]" =0, 

[e- a+f3 +y+fj(P+r)]' =0. 

(16a-b) 

( 16a-d) 

Inserting Maxwell's conditions (12) into these equations, 
we obtain 
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Taking another choice of the integration constants we repre­
sent our solution in a simpler form: 

e2a = (MN!A 2C)(ut + I)n+ m - 3(rt + I) - n- m - 3, 

e2f3 =N(ut+ l)n-l(rt+ 1)-n-1, 

e2y = qut + 1)( rt + I), 

e215 =M(ut+ I)m-l(rt+ l)-m-l. (21) 

Then 

d~= (MN!A 2C)(Ut+ l)n+m-3(rt+ 1)-n-m- 3 dt 2 

-N(ut+ I)n-l(Tt+ l)-n- 1dx2 

- qut + I) (Tt + I)dy2 

(22) 

A final transformation and rescaling of the metric (22) yield 

ds2= T-n-m-3(b_aT)n+m- 3dT 2 

- T -n- I(b _ aT)n-1 dx2 - T(b - aT)dy2 

- T -m-I(b - aT)m-1 d~. (23) 

Here a and b are constant parameters satisfying the condi­
tions 

b = 1 + a, a = Kk 2!81T;;;'0, (24) 

so that b;;;.l. 
We now obtain for the proper stress in (15), for the 

electrically neutral stiff matter, 

p = [b 2(mn _ 1)!4K1Tn+ m+ I(b _ aT) -n-m+ I, 

(25) 

and for the electromagnetic field invariant, 
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(17) 

(18) 

(19) 

(20) 

r 
F(I')(v)F(I')(V) = - (161T!K)aT n + m + 2(b _ aT) - n - m + 2. 

IV. LIMITING CASES AND THE PETROV 
CLASSIFICATION OF THE NEW SPACE-TIME 

(26) 

We consider first the case when a = 0 (the electric field 
being switched off). Then the metric (23) takes the form 

ds2 = T - n - m - 3 dT 2 _ T - n - 1 dx2 

- Tdy2- T -m-I d~, 

with the pressure 

p= [(mn-I)!4K1Tn+m+l. 

(27) 

(28) 

One recovers the seed metric (4) after performing a trans­
formation 

and assigning to m and n the values m = - 2, 
n = - (1 + 1/ A); corresponding rescalings of x, y, and z 
are to be performed simultaneously. The new solution (27) 
is more general than the metric (4): In our new space-time a 
complete spatial anisotropy is present even in the absence of 
an electric field. Moreover, one can also "switch off" the 
perfect fluid by putting mn = 1, which leads to p = P = 0, 
leaving us with a mere vacuum. The resulting metric, 

ds2 = T - n - (lin) - 3 dT 2 _ T - n - 1 dx2 _ T dy2 

_ T - (lin) - 1 dz2, (29) 

coincides with the Kasner solution. 
One may, on the other hand, keep a nonvanishing elec-
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tric field but put mn = 1; then the stiff matter disappears, 
and only the electric field is retained. 

Of course, all the cases with electric field without 
sources can be reformulated to the corresponding cases with 
magnetic field (dual to the initial electric one) or mixtures of 
the both fields (duality rotation!), since the electromagnetic 
stress-energy tensor is the same in all these cases. Originally, 
Vajk and Eltgroth2 did consider the case of a magnetic field 
(but not with the stiff matter as we do here). 

We now apply the Petrov classification procedure as 
outlined in Ref. 5; the first step is to calculate the Weyl ten­
sor components. In the orthonormal tetrad (10) the Rie­
mann curvature components (14) yield 

C(O)(3)(O)(3) = C(2)( 1)( 1 )(2) 

= (e - 2a 16) [ap + ay - /3 - P 2 - pb - r 

- r - yb + 2(~ + b2 
- ab + Py)]' 

(30a) 

C(O)(2)(O)(2) = C(3)(I)(I)(3) 

= (e - 2a 16) [ap + ab - /3 - P 2 - ~ - b2 

- py - yb + 2 ( r + r - ay + pb) 1, 
(30b) 

C(O)( 1 )(0)( I) = C(3)(2)(2)(3) 

= (e-2a/6)[ay+ab-r-r-~-82 

- py - pb + 2(/3 + p2 - ap + y8)] 
(30c) 

(all other independent components vanish identically). 
Now we pass to the Newman-Penrose (NP) basis, 

e(O) = (11../2)(0(0) + 0(1) = k, 

e(1) = (1/../2)(0(0) - 0(1» = /, (31) 

e(2) = e(3) = (11../2) (0(2) + iO(3» = m, 

in which the NP components of the Weyl tensor are 

C(O)( 1 )(0)( I) = - C(3)(2)(3)(2) = C(O)( 1 )(0)( I)' 

C(O) (2) (0) (2) 

= - C(3)(I)(1)(3) = C(O)(3)(O)(3) = - C(2)(I)(I)(2) 

= !(C(O)(2)(O)(2) - C(O)(3)(O)(3»' (32) 

The corresponding spinor Weyl coefficients take the form 

"'0="'4= W=iTn+m+l(b-aT)-n+m+1 

X [12a2T2 - 2abT(m + 2n + 6) 

+ b 2 (n + l)(m + 2)], 

"'2= V=-ATn+m+l(b-aT)-n+m+1 

X [ - 12a2T2 + 2abT(3m + 6) 

- b 2(3m + mn + 2)], 

"'1="'3=0, (33) 

when our metric coefficients (23) are substituted. 
In general, if W =/- 0, we come to the Petrov type I, but if 

W = 0, V =/-0, the space-time degenerates into the type D, 
and if W = V = 0, the space-time becomes conformally flat 
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(type 0). If a =/-0, we have W = 0 at the instants 

T ± = (b/12a) 

X [m + 2n + 6 ± (m 2 + 4n2 - 8mn + 12)1/2], 
(34) 

at all other times the Petrov type I being the case. Wand V 
can vanish simultaneously (the Petrov type 0) when either 
m = n (case A) or at TI = b 12a (case B). In case A, type 0 
is realized at both times, T + and T _. In case B this occurs at 
TI = T _ only, and moreover, mn = 1; hence p = 0 [cf. 
(25) ]. Thus this second case takes place for electrovacuum 
without any stiff matter; at the instant T + we have the Pe­
trov type D since only W vanishes here, and not V. Other­
wise, if it is only W that vanishes at T + and T _, the space­
time is instantaneously of type D there, being algebraically 
general at all other times. In the absence of the electric field 
(a = 0), the Petrov type does not change in time, so that 
type D takes place when either n = - 1 or m = - 2, or 
both, but n=/-m, and the Weyl tensor vanishes altogether, 
when m = n, (n + 1) (n + 2) = 0 (type 0). 

v. CONCLUDING REMARKS 

The Einstein-Maxwell field (23), (24), (7) with neu­
tral stiff matter (15), and (25) is a new exact self-consistent 
solution of the corresponding field equations and equations 
of motion. This solution demonstrates the effectiveness of 
the conjecture 1 that the electromagnetic four-potential of 
such a field (7) (divided by k) coincides with a Killing co­
vector of the same metric when k = O. This is the Killing 
vector (its contravariant version being ay ) of the metric 
(27) which itself generalizes the initial seed metric (4). The 
latter is of the Petrov type D, while the new space-time (27) 
(stiff matter without electromagnetic field) is algebraically 
general, if it is not specialized to (4) or to the cases men­
tioned in the final lines of the previous section. 

We do not discuss here the singularities encountered in 
the space-times under consideration, as well as the range of 
determination of the variable T. They depend on a specific 
choice of the parameters a, m, and n in the metric (23), as do 
the eventual conclusions about the real existence and the 
finiteness of the loci T = ± 00 in the space-time (23). 
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Variation of the R + aR 2 action with respect to independent metric and connection fields is 
shown to be equivalent to the metric-compatible fourth-order gravity coupled to a vector 
defined as a function of the trace of the energy-momentum tensor. The field equations are 
second order. The Friedmann cosmology based on this model is studied and it is shown to 
include nonsingular solutions at t = O. 

I. INTRODUCTION 

Actions composed of the Einstein scalar curvature term 
plus quadratic powers of curvature and cosmological models 
based on these actions have been around for decades 1-10 de­
spite the apparent increase in mathematical complexity, 
mainly because such theories seem to lead toward a less di­
vergent quantum theory and a reasonable high-energy ex­
tension of the standard theory of general relativity (GR). 
Certain classes of these higher-order theories have been 
shown to yield either unitary, II or renormalizable l2.13 quan­
tum theories while some others seem to be haunted by 
ghosts. 

In general, since curvature is defined in terms of second 
derivatives of the metric tensor, an action with n powers of 
curvature yields field equations of order 2n if the metric is 
assumed to be the only dynamical field. In fact, all the good 
and bad properties of higher-order theories are due to the 
increase in the order of the field equations. Attempts have 
been made to exorcise these theories by going to a higher 
number of dimensions and adding dimensionally continued 
Euler-invariant combinations of higher powers of curvature 
such that the field equations are nevertheless second or­
der. 14,15 Dimensionally continued Euler invariants have also 
been predicted in the low energy limit of some Superstring 
th . 1617 d d . . eones ' an some seem to a mit spontaneous compactl-
fication. 18,19 

While resorting to higher dimensions and considering 
Euler-invariant contributions to the Einstein action may be a 
promising route to take, here, we suggest an alternative route 
which is by no means a new one.2,7,8 We suggest obtaining 
second-order equations from quadratic actions by following 
the Palatini formalism of treating the metric tensor and the 
connections as independent fields, which we call the first­
order formalism. Although such suggestions have been 
made previously in the context of gauge theories,20 no con­
crete calculations exist to our knowledge. This may be be­
cause of ambiguities in interpretation and, therefore, a lack 
of a recipe for calculations. 

Recently,21 however, it was shown that first-order treat­
ment of the simple R + R 2 action yields a conformally met­
ric theory, which implies breakdown of the Einstein equiv­
alence principle due to a breakdown of conformal symmetry. 
Since R 2 contributions are insignificant now, such a viola-

a) Present address: Jet Propulsion Laboratory, 301-150, California Institute 
of Technology, Pasadena, CA 91109. 

tion would not be observable at this time, At the time when 
curvature becomes significantly large, quadratic contribu­
tions will become important and a framework in which to 
include such contributions was developed. With the formal­
ism of the R + R 2 gravity developed in the first-order re­
gime, we will attempt to look at cosmology in four dimen­
sions. 

Although working with second-order equations is one 
reason to treat the metric and the connections independent­
ly, our motives here are more fundamental; namely, preserv­
ing generality. There are no a priori reasons to assume metric 
compatibility in the strong curvature epoch. Furthermore, 
there is no reason to assume the metric as the only indepen­
dent field describing gravity at early times. In fact, one 
would hope that the relation between the metric and the 
connections would emerge from a more fundamental princi­
ple such as the principle of least action. There is no better 
example of this than GR itself where first-order variation of 
the action, yields metric compatibility automatically. 

Therefore, we will show that in the case of R - aR 2 

gravity, the first-order formalism action can be rewritten in 
terms of the metric compatible fourth-order part plus contri­
butions from the metric-incompatible part of the curvature. 
Fourth-order gravity can thus be thought of as a special case 
of the theory constructed in this manner namely, where the 
latter contribution vanishes. In general, however, the met­
ric-incompatible part can modify the fourth-order theory 
significantly. We will show that in the case of cosmology 
there exists a solution without singularity at t = O. Expected­
ly, the size of the universe at this time is ofthe order of the 
free parameter of the theory, a, introduced by the quadratic 
contribution. 

One must also mention the work of Whitt22 which 
seems to resolve the problem of dealing with fourth-order 
equations. This is done by solving, in a conformal space, the 
pure Einstein gravity coupled to a scalar field. However, we 
feel that there, also, generality has been lost due to the as­
sumption of metric compatibility. 

In the first part of this paper, we will start with the dis­
cussion of the field equations as derived in the two forma­
lisms. We will show that requiring metric compatibility of 
the connections after the action has been varied with respect 
to the connections and the metric independently, leads to the 
recovery of the fourth-order equations. In the second part, 
we will apply the field equations derived and the method 
described in Ref. 21 to the classical Friedmann cosmology of 
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a spherically symmetric ball of dust described by the Robert­
son-Walker metric. We will show how under certain as­
sumptions the equations of cosmology evolve into the stan­
dard GR equations. The conventions used here are those of 
Weinberg. 23 

II. THE FIELD EQUATIONS 

A detailed derivation of the first-order field equations 
can be found in Ref. 21. Here we give a short summary. Let 
us start with the simplest unitary action: 

d= J ..r=g(R-aR2+Tmatter)d4x, (2.1) 

where R = R,..v gl-'v. The Ricci tensor R,..v is now a function 
of the connection field and its derivatives and its variation in 
a geodesic frame, neglecting torsion, can be written as 

oR,..v = V .. dor",..v) - Vv (or",..,,). (2.2) 

Assuming that T matter is independent of the connections, 
varying the full action now with respect to the metric g,..v and 
the connections r",..v, respectively, gives 

R,..v - i g,..vR - 2aR (R,.." - ! g,.."R) = - 81TGT,.." 
(2.3 ) 

and 

v,..(~ -gg"P(1- 2aR» = O. 

Manipulating the last equation yields 

Vag,..v = bag,..v' 

where 

b,.. = 2aR,,../( 1 - 2aR). 

(2.4) 

(2.5 ) 

(2,6) 

The connections can then be derived, using Eq. (2.5) as 

r",..v = i g"6(g6,..,v + g6v,,.. - g,..",6) 

(2.7) 

The above two equations represent the main deviations from 
GR. The former exhibits violation of the Einstein equiv­
alence principle (EEP) and the latter exhibits separation 
from metric compatibility by the additional contribution to 
the first term, the Christoffel connection. It should be noted 
that deviations are of order a which can be important only 
when aR 2 contributions are comparable to R. This is ex­
pected to occur around planck time. 

In order to interpret the results in terms of the more 
familiar fourth-order gravity, one can rewrite all the geomet­
ric tensors in terms of their metric compatible counterparts 
plus contributions from the vector b,... In particular, we get 

R,..v = R (O),..v - ~D,..bv + iDvb,.. - !g,..vD·b 

(2.8) 

and 

R = R (0) - 3D' b + ~ b 2. (2.9) 

Here, the superscript (0) denotes the metric-compatible 
quantities and D,.. is the corresponding covariant derivative. 
The inner products are with respect to the metric. Now, one 
can rewrite the original action, aside from the matter contri­
bution as 

2430 J. Math. Phys., Vol. 31, No.1 0, October 1990 

A = J ..r=g(.?c + .?ne )d 4x, 

where 

(2.10) 

'?c=R(0)_a(R(0»2 (2.11) 

is the metric-compatible fourth-order action which is usual­
ly considered in higher-derivative gravity and 

.? ne = - 3D'b(1 - 2aR (0» + ~b2(1 - 2aR (0» 

- a[9(D'b)2 + ~b4 - 9(D·b)b 2]. (2.12) 

Thus'? ne represent the metric noncompatible addition that 
is ignored if one works with fourth-order action to begin 
with. This Lagrangian includes a massive vector field b,.. 
with couplings to itself and the curvature. 

First-order formalism therefore provides a general 
treatment of quadratic gravity which is equivalent to a theo­
ry of fourth-order gravity coupled to a self-interacting mas­
sive vector field. In the limit where b,.. vanishes, the usual 
fourth-order theory is recovered. Furthermore, this proce­
dure replaces the fourth-order field equations by two sets of 
second-order equations (2.3) and (2.4). 

One might consider gauging away the b,.. field by a con­
formal transformation given by 

g',..v = 0(X)2g,..v' 

and 

b'" =b" +20- 10,,,. 

(2.13 ) 

(2.14) 

However, if the energy-momentum tensor has a non vanish­
ing trace, b,.. is defined via Eq. (2.6), and the trace of Eq. 
(2.3 ): 

R = 81TGT, 

(2.15 ) 

For conformally noninvariant matter, given the trace ofthe 
energy momentum tensor T, b,.. is fixed and cannot be 
gauged away. 

III. FRIEDMANN COSMOLOGY 

Having derived the necessary ingredients for calcula­
tions, we will now look at a practical aspect, namely cosmol­
ogy. We assume spherical symmetry, homogeneity, and iso­
tropy of the early universe presented by the Robertson­
Walker metric: 

dSZ= -c2dt 2+a(t)2 

X + r 2 d() 2 + r 2 sin2 
() d¢i . 

( 
~2 ) 

1-Kr2 
(3.1 ) 

We will confine ourselves to the spatially flat (K = 0) case at 
this time. However, the upcoming arguments can easily be 
generalized to the K = ± 1 cases. The energy momentum 
tensor is that of a perfect fluid: 

(3.2) 

where p and p are the pressure and mass density, respective­
ly. The conservation laws are given as in Ref. 21 by 

(3.3 ) 

G"'" being the Einstein tensor, which interestingly yields 

Bahman Shahid-Saless 2430 



                                                                                                                                    

d 3 d ( 3) -(pa)= -p- a . 
dt dt 

(3.4 ) 

The vector bl' is now given by Eq. (2.13) and is a timelike 
vector. It is convenient to introduce the variable U defined as 

U = I - 2aR = I - 161TGa(3p -p), (3.5) 

and assume an equation of state given by p = (r - 1) p, 
which together with Eq. (3.4) gives 

(3.6) 

where Po and ao are constants. 
The two independent equations of motion are then given 

by 

1 d 2a 3 dbo 3 da 
3-----------bo 

a dt 2 2 dt 2 a dt 

= _ 81TUG {p _ U
2 

- 1 } 
641TGa ' 

_ J.... d
2
a _ 2(J.... da)2 

a dt 2 a dt 

( 
5 1 da 1 dbo 1 2) + ---bo +----- (bo ) 
2 a dt 2 dt 2 

= _ 81TG {p + U
2 

- 1 } . 
U 641TGa 

(3.7) 

(3.8) 

Note that in the limit a --+0, U --+ 1 the field equations reduce 
to those ofGR. Using Eqs. (3.5) and (3.6), U can now be 
written in terms of aU) and its derivatives and, after some 
manipulations, one arrives at 

(
J....da)2=.!.1TG (1+(3r/4)(1IU-l»), (3.9) 
a at 3 P [1 + ~r(1IU - 1)] 2 

where, now, 

U = 1 - 161TGa(3r - 4 )Po{aolaU»3 1'. (3.10) 

Equation (3.9), together with Eq. (3.10), can now be in 
principle solved. 

It is interesting that GR limit is automatically satisfied 
as the expansion parameter a ( t) ilwreases. This is a rather 
desirable property since we know that GR explains the pres­
ent epoch successfully. We will examine the behavior of the 
solutions ofEq. (3.9) by considering a particle in an effective 
potential given by 

V(a) = _ .!.1TG (a) (1 + (3r/4){l/U(a) - 1») a2, 
3 P [1+~r(1/U(a)-1)]2 

(3.11 ) 

and total energy: 

(
da)2 E = -;;; + V(a) = O. (3.12 ) 

The behavior of the soutions ofEq. (3.12) can be studied by 
analyzing the shape of the potential V( a), as a function of 
parameter r and the sign of a. 

We plot V(a) as a function of a(t) for 0 < a(t) < 00. 

Ruling out r < 0, there are four possible scenarios: 
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Case (i): a>O, r>4/3, 

Case (ii): a>O, 0<r<4/3, 

Case (iii): a<O, r<4/3, 

Case (iv): a<O, 0<r<4/3. 

The potential V(a) has two possible zeros, at U(a) = 0 and 
U(a)=UI =3rl(3r-4) corresponding to a=Q 
=ao(161TGa(3r-4)pO)1/31', and a=QI =ao {-41TGa 
X (3r - 4 )2Po)1/31', respectively, as shown by Figs. 1-4. The 
total energy is given by the E = 0 axis and thus the physical 
solutions are those where E> V(a). If desired, one can gen­
eralize to the K = ± 1 by considering E = ± 1 for the 
closed and open universe scenarios. Let us now study the 
behaviour of aU) in the above cases. 

A. Case (i) 
This is one of the most striking cases. The effective po­

tential introduces a barrier in the first few time constants. 
The t = 0 singularity is therefore avoided. The wall crosses 
the E = 0 axis at U = 0, a = o. To see the behavior of a(t) at 
this point, we note that Eq. (3.9), at U::::;O can be written as 

8 (ao)31' 
=-1TGpo -

97 a 

X [1 - 161TGa(3r- 4)Poe: yY] . (3.13) 

The solution is found exactly: 

(3.14) 

Thus at t = 0, a = 0 and the parameter a determines the 
initial size at t = O. One can show that the second derivative 
of a (t) at t = O.is positive and becomes negative at later 
times. Solving Eq. (3.9) numerically demonstrates this as 
shown in Fig. 5. The plot illustrates the evolution of a(t) for 
r = 5/3. At large t, the potential gradually increases and 
thus the expansion rate slows down as kinetic energy de­
creases. 

B. Case (ii) 

In this case, the potential V(a) does not meet the E = 0 
axis and stays in the negative region at all times. The a = 0 
singularity resembles that of GR and the scenario is that of 
big-bang. The expansion slows down as kinetic energy de­
creases in later epochs. 

C.Case(iii) 

This is simillar to case i, except that the potential has its 
zero at a = 0 1 , Again, the potential barrier avoids the initial 
singularity. 

D. Case (iv) 

This is the only case where V(a) has two physical zeros. 
The hump produced by the potential offers two classically 
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V(a) y > 4/3 

V(a) a > 0 0 < y < 4/3 

V(a) a < 0 y > 4/3 

V(a) a < 0 0 < y < 4/3 

a(t) 

FIG. 1. Energy diagrams: The effec­
tive potential V( a) is plotted against 
the expansion parameter a. The hori-

a zontal axis represents total energy 
E=O. 

FIG. 2. Same as Fig. 1. 

a 
FIG. 3. Same as Fig. 1. 

FIG. 4. Same as Fig. 1. 

a 

1\ a 
y= 5/3 FIG. 5. Time evolution of the ex­

pansion parameter a (1) for 
a= 1, Y= 5/3. 
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distinct regions; a negatively unbound region between a = 0 
and a = 0 1 which results in a "big crunch," and a universe 
bouncing between a = 0 and a = C1J. 

Although the shape of the effective potential introduces 
new possibilities that may exist in the early times, one cannot 
take these effects too seriously. After all, we have said noth­
ing of quantum effects themselves which are expected to be 
prominent at early stages. We must, therefore, emphasize 
the very speculative nature of this work and appreciate the 
results at their face value. 

IV. CONCLUSIONS 

We have used the prescription given for the first-order 
treatment of a gravitational action, composed of the Einstein 
term plus a quadratic in the scalar curvature, to discuss the 
classical properties of the implied field equations and to 
demonstrate a physical calculation where implications of 
this formalism can differ from the usual fourth-order results. 
The advantages and the results of taking this route are as 
follows. 

(a) The formalism does not make the assumption of 
metric compatibility. One can envision a scenario where 
metric compatibility is a low-energy limit property of space 
time. The first-order treatment of the quadratic action is, 
therefore, an extension of the fourth-order gravity in genera­
lity. 

(b) The field equations are only second order so the 
usual difficulties with fourth-order equations are bypassed. 
The difficulties, however, are replaced by the addition of a 
vector that is interpreted as a contribution of the stress-ener­
gy tensor to the connections. 

(c) In the standard Friedmann scenarios, the long-time 
limit of the evolution equations yield metric compatibility 
and the standard cosmological models based on general rela­
tivity are recovered. 

(d) One can find solutions in cosmology with no singu­
larity at t = O. 

It would be interesting to study the Kaluza-Klein sce­
nario. It is reasonable to hope that since singularity can be 
avoided under certain assumptions, one could stop the col­
lapse of the extra dimensions by this procedure. Also, the 
study of the semiclassical approximation in this formalism is 
ofinterest. A natural question arises: Is metric compatibility 
a classical limit of a quantum theory of gravity? This is cur­
rently under consideration by the author. 
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Petrov type III, shear-free, perfect fluid solutions of the Einstein field equations, with a 
barotropic equation of state p = pew) satisfying w + p=/=O, are investigated. It is shown that if 
the ac~ele~ation of the fluid is orthogonal to the two-spaces spanned by the repeated principal 
null duectlOn ofthe Weyl tensor and the fluid four-velocity, or ifthe fluid four-velocity lies in 
the two-spaces spanned by the principal null directions of the Weyl tensor, then the fluid's 
volume expansion is zero. 

I. INTRODUCTION 

There is now considerable evidence in the literature that 
supports the conjecture that general relativistic, shear-free 
perfect fluids which obey a barotropic equation of state 
p = pew) such that w + p=/=O, are either nonexpanding or 
irrotational. For example, this conjecture is known to hold in 
(i) all dust space-times (Ellis I ), (ii) conformally flat space­
times (Ellis2

), (iii) spatially homogeneous space-times 
(King and Ellis3 and White4

), (iv) shear-free radiation, 
p = jw (Treciokas and Ellis5 ), (v) the case when the fluid 
vorticity (Ua and acceleration ua are parallel (White and Col­
lins6 

), and (vi) the case when the magnetic part of the Weyl 
tensor, with respect to the fluid flow, vanishes (Collins7

). 

More recently, the conjecture has been shown to hold for 
type N space-times (Carminati8 

) and for the case when the 
fluid's expansion and energy density are assumed to be func­
tionally dependent (Lang and Collins9 

), and thus includes 
hypersurface-homogeneous space times. 

Shear-free fluids with a barotropic equation of state are 
of considerable interest in cosmology from both the theoreti­
cal and observational point of view 10 (Friedmann-Robert­
son-Walker models, G6del solution, the spherically sym­
metric but spatially inhomogeneous Wyman solution, etc.). 
For example, certain observational aspects of shear-free 
fluids that are relevant to cosmology are most readily high­
lighted when one considers the formulas for recessional mo­
tion, relative red shift, and transverse motion of neighboring 
galaxies.2 It then readily follows that shear-free fluid solu­
tions would retain the desirable feature of isotropy of local 
motion but allow the galactic red shift to be anisotropic if 
ua=/=O (the relative measure of this anisotropy would be giv­
en by the ratio 31ua 110, where 0=/=0 is the volume expan­
sion). Consequently, there would be a preferred direction, 
which coincides with that of ita' as indicated by the maxi­
mum red shift. In addition, if the fluid is nonrotating, the 
transverse motion of neighboring galaxies has an isotropic 
evolution. On the theoretical side, the general validity of the 
conjecture together with the possibility that relativistic ki­
netic theory requires perfect fluids to be shear-free,5 would 
impart a sense of uniqueness I I to the Friedmann-Robert­
son-Walker cosmological models since it has been shown 

a) On Outside Studies Leave from the School of Mathematical and Physical 
SCIences, Murdoch University, Murdoch W.A., 6150, Australia. 

that they are the only physically reasonable space-times 
which represent an expanding, shear-free, irrotational per­
fect fluid, on a global scale. 

Finally, it is interesting to note that there are Newtonian 
self-gravitating, shear-free fluids that are expanding and ro­
tating.2 Therefore, if the conjecture were to be generally val­
id, then it would be a result that would highlight certain 
essential differences between fluid dynamics in Newtonian 
theory and in general relativity. 

This is the second in a series of papers dedicated to the 
study of the general validity of the above conjecture in alge­
braically special space-times. We shall show that for any 
shear-free, perfect fluid source with p = p (w) and w + p=/=O, 
of a type III space-time where either the acceleration of the 
fluid is orthogonal to the two-spaces spanned by the repeated 
principal null direction of the Weyl tensor and the fluid four­
velocity, or the perfect fluid is aligned with the Weyl tensor, 
then the fluid's volume expansion is zero. 

The plan of this article is as follows. Section II contains 
the main result in the form of a theorem. The proofis given in 
Sec. III, and Sec. IV contains some concluding remarks. 
This paper presupposes a knowledge of the Newman-Pen­
rose (NP) formalism. All considerations will be local. We 
have chosen geometrized units so that 81TG = 1, c = 1, 
where G is the Newtonian gravitational constant and c is the 
speed of light in vacuum. Our conventions for the Riemann 
and Ricci tensors and the signature of the space-time are 
those ofNP. 

II. THE MAIN RESULT 

In this article, we shall be investigating Petrov type III, 
perfect fluid solutions of the Einstein field eguations,12 

Rab - !Rgab = - Tab, 

where 

(2.1 ) 

Tab = (w + p)uaub - pgab' uaua = 1, (2.2) 

in which the fluid congruence is shear-free and the pressure 
satisfies a barotropic equation of state, 

p = pew). (2.3 ) 

Our main result is the following. 
Theorem: Consider any Petrov type III, shear-free per­

fect fluid solution of the Einstein field equations, with a baro-
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tropic equation of state p = p ( w) satisfying w + p=/=O. If the 
acceleration of the fluid is orthogonal to the two-spaces 
spanned by the repeated principal null direction ofthe Weyl 
tensor and the fluid four-velocity or if the fluid four-velocity 
lies in the two-spaces spanned by the principal null direc­
tions of the Weyl tensor, then the fluid volume expansion is 
zero. 

III. PROOF OF THE THEOREM13 

Let Cabcd and Ua denote the Weyl tensor and four veloc­
ity of the fluid, respectively. The assumption that Cabcd is of 
Petrov type III seems to naturally lead to the following spe­
cialization of the principal null tetrad {/,n,m,m}. First, I is 
chosen to be the repeated principal null direction of the Weyl 
tensor so that 

Cabc(dlelc=O, Cabcdld#O. (3.1) 

Therefore the NP Weyl tensor components satisfy 

1J10 =1J1 1 =1J12 =0, 1J13#0. (3.2) 

Next, by a null rotation that leaves I fixed, it is possible to 
make n lie in the two-spaces spanned by I and u. Finally, by 
rescaling I and n it is then possible to achieve 

u=2- 112(/+n). (3.3) 

From Eqs. (2.1)-(2.2) and (3.3), it follows that the NP 
components ofthe trace-free Ricci tensor Sab =Rab - !Rgab 
satisfy 

ct>01 = ct>12 = ct>02 = 0, 

ct>oo =ct>22 =2ct>11 =!(w+p). 

The Ricci scalar R=24A is given by 

R = w- 3p. 

(3.4 ) 

(3.5) 

(3.6) 

It should be noted that the tetrad is still not fixed uniquely. 
The remaining tetrad freedom is expressed by the rotation 

(3.7) 

where 5 is a real function. 
The shear tensor U ab , vorticity tensor Wab' and expan­

sion (;1 ofthe fluid four-velocity (3.3) are given byl4 

U ab =AI (VaVb - m(amb) +A2V(a m b) +A2v(a m b) 

+ A3mamb + A3mamb' (3.8) 

Wab = BI v[amb 1 + BI V[amb 1 + B2 m[a m b I' (3.9) 

and 

(;1=2- 112(E+"€-r-r-p-p+p+ji), (3.10) 

where 

AI = _p-1/2{p+p_p-ji+2(E+"€) -2(r+r)}, 

A2 = -!fr+1T+2(a+,8) -if-v}, 

A) = 2 - 112(0- - A), 

B I = H r + 1T - 2 (a +,8) - if - v}, 

and 

B 2 -112{p - -} 2=- -p+p-p, 

Va =2- 112 (/a -na)' 

Therefore, the fluid is shear-free if and only if 

p+p-p-ji+2(E+"€) -2(r+r) =0, (3.lla) 

r+17"+2(a+.8) -K- V=O, (3.llb) 

0- - ,.1,= O. (3.l1c) 

Next, using Eqs. (3.2), (3.4)-(3.6), and (3.11), the NP 
form of the Bianchi identities, after some straightforward 
manipulations, reduce to the following equivalent set 

(D + ~)w = 3(w + p)(r+ r - E- E'), 

jJ(~ - D)w = (w + p)(E +"€ + r + r), 

Dw = 3 (w + p) (a + /3), 

0-=,.1, =0, 

K = 17" + (1 + 3jJ)(a + /3), 

Dw = 12K1J13 + ~(w + p)(p - p), 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

(3.12e) 

(3.12f) 

DIJ13 = 2(p - E)1J13 - KIJ14 + !(w + p)(a + ,8), 
(3.12g) 

DIJ13 =2(K+r-/3)1J13, (3.12h) 

DIJ14 - 81J13 = 2(a + 21T)1J13 + (p - 4E)1J14 , (3.12i) 

DIJ14 - ~ 1J1) = 2( r + 2p) 1J13 + (r - 4.8) 1J14 

+~(w+p)(a+,8), (3.12j) 

where ~. ~ denotes differentiation with respect to w. 
Henceforth, we shall assume that jJ (1 - 3jJ) # 0, as the 

conjecture essentially has been proven in the cases when 
jJ = 0 (Ellisl) and when jJ = j (Treciokas and Ellis5

). 

Equations (3.11) and (3.12) imply 

24KIJ1) = (w + p){~(p - p + p- ji) 

-(lIjJ)(E+"€+r+r)}, (3.13) 
and 

r = v + (3jJ - l)(a + f3). (3.14 ) 

Combining some of the NP Eqs. (4.2), together with Eqs. 
(3.11 )-( 3.12) yields 

D(p-ji) = (a+.8)[p+p+3jJ(p-p+p-ji)] -\il3, 

(3.15a) 
D(a +.8) - D(E +"€) 

and 

= (a + .8)(p - 2E') + 17"(p + E + E') 

- K(p + r + r), 

D(r+ r) - ~(a +.8) 

= - v(p + E + "€) + (a + .8)(p - 2r) 

(3.15b) 

+r(p+r+r)+\il3' (3.15c) 

Applying the commutator [D,~ + D] to w yields 

D(p-p) -2(~+D)(a+.8) = (2!3jJ)(r+17")(E+E'+r+r) +6jJ(a+.8)(r+r- E-E') + (a +/3) 

X [p - 2r + 2y - 3p - 2E + 2E' - 3jJ(p - P + p - ji)] + \iI 3' (3.16 ) 
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where use has been made ofEqs. (3.11), (3.12), and (3.15). 
Similarly, consideration of [8, a - D]w leads to 

2(a + D)(a + tJ) 

= (r + iT) Cp - P + ji - f-L) + 2 (a + tJ) 

x [,0 - f-L + 2r - 2£ 

+ 3P(€ + £ - r - Y)]· 

Equations (3.16) and (3.17) imply 

0(,0 - f-L) = (r + iTH (2I3P)(€ + £ + r + Y) 

+,o-p+ji-f-L] 

+ (a + /3)[ p - ji - 2f-L 

(3.17 ) 

-3P(p-,o+f-L-ji)] +qi3' (3.18) 

Applying ° to Eq. (3.11 b) yields 

o(a + tJ) = (a + tJ)(a + 3tJ + 2r - 2v) + 1qi4' (3.19) 

so that ° may now be applied to Eq. (3.12e) with the result 
that 

2(a + tJ)2[ (l + 3P)(3P - 1) + 9p(w + p)] 

+ '1'4 (1 + 3P) = o. (3.20) 

Next, applying ° to Eq. (3.13) with subsequent use of Eqs. 
(3.12c), (3.14), (3.15), (3.17), and (3.18) leads to the im­
portant relation 

qi3 (l + 3p) - (€ + £ + r + Y) 
X[2r+ (3plp)(w+p)(a+tJ)] +Hp-,o+f-L-ji] 

X [v(l + 3p) + r(3p - 1)] = O. (3.21) 

By applying the commutator [8,0] to w, we obtain 

(lIP)(€ + £ + r + y)(p - ,0 + ji - f-L) 

+ 3 (,0 - p + ji - f-L)(f-L + ji + € + £ + r + Y) = 0, 

(3.22 ) 

where use has been made ofNP Eqs. (4.2) and Eqs. (3.12). 
Combining Eqs. (3.13), (3.21), and (3.22) yields 

(€ + £ + r + r){( 1I2P) [p - ,0 + ji - f-L] [KV( 1 + 3p) 

+ Kr( 3p - 1) - ~ (w + p) (l + 3p) ] 

- (3IP)[f-L+ji+€+£+r+y] 

X [2PK1' + -b(w + p) 

X (l + 3P) + 3p(w + p)K(a + tJ)]} = O. (3.23) 

Thus we are naturally led to distinguish two separate cases: 
(a) € + € + r + Y = 0 and (b) € + € + r + Y#O. Since the 
acceleration vector14 ua is given by 

ua =2- 1/2(€+£+r+y)va +!(1T-7-K+v)ma 

(3.24 ) 

it follows that the condition € + £ + r + Y = 0 can be inter­
preted geometrically as the requirement that the accelera­
tion vector lie in the two-spaces spanned by m and iii; i.e., 

ulambmcl = O. (3.24') 

We begin the proof of the first part of the Theorem by assum­
ing 

€+£+ r+ Y=O. (3.25 ) 
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From Eq. (3.22), we immediately find that either 

f-L + ji = 0, (3.26) 

or if f-L + ji # 0, then 

p-,o+f-L-ji=O. (3.27) 

Case I: f-L + ji = O. 
It follows from Eqs. (3.13) and (3.21) that either 

,0 - P - 2f-L = 0, (3.28) 

or if,o - P - 2f-L # 0, then 

(l + 3p) (w + p) - 8K( v[ 1 + 3P] + r[3p - 1]) = O. 

(3.29) 

Case IA: ,0 - P - 2f-L = O. 
Then, by Eq. (3.21), it follows that 

1 + 3p = O. (3.30) 

Equations (3.12e) and (3.13) immediately yield 

K=1T=O, (3.31) 

while Eq. (3.lla) leads to 

2( r + Y) = ,0 - f-L = P - ji = (p + ,0)/2. (3.32) 

Applying the operator D to Eq. (3.26) and using Eqs. 
(3.31), (3.32) with NP Eqs. (4.2), we obtain 

f-L2 + 2A = O. (3.33 ) 

Again, we apply D to Eq. (3.33) with the consequence that 

(€+£)(w+p-24A) =0, (3.34) 

and, therefore, because of (3.30), € + £ = 0 since P#O. 
Thus r + Y = ,0 - f-L = P - ji = P + ,0 = 0, and it follows 
that the fluid has zero volume expansion; i.e. () = O. 

Case IB:,o - p - 2f-L#0. 
The commutators [a,D], [o,a - D] and [o,D] applied 

to w yield 

(D - Ll)(r + Y) = (1' + iT)(a +,8) + (7 + 1T)(a + /3), 
(3.35) 

(D - Ll) (a + tJ) = (a + /3) (,0 + f-L + € - £ - 5r - 3y), 
(3.36) 

and 

o( r + Y) - D(a + tJ) 

= (a+tJ)[(2+3P)(r+Y) -,o-€+£]' (3.37) 

respectively, where use has been made of Eqs. (3.11), 
(3.12), and NP (4.2). 

Combining Eqs. (3.37) and (3.15b), we obtain 

20(r + Y) = 3(1 + p)(a + tJ)(r + Y) + 1f(p - r - Y) 

- K(f-L + r + Y), (3.38) 

while Eqs. (3.15b), (3.15c), and (3.36) imply 

(3.39) 

where, in addition, use has been made ofEq. (3.14), together 
with Eq. (3.11a) which in this case reduces to 

p+,o=4(r+Y). (3.40) 

To proceed further we need to distinguish whether or not 
(a + /3) (I + 3P) is zero. 
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Case IBU): (a + .8) (1 + 3p) :f O. 
Rewriting Eq. (3.19) using (3.20), yields the following 

useful form 

o(a +.8) = (a + .8Ha + 3.8 - 2v + 2r + H(a +,8)], 
(3.41 ) 

where 

H= [(1 + 3p) (1 - 3P) - 9p(w + p»)/(1 + 3p). 
(3.42 ) 

We may now apply the commutator [O,A - D) to a + {3, 
which, after a lengthy computation, leads to 

4(H + 9p - 3) (a + ,8) (r + Y) 
+ 4,u(a +.8) + r(p - p) - 2,uv = 0, (3.43 ) 

since (1 + 3P) (a +,8) :to. 
Next, using Eq. (3.21), which in this case reduces to 

2iii3 (1 + 3P) + (p - p + 2,u) 

x[v(1 +3P) +r(3p-l)] =0, (3.44) 

together with Eqs. (3.13), (3.14), and (3.39), we obtain 

4,u(a +,8) + r(p - p) - 2,uv = 0, (3.45) 

and thus Eq. (3.43) reduces to 

(H+9P-3)(r+Y)=0. (3.46) 

Equation (3.45) may be equivalently expressed as 

KrlJl 3 + ,u(a + .8)Q = 0, (3.47) 

where 

Q= - (1 + 3P)(w + p)/8 

= - K[v(1 + 3P) + r(3p - 1)]. 

Applying the 0 operator to Eq. (3.47) leads to 

,u (a + .8) Q ( H [a + {3) - 2K - 2v - 17' ) - ~V1Jl3 
+ Q(a + ,8)iii3 + 3,u(a + .8)2(W + p)Q = O. (3.48) 

Case IBUa): r + y:t~p + P:tO. 
We shall prove that this case is impossible. With the 

assumption that r + y:tO, it follows from Eq. (3.46) that 

H = 3(1 - 3p). (3.49) 

We now note that,u (a + ,8) Q :t o. This is shown as follows: 
If,uQ = 0, then from (3.47) Kr = 0 and hence because ofEq. 
(3.13), we must have r = O. It then follows from NP Eqs. 
(4.2) that v = 0, since K:f O. However, r = v = 0 is impossi­
ble since we have assumed (a + {3) (3P - 1):t o. Equation 
(3.49) yields 

Q IQ = (9P + 1 )/3(w + pl. (3.50) 

Multiplying Eq. (3.48) by r and then using Eqs. (3.47) and 
(3.50) leads to 

(r + 17')(v - 3r) = 0, (3.51) 

since,u(a +,8)Q :to. Suppose v = 3r. Then, Eq. (3.14) be­
comes 2r = (a +.8)( 1 - 3p), whereas NP Eqs. (4.2) yield 
iii4 = 3r(2a + 2{3 + 17' - 3K). Combining these equations 
with Eq. (3.20) gives 17' = 3K + 2(a + {3), sincer:tO, and it 
follows from (3.12e) that 2K = - 3(a + {3)( 1 + Pl. Ap­
plying the 0 operator to this equation leads to 
3p(w + p) - 2( 1 + P) (1 + 3P) = O. However, Eq. (3.49) 
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reads 9p(w + p) + 2( 1+ 3P) (I - 3P) = O. Comparison of 
these two equations immediately yields 1 + 3p = 0, which is 
a contradiction, and, therefore, the subcase v = 3r is impos­
sible. 

Next, suppose v:f 3r, then r + 17' = O. In this case, the 
commutator [O,A - D) applied to p + p leads to 
p + p = 4(a + {3), since (p + p)(a + {3) :to. Finally, ap­
plying the operator A - D to this equation yields 
p + ,u + e - "E - 5r - 3y = O. The real part of this condi­
tion isp + p = 8(r + y), which, together with Eq. (3.40), 
gives p + p = r + y = 0, which contradicts our original as­
sumption. 

Case IB(ib): r + Y = O. 
For this case, p + p = r + y = e + "E = 0 and, there­

fore, () = O. 
Case IBUi): (a + {3) = 0, (1 + 3P) :to. 
From the NP Eq. (4.21), it follows that E + "E = 0 and, 

consequently, p + p = r + y = O. From Eqs. (3.12e) and 
(3.15b), we obtain K(p-,u) =0. Since p-p-2,u 
:t~p :t,u, it follows that K = O. But, Eq. (3.13) then yields 

,u - p = 0, which is a contradiction. Thus this case is impos­
sible. 

Case IBUit): I + 3p = O. 
From Eqs. (3.12e), (3.29), and NP Eqs. (4.2), we find 

that K - 17' = r = v = a + {3 = 0, since K:tO. Next, the 
commutator [o,D] applied to w together with the preceding 
conditions leads to o( r + y> = iii 3 = 0, which contradicts 
the assumption of Petrov type III. 

Case II: ,u + ji :t 0, p - p + ,u - ji = O. 
For this case Eqs. (3.12e), (3.13), and (3.21) immedi­

ately yield 

K = 17' = 1 + 3p = 0, (3.52) 

and the commutators [o,A + D] and [o,A - D] applied to 
w lead to 

and 

D(a +,8) = r( i - ~ + e + "E) 

iii 
- (a + .8)( E + 3"E) + _3 , 

2 
(3.53 ) 

A(a +,8) = r(jil2 - pl2 - E -"E) + (a +,8) 

x (ji - p + 5r + 3y - 2E - 2"E) - iii3 /2. 
(3.54) 

Equation (3.1Ia) reduces to 

p - ji + 2(E + "E) = O. (3.55 ) 

Using Eqs. (3.53)-(3.55) together with NP Eqs. (4.2), the 
o operator applied to Eq. (3.25) gives 

iii) = 2,u(a + .8). (3.56) 

Applying the D operator to this equation yields 
(a +,8) (w + 3p) = 0, and, consequently, 

w + 3p = 0, (3.57) 

which is consistent with 1 + 3p = O. Next, the commutator 
[o,D] applied to 1J13 results in 

o(a + {J) = (a + {J)(2r - 3{3 - a). (3.58) 

J. Carminati 2437 



                                                                                                                                    

This equation may be combined with NP Eq. (4.21) to give 

T(a + P) = 7(a + Pl. (3.59) 

It will now prove convenient to consider the cases 7#0 and 
7 = 0 separately. 

Case IIA: 7#0. 
We shall show that this case is impossible. If 8 is applied 

to the complex conjugate of Eq. (3.56), it follows that 
r(p, - ji,) (a + P) = 0 and, therefore, 

p =p, p, =ji,. (3.60) 

Next, consideration of 8 applied to Eq. (3.56) and the com­
mutator [8,!l.] applied to a + p, in conjunction with various 
above equations, leads to 

D~4 = 2~4 (p, - € - 3'E), (3.61) 

and 

We may now apply [!l.,D] to p, which with subsequent use of 
various above equations and NP Eqs. (4.2) leads to 

3!l.(€ + 'E) + 3(€ + 'E)2 - 2T(a + P> = O. 

Finally, if we compare this equation withEq. (3.67), and use 
Eqs. (3.64) and (3.70), we obtain (a + P)(€ + 'E) = 0, 
which is a contradiction. 

Case lIB: 7 = O. 
In this case, we have 

V= 2(a +P). (3.71) 

The NP Eqs. (4.2) and Eq. (3.53) imply 

8(€ + 'E) = (a + P)( - p - € - 'E) + ~3/2. (3.72) 

Next, the application of the operator !l. to Eq. (3.71) yields 

!l.v= 2(a +P)(2y- 3€- 3'E-ji,), (3.73) 

where use has been made of Eqs. (3.54) and (3.55). Apply­
ing the commutator [!l.,D] to v leads to, in conjunction with !l.~4 = 8p,7(a + P) - 48(a + P) 2(€ + 'E) 

- 2~ 4 (p, + 2y + 3€ + 3'E). (3.62) various above equations and NP Eqs. (4.2), 

Equations (3.12i) and (3.61) imply 

5\113 = -2a\ll3 +\II4(2p,-p-2€-2'E). 

Applying the commutator [8,!l.] to a + P yields 

!l.1' = 7(€ + 'E - 2y - p,) - 8(€ + 'E) (a + p>, 

(3.63 ) 

and, consequently, we may now apply [8,!l.] to 7, from 
which it follows that 

(3.64) 

We note that the case € + 'E = 0 is impossible since it would 
then follow thatp, = O. Applying [!l.,D] to 7 yields 

!l.(p + p, - € - 'E) + p(p, + € + 'E) 

- (€ + 'E)2 + 2T(a + P) 

+ p,(p, - € - 'E) + 27T + wl3 = 0, (3.65 ) 

whereas consideration of [!l.,D] (a + P> leads to 

(a + P) [!l.(p + p,) + p,(2p + 3p, - 5€ - 5'E) + 47T - 3p2 

- 5p(€ + 'E) - 4T(a + P) + w13] + T~4 = 0, (3.66) 

where various above equations and NP Eqs. (4.2) have been 
used. Combining Eqs. (3.65) and (3.66) yields 

(a +P) [!l.(€+ 'E) + (€+ 'E)2 + T(27- 6a - 6P>] 

+ T~4 = O. (3.67) 

The operator D applied to Eqs. (3.55) and (3.64) leads to 

w = 6p,(2€ + 2'E - p,), (3.68) 

and 

D(€ + 'E) + (€ + 'E)2 = 0, (3.69) 

respectively. Equations (3.67) and (3.69) may now be com­
pared with NP Eq. (4.20, and, as a consequence, we find 

(€ + 'E)(8[a + P ]2 - 7r[a + P ] + 2r) - rp, = 0, 
(3.70) 

where use has been made ofEqs. (3.59), (3.64), and (3.68), 
and certain nonzero factors have been canceled throughout. 
Eliminatingp from Eq. (3.65) by using Eq. (3.55), and then 
combining Eqs. (3.69) and NP (4.20, eventually yields 

!l.p, + p,(€ + 'E) + 4T(a + P> + 7T = O. 
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D(€ + 'E) = !l.(€ + 'E) = - (€ + 'E)2, (3.74) 

where a common factor of a + P #0 has been cancelled 
throughout. Also, using NP Eq. (4.2n) together with Eqs. 
(3.58) and (3.71), we find 

(3.75 ) 

and 

(3.76) 

The operator !l. applied to Eq. (3.56) gives 

!l.~3 = -4(a+p)(p,[p,+y+2€+2'E] +wI12). 

(3.77) 
Finally, applying the commutator [8,!l.] to \113 and using 
Eqs. (3.12), (3.55), (3.56), (3.58), (3.71), (3.72), (3.77), 
and NP Eqs. (4.2m) and (4.20) yields, after a lengthy com­
putation,ji,(a + P) (a + P) (€ + 'E) = o and, consequently, 
€ + 'E = 0, since p, and a + P are nonzero. Thus we conclude 
from Eq. (3.10) that () = 0 and the first part of the theorem 
is established; i.e., U[ambmcJ = O=>(} = O. 

We begin the proof of the second part of the theorem by 
assuming 

\114 = 0, (3.78) 

which states that n is the second principal null direction of 
the Weyl tensor, so that, necessarily, the fluid four-velocity 
lies in the two-spaces spanned by the principal null direc­
tions of the Weyl tensor. From Eq. (3.20), it follows that 
either 

a+p=O, (3.79) 

or if a + P #0, then 

9p(w + p) + (1 + 3P)(3P - 1) = o. (3.80) 

Case I: (a + p> (1 + 3p>#0. 
Using Eqs. (3.11), (3.12), (3.16), (3.17), (3.19), 

(3.78), (3.80), and NP Eqs. (4.2), we may apply the opera­
tor 8 to Eq. (3.21), from which it follows that, after a very 
lengthy calculation in which the nonzero factor p2 (1 + P) 
was canceled throughout, 

Tl T2 T3 = 0, (3.81) 
where 
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T. :=3jJ(ji - p) + (1 - 3jJ)(E + £) + (1 + 3jJ)(r + Y), 

Tz:=1T+v+ (3jJ-l)(a+{3), 

T3 :=24jJv + 5(3jJ - 1)z(a + {3). 

Case IA: T. = O. 
We shall show that this case is impossible. For this case, 

we have 

3jJ(ji-p) + (1-3jJ}{E+£) + (1 +3jJ)(r+Y) =0, 
(3.82) 

which implies 

p - p + p - ji = O. 

Substituting Eq. (3.83) into Eq. (3.22) yields 

(E+£+r+Y)(p-p) =0. 

(3.83) 

(3.84 ) 

The case when E + £ + r + Y = 0 is impossible since it then 
follows from Eq. (3.82) that p-ji=2(r+Y) 
= - 2(E + E). Combining this result with Eq. (3.21) im­

mediately gives \V 3 (1 + 3jJ) = 0, which contradicts our 
original assumptions. Next, assume E + £ + r + Y:;060. 
Then, p = p, which implies p = ji. Therefore, Eq. (3.11a) 
reduces to p - p + E + £ - r - Y = O. Substituting this re­
sult into Eq. (3.82) yields E + E + r + Y = 0 which is a con­
tradiction. 

Case IB: Tz = O. 
For this case, we have 

v = (1 - 3jJ)(a + {3) - 1f, 

and, consequently, 

1" + 11'= O. 

(3.85) 

(3.86) 

Next, we consider the commutator [15,~ - D] applied to 
a + {3. After a very lengthy computation, we find that 

E+£=r+y, (3.87) 

whereEqs. (3.11), (3.12), (3.16), (3.17), (3.19), (3.21), 
(3.78), (3.80), (3.85), and NP Eqs. (4.2) have been used, 
and the nonzero factor jJ(1 - 9jJ2) has been canceled 
throughout. Equations (3.lla) and (3.87) immediately 
yield p + p = p + ji and it follows that () = O. 

Case IC: T3 = O. 
We now require that 

24jJv + S(3jJ - 1)z(a + {3) = O. (3.88) 

Applying 15 to Eq. (3.88) and using Eqs. (3.12), 
(3.14), (3.80), and NP Eqs. (4.2) leads to 8jJ1f 
+ (SjJ + 1)( 3jJ - l)(a + {3) = O. Similarly, again apply­
ing 15 to this equation yields (a + {3) (3jJ - 1) Z / jJ = 0 which 
is a contradiction. Thus this case is impossible. 

Case II: a + {3 :;060, 1 + 3jJ = O. 
Equation (3.21) yields 

1"(p - P + p - ji + 2E + 2£ + 2r + 2y) = O. (3.89) 

Now, if 1":;060, then p - p + p - ji = 0 and E + £ 
+ r + Y = 0, and consequently since this subcase is covered 
by the first part of the theorem, it follows that () = O. Next, 
we assume 1" = O. From Eqs. (3.12e) and (3.14), we have 
K = 1f, v = 2 (a + {3), and from NP Eq. (4.2p) we find that 
KV = O. Since a + {3 :;060, then K = 1f = 0, which, together 
with Eq. (3.13), yields E + £ + r + Y = 0 and the conclu­
sion that () = 0 follows. 
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Case III: a + /3 = O. 
In this case, 

K = 1f, 1"= v, 
and it follows from NP Eqs. (4.2c) and (4.2i) that 

(3.90) 

\V3 = (p - ji)(v + 1f) + 2V(E + £) - 21f(r + Y). 
(3.91 ) 

From NP Eq. (4.21), we obtain 

pp-pji+ (p-p)(r+Y) + (p-ji)(E+£) =0. 
(3.92) 

It follows from combining this equation with Eq. (3.lla) 
that either 

ji - p + r + Y - E - £ = 0, 

or, if ji - P + r + Y - E - £:;060, then 

p + ji + 2r + 2y = O. 

Case IlIA: ji - p + r + Y - E - £ = O. 
Equation (3.93) implies 

p -p =p-ji, 

and, consequently, Eq. (3.22) reduces to 

(E + £ + r + y)(p - P + ji - p) = o. 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

The case when E + £ + r + Y = 0 has already been consid­
ered, and, therefore, we shall assume E + £ + r + y:;060 so 
that p - p + ji - p = 0, which in conjunction with Eq. 
(3.94), yields 

p =p, p =ji. (3.97) 

Consideration of [15,~ + D]w together with Eqs. (3.11), 
(3.97), and NP Eqs. (4.2) leads to 

(1 - 3jJ)v + (1 + 3jJ)1f = O. (3.98) 

Next, applying the 15 operator to Eq. (3.93) eventually gives 
v = 1f and, therefore, it follows from Eq. (3.98) that 
v = 1T = 0, which is impossible since \11 3 :;060. 

Case IIIB:ji -p + r+ Y- E - £:;060. 
In this case, 

p +p + 2(E+ £) =0. 

Consideration of [15,~ + D]w and [15,D]w leads to 

(v+ 1f)(p -p +p-ji) = 0, 

(3.99) 

where use has been made of Eqs. (3.91), (3.92), (3.94), 
(3.99), and NP Eqs. (4.2). Now, if 1f + v:;060, then 
p - p + p- ji = 0 and it follows from Eq. (3.22) that we 
need only consider E + E + r + y:;060 with p = p, p = ji. 
However, these conditions immediately yield 
ji - p + r + Y - E - £ = 0, which contradicts our original 
assumption, and thus this case is impossible. On the other 
hand, if v + 1f = 0, then from [15,~ + D]w we obtain the 
condition v(p + p) = 0, where we have used Eqs. (3.91), 
(3.94), (3.99), and a nonzero factor w+p has been can­
celed throughout. The case when v = 0 is impossible since 
\113 :;060. Next, if p + p = 0, thenp + p + P + ji = 0, which 
implies E + £ + r + Y = 0, which contradicts our original 
assumption. This completes the proof of the second part of 
the theorem; i.e., u(a1bnc) = 0 = > () = O.Asummaryofthe 
above results in the different subcases, is given in the Appen­
dix. 
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IV. DISCUSSION 

The results presented lend weight to the conjecture that 
general relativistic, shear-free perfect fluids which obey a 
barotropic equation of state are either nonexpanding or irro­
tational. It should be stressed that we have only shown the 
conjecture to hold in certain Petrov type III space-times 
which possess special alignment conditions. The general 
type III case is still proving to be elusive, due to the complex­
ity of the resulting intermediate computations. Indeed, even 
with considerable increase in computer memory, the result­
ing "intermediate swell" of the integrability conditions is at 
certain stages too large for the algebraic computing system 
Maple to handle. However, there is some hope that it is pos­
sible to overcome this difficulty since the "swell" is, in gen­
eral, dependent on the order with which preceding integrabi­
lity conditions are obtained and used to simplify subsequent 
ones. On a separate issue, it appears from a search of the 
literature that there are no known type III, shear-free perfect 
fluid solutions of the Einstein field equations. In fact, we 
only know of one type III, perfect fluid solution, as given by 
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Allnutt,15 and the fluid has necessarily nonzero shear. 
Therefore, it is still not known whether shear-free solutions 
for type III space-times exist. In this regard the analysis pre­
sented here is also useful in that it does provide a number of 
possible avenues (Cases lA, IBib, lIB for when 
E + E + r + r = 0 and IB, II, IlIA, I1IB for qt4 = 0) lead­
ing to such shear-free solutions, if they exist with the addi­
tional alignment assumptions. 
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The relation between perturbation theory and exact solutions in general relativity is tackled by 
investigating the existence and properties of smooth one-parameter families of solutions. On 
the one hand, the coefficients of the Taylor expansion (in the parameter) of any given smooth 
family of solutions necessarily satisfy the hierarchy of perturbation equations. On the other 
hand, it is the converse question (does any solution of the perturbation equations come from 
Taylor expanding some family of exact solutions ?) which is of importance for the 
mathematical justification of the use of perturbation theory. This converse question is called 
the one of the "reliability" of perturbation theory. Using, and completing, recent results on the 
characteristic initial value problem, the local reliability of perturbation theory for general 
relativity in vacuum is proven very generally. This result is then generalized to the Einstein­
Yang-Mills equations (and therefore, in particular, to the Einstein-Maxwell ones). These 
local results are then partially extended to global ones by: (i) proving the existence of 
semiglobal vacuum space-times (respectively, Einstein-Yang-Mills solutions) which are 
stationary before some retarded time uo' and radiative after uo, and which admit a smooth 
conformal structure at future null infinity; and (ii) constructing smooth one-parameter 
families of such solutions whose Taylor expansions are of the "multipolar post-Minkowskian" 
type which has been recently used in perturbation analyses of radiative space-times. 

I. INTRODUCTION 

A large body of knowledge is now available about exis­
tence and uniqueness theorems for Einstein field equations. 
There is also a vast literature, of varying degree of clarity and 
rigor, on approximation methods in general relativity. How­
ever, very little is known about the relation between the two 
approaches, which is unfortunate because the comparison 
between Einstein's theory and observations is almost com­
pletely based on approximation techniques. The mathemat­
ical result coming closest to building a bridge between exis­
tence theorems and one type of approximation method is 
Theorem 3 of Christodoulou and Schmidt. I However, this 
theorem concerns only the (harmonically) reduced Einstein 
equations, and assumes a prescribed matter source, as well as 
very special (trivial) Cauchy data for the gravitational field. 
Therefore, this theorem does not, per se, provide a math­
ematical justification for any actual approximation scheme 
in general relativity. By contrast, in the present paper, we 
shall provide a rigorous mathematical justification for a type 
of approximation scheme which is of use in practical applica­
tions.2 

One can distinguish three main types of approximation 
schemes: post-Newtonian ones (where one solves at each 
step Poisson equations), post-Minkowskian ones (where 
one solves inhomogeneous d'Alembert equations), and the 
general class of perturbation expansions around a curved 
background. In all three types the nonlinearities of Ein­
stein's field equations are recursively taken into account. In 

this paper we shall consider both the general perturbation 
theory, and its particular post-Minkowskian case (flat back­
ground), when applied to vacuum gravitational fields, i.e., to 
solutions of the homogeneous Einstein equations: 
Rab (g) = 0 (Ref. 3). Because ofthe practical impossibility, 
in general, to solve in closed-form inhomogeneous wave 
equations on curved backgrounds the general perturbation 
theory is rarely used beyond its first, linearized, level. On the 
other hand, Blanchet and Damour2 have recently shown 
explicitly how to construct to all nonlinearity orders a for­
mal post-Minkowskian algorithm that aims at describing 
"the general field outside the source." The relation between 
such formal solutions and exact solutions of the field equa­
tions has been, up to now, left open. The purpose of this 
paper is to study this relation, and, surprisingly, we shall be 
able to give a simple (favorable) answer concerning the 
mathematical status of general perturbation expansions of 
the vacuum Einstein equations. We shall then generalize this 
result to the Einsteiri-Yang-Mills equations (which include 
the Einstein-Maxwell ones as a particular case) . We shall 
also indicate how our method of proof can be applied to the 
Einstein-Euler equations. 

The key notion is the one of a "curve of solutions" of the 
field equations, i.e., a one-parameter family of metrics g(A), 
where A is a real parameter. It is now quite common to dis­
cuss linearized fields in relation to "the tangent to a C I curve 
of solutions.,,4 This discussion has two aspects: First, the 
tangent, h(I): = [dg(A)/dA ],t = 0' to a C I curve of solutions 
is clearly seen to be a linearized field, i.e., a solution of the 
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linearized field equations expanded around the background 
g(O): = [g(A)]).=o, and, second, an important mathemat­
ical question is to know whether the converse is true. The 
latter question (is every solution of the linearized field equa­
tions the tangent to some curve of exact solutions?) is often 
referred to as the one of "linearization stability.,,4 In this 
paper we shall be concerned with the generalization of this 
setting to the C 00 case. 5 The first aspect of the C 1 discussion 
above extends itself without difficulty to the result that the 
sequence of higher derivatives, say h(n): = (n!) - 1 

X [d ng(A)ldA nL = 0' ofa smooth curve of solutions neces­
sarily satisfies the usual hierarchy of equations associated 
with the fully expanded perturbation theory around the 
background g(O): = g(O) (see Sec. II below for details). 

Therefore, the first insight is that a smooth curve of so­
lutions determines a solution of the hierarchy of perturba­
tion equations. This raises the first mathematical question of 
the existence of C 00 one-parameter families of solutions of 
Einstein's equations (the usual discussions of the stability of 
Einstein equations, see, for example, Ref. 4, consider ex­
plicitly only low orders of differentiability, CO or C I). This 
question can be broken up into two sUbquestions: the exis­
tence of C 00 one-parameter families of solutions of the con­
straint equations, and, the preservation of the smoothness in 
A by the map going from the data to the solution (the so­
called "Cauchy map"). The latter subquestion, that con­
cerns the (hyperbolic) evolution part of Einstein's vacuum 
field equations, has (locally) a positive answer for data that 
are C 00 jointly in A and in the coordinates. This follows, for 
instance, from a general theorem of Choquet-Bruhat6 about 
the C P differentiability (in suitable Sobolev spaces) of the 
Cauchy map. Alternatively, this can be shown by using some 
ofthe results of Hamilton, 7 or, without using the heavy ma­
chinery of "tame Frechet spaces," by an elegant trick due to 
Rendall. 8 The former subquestion (of showing the existence 
of smooth families of solutions of the constraint equations) 
is easier to tackle for the characteristic initial value problem 
rather than for the usual spacelike Cauchy problem. Indeed, 
Rendall8 has proven recently an existence and uniqueness 
theorem for the characteristic initial value problem for Ein­
stein vacuum equations, which includes the preservation of 
the smoothness in A from the (characteristic) data to the 
solution. This way one can avoid (in local questions) the 
difficulties linked with the usual elliptic constraint equa­
tions, and construct smooth families as solutions of a charac­
teristic problem. We shall generalize this approach to the 
Einstein-Yang-Mills equations (see Sec. III below). 

Having learned that there exist many smooth one-pa­
rameter families (and therefore many corresponding solu­
tions of the hierarchy of perturbation equations), we are 
naturally led, in analogy with the linearization stability 
problem, to ask whether any solution of the hierarchy of 
perturbation equations comes from some family of exact so­
lutions. It is convenient at this point to introduce a specific 
terminology in order to avoid lengthy periphrases. We shall 
say that a hierarchy of perturbation equations (for some 
nonlinear problem) is reliable9 if every solution of these 
equations, say (h(1p h(2P'''' hen) ,,,.), comes from differenti­
ating a smooth one-parameter family of exact solutions of 
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the original nonlinear problem [i.e., 
3g(A);Vn,h(n) = (n!)-I[dng(A)ldAnL=o]. This ter­
minology is well adapted to what constitutes the main moti­
vation for posing such a mathematical problem, namely to 
ensure that the formal perturbation series used in comparing 
a theory with the observations is physically "reliable" for 
sufficiently small values of the expansion parameter because 
it is asymptotic when A --+ 0 to some exact solution: 

3g(A);VN,g(o) + Ah(!) + '" + A nh(n) + ... + A Nh(N) 

=g(A) + O(A N+ I). 

One of the main results of the present paper will be to 
prove that, locally, the perturbation theory for the vacuum 
Einstein equations is always reliable lO (note that this does 
not imply global reliability). This is good news for, e.g., the 
multipolar post-Minkowskian expansion scheme of Ref. 2. 
It even leads to the possibility of expressing the difference 
between the Nth order formal expansion and the exact solu­
tion as the remainder term of a Taylor expansion. However, 
this remainder term depends on the values of the (N + l)th 
derivative at nonzero values of the parameter; in the present 
instance this means on some (N + l)th field on a curved 
metric. This is rarely under control. The strongest explicit 
statement that one can make is that, on some fixed compact 
space-time region, say K, there will always exist, for any 
finite integer N, two (unfortunately unknown) numbers Ao 
and C, such that 

A<AO~suplg(o) +Ah(!) + ... +ANh(N) -g(A)1 
XEK 

<CA N + 1
• 

So far we talked mainly about Einstein's vacuum equa­
tions. The fact that differentiable families of exact solutions 
provide solutions to perturbation equations extends trivially 
to more general cases. The difficulty is to prove, on the one 
hand, the existence of smooth families of exact solutions, 
and, on the other hand, the fact that every solution of the 
hierarchy of perturbation equations comes from differentiat­
ing a smooth curve of exact solutions. As will be clear from 
the method of proof that we shall use in Sec. IV, the result of 
reliability of perturbation theory extends to all the cases 
where a characteristic initial value treatment in the manner 
of Ref. 8 works (see end of Sec. IV). This includes, as we 
shall show, the Einstein-Maxwell and the Einstein-Yang­
Mills cases. Einstein's equations coupled to a barotropic per­
fect fluid can also be treated locally in any connected region 
wherep + p=l=O. For finite bodies (having spatially compact 
supports) one is, however, confronted with the difficulty 
that no existence theorem is known. 

It might be worth pointing out that a description of post­
Newtonian-type expansions similar to that given here of 
post-Minkowskian ones is not presently possible. The basic 
reason is that if one treats the Newtonian limit as a limit of 
families of solutions of Einstein's equations, the limit is sin­
gular from the point of view of the differential equation (see, 
e.g., Ref. 11). Therefore, besides explicit examples, nothing 
is known in general about the reliability of post-Newtonian 
expansions. 

Finally, we shall show also that, although our reliability 
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results are purely local (i.e., valid in a compact domain of 
a'4), they can be used to relate post-Minkowskian expan­
sions and exact solutions on physically infinite domains. 
This will be done by proving that certain radiative semiglo­
bal vacuum solutions (whose existence was assumed as a 
motivation in Ref. 2) actually do exist and admit a piece of 
conformally regular future null infinity with spherical sec­
tions. In particular, we can construct smooth families of 
such solutions whose Taylor expansions are exactly of the 
multipolar-post-Minkowskian type studied in Ref. 2. Our 
construction generalizes also to the Einstein-Yang-Mills 
case. This is a nice example of how a combination of various 
general theorems [local characteristic initial value problem, 
Friedrich's regularization l2 (see, also, Ref. 13) of the con­
formal Einstein equations, general stability of symmetric hy­
perbolic systems] can provide the existence of a class of ex­
act solutions with physically interesting properties. 

The paper is organized as follows: Sec. II explicates in 
detail the relation between the Taylor series of a smooth 
curve of solutions and the hierarchy of perturbation equa­
tions. In Sec. III we show (after Rendall's work8 

) how to 
construct (locally) smooth families of solutions via the char­
acteristic initial value problem. We treat both the vacuum 
equations and the Einstein-Yang-Mills ones. We mention 
also briefly how to proceed via the usual Cauchy problem. In 
Sec. IV we establish our main results: the local reliability of 
the perturbation theory for Einstein's vacuum equations, as 
well as for Einstein-Yang-Mills ones. In Sec. V we prove the 
existence of smooth families of certain radiative semiglobal 
solutions in a way that allows us to extend our reliability 
results of post-Mink ow ski an expansions to a physically infi­
nite domain. 

II. TAYLOR EXPANSIONS OF SMOOTH ONE­
PARAMETER FAMILIES OF SOLUTIONS 

Let us consider a smooth one-parameter family (or 
curve) of metrics: g(A). As we shall use below local exis­
tence theorems in C 00 settings, it will be enough for our pur­
pose to define such a COO curve of metrics simply by assum­
ing that the metric components in some chart, gab (XC,A), are 
jointly C 00 in the coordinates and in the parameter on some 
open domain U XICa'5 (where the open interval ICa' 
contains zero). A coordinate-independent description of 
such families has been given by Geroch.14 As we are dealing 
with purely local matters in this section we can avoid this 
formalization; it is, however, useful to have in mind the cor­
responding picture of a five-dimensional manifold, coordin­
atized by (XC,A). 

The smoothness in A allows one to make finite Taylor 
expansions of any order N in powers of A: 

gab (A) =gCO)ab +AhCI)ab +A 2h(2)ab + ... +ANhCN)ab 

(1) 

The zeroth term, gCO)ab (XC) = [gab (XC,A) ]A~O' and the ex­
pansion coefficients hCn)ab are Coo functions of the coordi­
nates XC. The latter are given by the derivatives 
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(2) 

The remainder term is the product of A N + I by a C 00 func­
tion of XC and A: 

kcN)ab (xc,IL) = - da( 1 _ a)N ab (xC,aA). 1 i l [I N
+ I g ] 

N! 0 JA N + I 

(3) 
The Ricci tensor Rab is pointwise a smooth (in fact 

analytic) function of the metric components and their de­
rivatives up to order 2. Inserting, therefore, the truncated 
expansion (1) into the definition of the Ricci tensor one 
obtains the Taylor expansion of Rob (A): 

= Rab [g(A),Jg(A),HJ 2g(A)], 

+ANRCN)ab +AN+ISCN)ab(A), (4) 

where the zeroth term is the Ricci tensor of gCO)ab' 

RCO)ab = Rab [gCO) ], (5) 

while the expansion coefficients are successively: The linear­
ized Ricci tensor around the metric gCO) , 

RCI)ab = L [gCO) ]h(l)ab' (6a) 

and, for n>2, nonlinear expressions ofthe type: 

RCn)ab = L [gCO) ] hCn)ab - Ncn)ab [gCO) ,hc I) , ••• ,hCn - I) ]. 

(6b) 

In Eq. (6b) L denotes the same linear second-order differen­
tial operator as in Eq. (6a) (linearized Ricci operator 
around gCO) ), while the N cn ) 's are nonlinear polynomials of 
the h(i) 's and of their derivatives up to order 2. 

Let us now assume that all members of the family 
gab (A) satisfy Einstein's vacuum field equations: 
Rab [g(A)] = 0. This implies, by differentiating with respect 
to A, that all the coefficients RCn)ab' n>O, must vanish. 
Hence, the metric gCO) is Ricci-flat, 

(7) 

and the hcn) 's automatically satisfy a hierarchy of linear 
equations: 

L [gCO) ]hCI)ab = 0, (8a) 

n>2~L [gCO) ]hCn)ab = Ncn)ab [gCO) ,hcl) , ... ,h Cn - I) ]. 

(8b) 

Because of the uniqueness of the Taylor expansion, the hier­
archy (7) and (8) is exactly the same as the usual equations 
of perturbation theory, obtained by inserting a formal power 
series, gab =gCO)ab +Ahcl)ab + ... +Anhcn)ab + "', into 
Einstein's vacuum field equations. We shall discuss later one 
way of describing the general solution of this perturbation 
hierarchy. At this point let us only say that the only case 
which is amenable to an explicit treatment is the post-Min­
kowskian case, i.e., gCO)ab = lab' the flat Minkowski metric. 
Moreover, if one uses harmonic coordinates the hierarchy 
consists (besides a sequence of "harmonicity constraints") 
of a sequence of inhomogeneous d' Alembert equations 
whose "source terms" are calculable from the previous itera-
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tions. Such a hierarchy is the basis of many approximation 
schemes in general relativity. 

It is clear that the one-way link, family of exact solu­
tions-solution of perturbation hierarchy, extends to very 
general nonlinear problems (it is sufficient that the field 
equations be smooth functions of the field variables, and 
their derivatives up to some finite order). This includes, for 
instance, the Einstein-Yang-Mills equations, that we shall 
consider below. 

III. ON THE EXISTENCE OF SMOOTH ONE-PARAMETER 
FAMILIES OF SOLUTIONS 

Many of the known exact vacuum solutions of Ein­
stein's equations depend smoothly on at least one parameter. 
The Schwarzschild and Kerr solutions are well-known ex­
amples. The purpose of this section is to demonstrate that 
tl\is is a rather general property. To keep the notation simple 
we shall consider only one-parameter families; however, 
everything we say is easily extended to the multiparameter 
case. 

Solutions of the field equations are determined by data. 
Hence, the obvious questions are: Do smooth curves of data 
exist?, and, do smooth curves of data determine smooth 
curves of solutions? One can ask these questions for the usual 
spaceIike Cauchy problem (with elliptic constraints on the 
data), as well as for the characteristic initial value problem 
(where some analogs of the constraints reduce to ordinary 
differential equations). We give a complete treatment of the 
characteristic case and make some remarks about the 
Cauchy case. We shall first consider Einstein's vacuum 
equations, and then generalize the results to the Einstein­
Yang-Mills equations. 

For Einstein's vacuum equations, Rendalls has recently 
presented a new treatment of the local characteristic initial 
value problem (in a C 00 setting) that contains the answers to 
our questions. (In the next section we shall complete his 
treatment by giving the explicit expressions of the hierarchi­
cal system of ordinary differential equations that play the 
role of the constraints). Let us describe first the coordinate 
system in which the existence and uniqueness theorem is 
proved. 

Definition 1 ("Standard coordinates"s): Let us be given 
a (smooth) Lorentz metric (signature - + + + ) and a 
connected (smooth) spacelike two-surface S. Let N, and N2 
be the two null hypersurfaces generated by the null geodesics 
issued orthogonally from S (so that S = N, n N2 ). A coordi­
nate system x a is called standard with respect to (g,S) if: (i) 
the equation of N, is x 2 = 0, and the null generators of N, 
are the curvesx2 = const,~ = const (A = 3,4), with x' be­
ing an affine parameter along them; (ii) same requirement 
when exchanging the indices 1 and 2; (iii) on S (i.e., when 
x' = x2 = 0) g'2 = - 1; (iv) the coordinates xa are har­
monic in the future and the past of S.'s 

To construct (locally) such coordinates starting from 
(g,S) one can first Lie-drag along N, a coordinate system xA 

(A = 3,4) defined on S by means of an affinely normalized 
null vector field I normal (and tangent) to N, . Then one Lie-
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drags xA along N2 by means of a correspondingly defined 
null vector field n on N2 (with the normalization Ion = - I 
on S). One then sets x 2 = 0 and I = a lax' on N" and, 
x' = 0 and n = a lax2 on N2 • This defines the values taken 
by the four coordinates (xa) = (x',X2,XA) onN, UN2. These 
values can be taken as (smooth) characteristic initial data 
for the wave equation Og x a = 0 (harmonicity condition) 
and thereby be propagated to the future and the past of S. 

In general, the existence of such standard coordinates 
will be guaranteed only in a neighborhood of S (e.g., because 
of possible caustics in N, or N2 ). Moreover, if S cannot be 
covered by a single coordinate patch (xA

) one will need to 
use several overlapping standard coordinate systems to 
study the characteristic problem based on S, N, , N2 . 

Theorem 3 in Ref. 8 establishes the following. 
Theorem 1 (Rendalls ): Existence and uniqueness oflo­

cal C 00 solutions in standard coordinates of the characteris­
tic initial value problem for Einstein's vacuum field equa­
tions. 

Notation: Let in ~4 = {(xa), a = 1,2,3,4} the hyper­
plane x' = 0 be denoted by N2 , the hyperplane x 2 = 0 by N, , 
and the two-plane x' = x 2 = 0 by S(S = N, nN2 ). Let G 
denote the region X'X2>0. 

A function on N, U N2 will be called smooth if its re­
strictions to N, and N2 are smooth, and if it is continuous (at 
S = N, n N2 ). A function on G will be called smooth if it can 
be extended to a smooth function on ~4. 

Data: Let r AB (A,B = 3,4) be smooth functions on 
N, U N2 which make up a symmetric positive definite matrix 
with determinant nowhere vanishing. 

Let five COO functions, denoted w, liJ" liJ2, f3A' 
(A = 3,4), be given on S. 

Statements: Given the data there exists an open neigh­
borhood U of S, a unique smooth function liJ on 
(N, UN2 ) n U and a unique smooth Lorentz metric gab on 
Gn U such that: (i) gab satisfies the vacuum Einstein equa­
tions on Gn U; (ii) the given coordinates x a on ~4 are stan­
dard coordinates for gab; (iii) gAB = liJrAB on N, UN2; and 

(iv)liJ = W, liJ" = liJ" liJ,2 = liJ2, and g2A,' = f3A' on S. 
Moreover, if the data depend smoothly on one (or sever­

al) parameters, then so does the solution. 
We see that this theorem guarantees the existence of 

local smooth one-parameter (or several-parameter) families 
of vacuum solutions in abundance. In the formulation of the 
theorem in Ref. 8 it was assumed that det ( r AB) = 1. This is, 
however, irrelevant, and we shall see later that it can be use­
ful in applications not to have to normalize the determinant 
of r AB to unity. Let us note also that the data given on N, and 
N2 are given on both halves of N, and N2 (with respect to 
S), so that the solution is determined both in the future 
(x'>O and x 2>0) and the past (x'.:;;;Oandx2.:;;;0) ofS. Ifone 
is interested only in determining gab in the future of S, it is 
sufficient to give data on the "upper halves" of N, and N2 • 

However, one must still enforce that the data are "smooth" 
on these (closed) half-hyperplanes which means extendable 
to C 00 functions on the full hyperplanes. 

Before generalizing the characteristic approach to the 
coupled Einstein-Yang-Mills system, let us discuss briefly 
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how one can prove the existence of smooth families of vacu­
um solutions via the usual spacelike Cauchy problem. The 
subquestion of whether smooth families of Cauchy data 
evolve into smooth families of solutions has (locally) a posi­
tive answer for data that are Coo jointly in A.. and in the co­
ordinates. As remarked in the Introduction, this follows 
from Theorem 3 of Ref. 6 about the finite differentiability (in 
suitable Sobolev spaces) of the Cauchy map. This can be 
shown also by using the setting of "tame Frechet spaces,,,7 
or, more simply, by using Rendall's trick8 of considering A.. 
as a new coordinate in a symmetric hyperbolic system. It 
remains then to prove the existence of smooth families of 
solutions of the (elliptic) constraints. Let us only show how 
this can be done in particular cases. 

Ifwe consider time-symmetric Cauchy data, the second 
fundamental form of the Cauchy hypersurface vanishes and 
only the "energy constraint" has to be considered. The latter 
can be reduced to the Lichnerowicz equation: 

(9) 

A positive definite three-metric ha {3 (a,/l = 1,2,3) can be 
chosen freely and if <I> satisfies the linear equation (9) the 
three-metric <l>4ha{3' together with a zero second fundamen­
tal form, is a solution of the constraints. 16 To construct local 
solutions we can choose smooth families ofthree-metrics ha{3 

and pose a local Dirichlet problem. The smoothness of the 
solution, including in A.., is guaranteed by the treatment of 
linear elliptic equations in the setting of tame Frechet spaces 
by Hamilton.7 In the not time-symmetric case, the existence 
of local smooth families of solutions of the constraints fol­
lows from a theorem by Rendall.17 He shows that smooth 
families of solutions of the linearized constraints are tangent 
to smooth families of solutions of the nonlinear constraints. 

Let us now deal with the coupled Einstein-Yang-Mills 
system. We then consider a Lie group G and a principal G 
bundle P over a four-dimensional manifold M. As we shall 
mainly be interested in local questions, we will assume that 
the bundle is trivial. A connection on P can then be described 
as a covectorial field on M, Aa , taking its values in the Lie 
algebra ~ of G (we shall use boldface letters to denote ele­
ments of ~ ). The fields of the Einstein-Yang-Mills system 
are then a (smooth, real-valued) Lorentz metric gab and a 
(smooth, Lie-algebra valued) "gauge potential," Aa. Let us 
first define a convenient "gauge" in which an existence and 
uniqueness theorem can be proved. 

Definition 2 "Standard gauge": Given a two-surface S 
(and its associated null hypersurfaces NI and Nz, like in 
Definition 1 above) a gauge (i.e., a combined choice of a 
trivialization of P and of a coordinatization of M) is called 
standard with respect to S if: 

(a) the base coordinates x a are "standard" with respect 
to S in the sense of Definition 1. In particular, this means 
that the "harmonicity conditions" r a = 0 are satisfied, 
where r a is defined as 

(b) Al =. Aa I a = 0 on NI (generated by the null vector 
field I), and, correspondingly, Az = 0 on Nz ; 
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(c) the "Lorentz condition" !l. = 0 is satisfied, where !l. 
is defined as 

!l.: = ~b aa Ab 

(!l. = 0 is equivalent, in harmonic coordinates, to va Aa = 0 
where V denotes the Levi-Civita connection). 

It is easy to check that such a gauge can always be (lo­
cally) constructed. Indeed, having constructed standard co­
ordinates x a (see Definition 1), the algebraic conditions (b) 
lead to ordinary differential equations within NI and Nz for 
the gauge transition mapping, say <p (going from any given 
gauge to the looked for standard gauge). This defines values 
for the transition mapping <p on NI U Nz . These values can 
then be taken as characteristic initial data for the hyperbolic 
evolution equation (with principal part ~b aab <p) that is 
entailed by the Lorentz condition. This propagates <p to the 
future and the past of S. 

We shall now establish the following theorem. 
Theorem 2: Existence and uniqueness of local C 00 solu­

tions in standard gauge of the characteristic initial value 
problem for the Einstein-Yang-Mills system. 

Notation: Notation of Theorem I, and in addition let 

Fab: =aaAb -abAa + [Aa,Ab), 

Va. _ V Fab + [A Fab ] • - b b', 

where the square brackets denote the Lie-algebra product, 
and the dot the Cartan-Killing scalar product. 

Data: Metric data as in Theorem I (i.e., YAB onNI UNz, 

and(J, WI' wz , {3AI onS).Forgaugepotentialdata,letAB 

(B = 3,4) be smooth (Lie-algebra-valued) functions on 
NI UNz, and let iT be a smooth (Lie-algebra-valued) func­
tion on S. 

Statements: Given the data there exists an open neigh­
borhood U of S, a unique smooth function W on 
(NI UNz ) n U, a unique smooth Lorentz metric gab on 
Gn U and a unique smooth gauge potential Aa on Gn U such 
that: (i) (gab ,Aa) satisfies the Einstein-Yang-Mills equa­
tions on Gn U: 

Ya =0, 

in which k denotes the combined gravitational-gauge-field 
coupling constant (proportional to G /gZ); (ii) the solution 
(gab,Aa ) is expressed in a standard gauge; (iii) on 
NI UNz :gAB = WYAB and AB = AB; and (iv) on S:w = (J, 
W,I = WI' W,Z = WZ, gZA,1 = {3A I , and FII = iT. 

Moreover, if the data depend smoothly on one (or sever­
al) parameters, then so does the solution. 

Proof' Given the data, one defines values for all the com­
ponents of the metric and gauge potential (in a standard 
gauge) on NI UNz by integrating the ordinary differential 
equations ("characteristic constraints") explicitly written 
down in the next section [Eqs. (28), taken with AB = AB, 
and the corresponding equations on Nz ]. The initial values 
(on S) for these ordinary differential equations (written 

both on NI and Nz ) are successively: W = (J, W,I = WI' 
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{U,2 = {U2; gl2 = -1; F\ =a, F22 = -a (on N2 ); 

g2A = 0, g2A, I = {3A I' glA = 0, g1A,2 = - {3A I + [rA]s; 

g22 = 0, g22, I = - [ON
2 
]s, gil = 0, gll,2 = - [ON\ ]s; 

A2 =O,A I =0. 
These values, [gab] N\UN

2
' [Aa] N\UN

2
' are then taken as 

initial data for the characteristic initial value problem of the 
following gauge-reduced Einstein-Yang-Mills system: 

R~ -kTab =0, 

Y;=O, 

in which one has defined 

R~:=Rab -!(aarb +abra ), 

V;: = Ya - aaa. 

This gauge-reduced system is a diagonal hyperbolic 
quasilinear evolution system for (gab ,Aa) with principal 
part ( -!g" arsgab' - grs arsAa)' By Theorem 1 of Ref. 8, 
there exists an open neighborhood U of S, and unique 
smooth functions (gab ,Aa) on un G that solve this gauge­
reduced system and coincide with the characteristic-con­
straints-defined initial values on Nl UN2 • To prove that 
these functions (gab,Aa ) satisfy also the gauge conditions on 
un G one then proceeds in three steps. First, one checks that 
the initial values on S, taken for the ordinary differential 
equations, ensure the vanishing of the gauge conditions r a 

and a on S. Second, combining the constraints with the 
gauge-reduced field equations one gets linear homogeneous 
equations on Nl U N2 for a and r a' More precisely, denoting 
al +!O by D, one gets successively on Nl : from the Yang­
Mills equations D a = 0 (and a = FII - 0'), which, as 
[a]s is known to vanish, ensures the vanishing of a (and 
Fll - 0') all over N l ; then, from the {U and a constraints, 
andRft -kTII =O,Drl =Oandg= -!rl,whichimply 
that r 1 = g = OonNI (wheregisdefined by I~bla = gla); 
then one gets similarly Dr A = O=} r A = 0 on N I ; and, fin­
ally, Dr 2 = O=} r 2 = 0 on N l • Correspondingly, one gets 
also the vanishing of a and r a on N2 • The final step consists 
of combining the gauge-reduced equations with the Bianchi 
identities (for both the gravitational and the gauge-field 
equations). This yields a linear homogeneous system for 
(r a, a) with principal part (grs a rs r a ,grs a rs a). The unique­
ness of the solution of the characteristic initial value problem 
for this system, guarantees the vanishing of r a and a every­
where in UnG. Finally, the statement concerning smooth 
dependence on parameters follows, as in Theorem 1 above, 
from the tricks of adding the parameters as new coordinates 
in a symmetric hyperbolic system. 

IV. LOCAL RELIABILITY OF PERTURBATION THEORY 
FOR EINSTEIN'S VACUUM FIELD EQUATIONS, AND 
FOR EINSTEIN-YANG-MILLS EQUATIONS 

We have seen that a large class of smooth one-parameter 
families of solutions of Einstein's vacuum field equations ex­
ist locally, and that their successive Taylor coefficients satis­
fy the hierarchy of perturbation equations (7) and (8). It is 
natural to ask whether the converse is true. More precisely, 
the property for any solution of the hierarchy truncated at 
order N (resp. of the whole hierarchy) to coincide with the 
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first N derivatives (resp. all derivatives) ofa eN (resp. COO) 
one-parameter family of solutions will be termed the "reli­
ability up to the N th order" (resp. "reliability to all orders") 
of the perturbation theory. This terminology is chosen in 
order to emphasize the importance of this question in the 
context of the use of a (partial) solution of the perturbation 
hierarchy as an "approximate solution ofthe equations." 

Ifwe take just the first Eq. (8a), and consider its local 
solutions, this question of "local reliability at first order" is 
often termed "local linearization stability." It was positively 
answered in Ref. 18. We shall first show in this section that 
the perturbation theory around any curved background for 
general relativity in vacuum is locally reliable to all orders. 
We shall then generalize this result to the Einstein-Yang­
Mills system. More precisely, let us first prove the following 
theorem. 

Theorem 3: Local reliability (to all orders) of the per­
turbation hierarchy for Einstein's vacuum field equations. 

Leth (n)ab(X'C), with l<n<N, bea (local) smoothsolu­
tion of Eqs. (8) with g(O)ab (x'C) being some smooth Ricci­
flat Lorentz metric. Then there exists (locally) a (nonuni­
que) COO one-parameter family of Ricci-flat metrics, g' (A.), 
such that, in some coordinate system X'C, 

g(O)ab (x'C) = [g~b (X'C,A.)] A = 0 

and 

for l<n<N. 

[Therefore, Eqs. (1) and (3) hold also.] 
If one starts with a solution h (n) for all orders, the same 

conclusion holds with a C 00 family g' (A.) which is still non­
unique in general. [Then Eqs. (1) and (3) hold for any finite 
order N, but have, in general, no infinite order limit.] 

Proof Let us define a family of bicovariant tensors by 
the following finite sum: 

Ng~b (x,c,A.): = g(O)ab (x'C) + A.h i I lab (X'C) + A. 2h (2)ab (X'C) 

( 10) 

For A. small enough Ng' (A.) will still be a Lorentz metric, so 
that Eq. (10) defines a smooth family of Lorentz metrics 
(henceforth, "smooth" or Coo, will mean "locally C 00 joint­
ly in A. and in the coordinates"). As we saw in Sec. II, the 
hypothesis of the theorem implies that the Ricci tensor of 
this family, NR ~b (A.): = Rab [Ng'(A.)], satisfies 

(11 ) 

for some smooth tensor S (N)ab' 
Choose now a smooth family of (connected) two-sur­

faces SA' spacelike with respect to Ng' (A.). As recalled in Sec. 
III, we can then construct standard coordinates with respect 
to (Ng'(A),SA)' say x a =r(x'b,A.). In these coordinates the 
equations of the two-surfaces SA are independent of A. and 
are simply that of the two-plane S of Theorem 1, namely, 
Xl = x 2 = O. The transformation functionsja(x'b,A) are (lo­
cally) constructed, first by integrating ordinary differential 
equations with smooth coefficients, and then by solving 
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wave equations with smooth coefficients, and smooth char­
acteristic initial data given on coordinate-fixed null hyper­
surfaces (x· = o and x 2 = 0). Therefore, the results of Ref. 8 
apply and guarantee that ther(x'b,A) are smooth functions 
of X'b and A. Performing the (A dependent) coordinate 
transformation x a = ja(x'b ,-t), we obtain another represen­
tation of the family (10), say Ngab (xc),). The finite Taylor 
expansion of this smooth family leads to 

Ngab (XC,A) = :g(O)ab (XC) + Ah(l)ab (XC) 

+ A 2h(2)ab (XC) + .. , + A Nh(N)ab (XC) 

+ A N+ ·k(N)ab (XC,A). (12) 

The new expansion coefficients g(O)ab' h(n)ab' l<n<N, still 
satisfy the perturbation hierarchy (7) and (8) because the 
Ricci tensor of Ngab satisfies 

(13) 

where the smooth tensor S(N)ab is just the coordinate trans­
form ofthe S (N)ab of Eq. (11). 

Using Theorem 1 of Sec. III, let us now define (locally 
around S) a one-parameter family of solutions of Einstein's 
vacuum equations. say Xgab (XC,A) (the upper prefix X stand­
ing for "exact"), as being. for each A. the unique Ricci-flat 
metric in standard coordinates having as characteristic ini­
tial value data: 

on N. UN2 :rAB: = [NgAB] N,UN, (A.B = 3.4). 

onS: m: = I,m.: = 0,m2: = 0, /3A.: = [Ng2A .• ]s' 

(14a) 

(14b) 

From the last statement in Theorem 1, and the fact that the 
data depend [as Ng(A)] smoothly on A, we know that the 
Ricci-flat family Xg(A) will be smooth. We are going to 
prove that the successive derivatives, from the zeroth up to 
the Nth order, ofXg(A) coincide (over the local four-dimen­
sional domain of definition of Xg) with the expansion coeffi­
cients ofEq. (12). Let us first remark that, by construction. 
the Zg(A)'s (where Z = N or X) are expressed in standard 
coordinates for all A 's (in some open interval around zero). 
In particular, this is true for the zeroth expansion coefficient, 
Zg(O): = Zg(A = 0). On the other hand, by definition [take 
,1.= 0 in Eqs. (14)] the characteristic data that define xg(O) 

are the ones induced by Ng(O) on N. UN2 (with W = 1 all 
over N. UN2 ). Because of the uniqueness part of Theorem 1, 
one has immediately the result that xg(O) = Ng(O) all over 
some four-dimensional local neighborhood un G of S (we 
shall henceforth denote simply by g(O) this common "back­
ground metric"). 

As for the higher derivatives, sayZh(n) (whereZ = Nor 
X), we know that they satisfy the perturbation equations 
( 8 ). Moreover. they also satisfy (among others) four partic­
ular "gauge conditions" obtained by differentiating the ,1.­
dependent harmonicity condition. 

zr a (A.): = Zgbc(A.) [Zgab.c (A.) - !Zgbc.a (A)] = O. 
(15) 

which follows from the construction of both Ng(A) and 
xg(A) in standard coordinates. These gauge conditions can 
be written in the form, 
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(16) 

where zh tn)a: = g~) zh(n)ac, where V(O) is the Levi-Civita 
connection of g(O)' and where F(I) = O. It is a well-known 
result in perturbation theory (see e.g., Ref. 4) that the use of 
the gauge conditions (16) in Eqs. (8) satisfied by the zh(n) 's 
leads to show that the zh(n) 's satisfy a hierarchy of linear 
inhomogeneous "wave equations" (with "wave operator" 
D(o)L the De Rham-Lichnerowicz Laplacian computed in 
the background metric g (0) ). If we consider the first step of 
the hierarchy, it satisfies the homogeneous wave equation' 

(17) 

Standard results for linear wave equations (see, e.g., Ref. 
19) show that a solution ofEq. (17) is uniquely determined 
by giving oneself the values of the zh(l)ab'S (fora,b = 1, .... 4) 
on N. U N2 (which, by construction, are characteristic hy­
persurfaces for g(O) ). Therefore, if we can prove that Nh(.)ab 
isequaltoxh(l)ab (fora.b = 1, ... ,4) onN. UN2 , this equality 
will be propagated also to the future and the past of N. nNz• 
This will then imply that the difference Nh (2)ab - xh (2)ab sat­
isfies again the homogeneous wave equation ( 17). By induc­
tion it is clear that. if we can prove that Nh(n)ab = xh(n)ab 
holds on the characteristic hypersurface N. UN2 for 
a,b = 1 •...• 4 and n = I, ... ,N. then this equality will be valid 
also in the four-dimensional regions located in the future and 
the past of N. nN2 • This will prove [by performing the in­
verse coordinate transformation, x'a = f'a (xb,A)] that the 
originally given family of "approximately Ricci-flat met­
rics," Eq. (10), differs only by a term A N+·k ~b(x'C,A) from 
a family of exactly Ricci-flat metrics, namely the inverse 
coordinate transform of Xgab (xc.A). 

We have just shown that it suffices to prove that the full 
metric deviation on N. UNz , [Xgab(XC,A) 

- Ngab (XC,A)] N,UN, with a,b = 1, ... ,4, tends to zero at least 
as A N + • when ,1.-0. Let us consider in detail what happens 
on N •. For any covariant metric expressed in standard co­
ordinates (as Ngab and xgab ) there are only seven nonidenti­
cally vanishing components on N •. Let us denote them as 
follows: 

g.2 = :a. 

g2A = :/3A' 

gAB = :YAB = WYAB' 

g22 = :D. 

(18a) 

(I8b) 

(18c) 

(l8d) 

In Eq. (18c) we have decomposed YAB in the conformal 
factor wand a reference conformal metric r AB (which will be 
taken the same as the one appearing in the characteristic 
data). Let us also introduce the following abbreviations for 
quantities calculable in terms of the a's, /3 'so y's, and 8's: 

- ::,.cB-
8: =!r DrAB' 
~. _ .::..BCDy- .Li~B 
UA' -"r AC - "UUA' 

Jt!: = yBCDYAC' 
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0: =!Y:: =!yABDrAB = B + D In w, 

rA: = yBc( rAB,C - !rBC,A ), 

WA: = DpA - y!pB + !arA' 

(19d) 

(1ge) 

(19f) 

In Eqs, (19), ~B (resp, yAB) denotes the inverse matrix of 
YAB (resp. rAB)' In the natural logarithm, and the operator 
D denotes the differentiation along Xl within NI , i.e., 

DqJ: = :; =qJ,1 =1(qJ). (20) 

The short-hand notations (18) and (19) allow us to write 
down explicitly the analogs in the characteristic initial value 
problem of the well-known elliptic constraints of the space­
like Cauchy problem. These characteristic constraints can 
be organized as a hierarchical system of ordinary differential 
equations relating the null hypersurface metric components 
( 18) to the values on NI of some of the components of the 
four-dimensional Ricci tensor Rob [g]. The obtention of 
these constraints was only sketched in the proof of Theorem 
3 of Ref. 8. We have derived them explicitly for the purpose 
of proving our Theorem 2. For any, in general, non-Ricci 
fiat, metric gob in standard coordinates we have identically 
alongNI : 

EO) [D 2w,Dw,w, ... ] = - R ll , 

Ea [Da,a, ... ] = 0, 

EA [D 2pA,DPA,pA""] = aRIA' 

(21a) 

(21b) 

E/j [D 2{),D{),{), ... ] = - !a2yABRAB' 

where 

(21c) 

(21d) 

E'd: = D 2ln w + DB + !(D In w + B)2 + i'T!01, (22a) 

Ea: = Dlnlal-! 0, (22b) 

(22c) 

E/j: =D(D- ~) {)-D 

X [2p AWA -! OpApA + 13 ApBY! - apArA ] 

+a2(a- IwA)IIA +WAWA -!a
2R(2)(r). (22d) 

In Eqs. (22) we have introduced some operations and quan­
tities associated with the two-dimensional Riemannian met­
ric rAB:p A: = yABpB' wA: = yABWB' the double vertical bar 
denotes the Levi-Civita covariant derivative associated with 
rAB' and R mer) = yABR ~2J(r) the curvature scalar of 
rAB' [R mer) = + 2K, where K is the Gauss curvature of 
the sections Xl = const of NI ]. 

As indicated by the notation of their left-hand sides, 
Eqs. (21) constitute a hierarchical system of ordinary differ­
ential equations in the following sense: (a) given YAB on N I, 
Eq. (21a) with (22a) indeed gives a second-order differen­
tial equation for w, with "source" the value of R II along NI ; 
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(b) given YAB' RII and a solution W of the latter differential 
equation, Eq. (21 b) with (22b) and (19d) gives a first-order 
differential equation for a; (c) given YAB' R ll , some solu­
tions wand a, as well as RIA on N I , Eqs. (21c) and (22c) 
give a second-order differential equation for 13 A; and finally 
(d) given YAB' R II , RIA' some solutionsw, a, andpA' as well 
as yABRAB on NI, Eqs. (21d), (22d) give a second-order 
differential equation for {). 

We wish to compare Xgob (XC,A) and Ngob (xc,A) on N I, 
i.e., to compare (za, zp A' Zr AB' Z{) for Z = N and X. First, 
by definition [see Eq. (14a)] we know that NrAB and xrAB 
are conformal to the same reference metric YAB: = NrAB , 
which means that NW= 1 on N I. On the other hand, Xw is 
defined as the solution ofEq. (21a) with YAB: = NrAB and 
xR ll = 0, which starts off S (i.e., Xl = 0) with the initial 
conditions w(x l = 0) = 1, Dw(x l = 0) = 0 [see Eqs. 
( 14b) ]. In other words we are comparing the solutions of 
two ordinary differential equations, 

D21n(Nw) + DB 

+HDln(Nw ) + BP+i'T!01 = -NRll' (23a) 

D2In(xw) +DB+HDlnew) +BF+i'T!01 =0, 
(23b) 

with the same initial conditions at Xl = O. The coefficients of 
these two differential equations are smooth functions of Xl, 
xA

, and A, and differ only (in the source) by the term 
- NR II , which we know, from Eq. (13), to be of the form 
- AN + IS(N) II (Xl ,XA,A) with a smooth function S(N) II' To 

simplify the reasoning we shall provisionally introduce a 
new parameter, say f.l, to be identified later with A N + I. Then 
consider u: = (w,Dw) , and the solution of the first-order 
differential equation deduced from Eq. (21a) by replacing 
Rll by f.lSII (Xl,XA,A) , say 

au I A 1 - = F(u,x ,X ,/L,f.l) , 
axl 

(24) 

which takes the value (1,0) at Xl = O. This solution, say 
u = qJ(XI,~ ,A,f.l), reduces to (XW,xW,1 ) when f.l = 0, and to 
(NW, NW,I ) when f.l = A N + I. Moreover, as F and the initial 
conditions are smooth functions of all their arguments, one 
knows by standard theorems about parameter-dependent 
ordinary differential equations that qJ is C 00 jointly in the 
"independent variable" xl, and the "parameters" (XA,A,f.l). 
Therefore, we can write 

w(x l ,xA ,A,f.l) = xW(x l ,xA ,A) + f.l@(Xl,XA,A,f.l), (25a) 

with @ being COO in all its arguments. Inserting (25~) into 
Eqs. (21b), (22b), and using Eq. (19d) yields 

a 11 I 1 0- 1 x A -I X A - n a = - + - ( w + IIW) (w I + IIW I)' axl 2 2 r- ,r- . 

(26) 

The solution, say a(xl,xA,A,f.l), ofEq. (26) with initial con­
dition a(xl = 0) = - 1 (because of the definition of stan­
dard coordinates) reduces to xa for f.l = 0 and to Na for 
f.l = AN + I. We can again clearly see that a must be smooth 
in all its arguments, including f.l, and that we can write 
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for some C'" function U. 
We can proceed in the same manner for the next equa­

tion of the hierarchy, (2Ic), (22c), replacing RIA by 
,uS(N)IA(XI,XA,A.) [see Eq. (13)], and defining 
/3A (xI,xA ,A,,u) as the solution ofEq. (21c) with initial condi­
tions /3A (Xl = 0) = 0 (because g2A ==0 on N2 and therefore 
on S = NI nN2) and D/3A (Xl = 0) = Ng2A.I (Xl = 0) [see 
Eq. (l4b)]. The insertion of Eqs. (25a) and (25b) into 
(2Ic), (22c) [using Eqs. (19c)-(1ge) with rAB = w(,u) 

XYAB] leads to a differential equation for /3A (xl, ... ,,u) 
which: (i) depends smoothly on,u, and (ii) reduces to the 
one for X/3A when ,u = 0 (and the one for N/3A when 
,u = A. N + I). As the initial conditions are also smooth in the 
parameters (and even independent of,u) , standard theorems 
guarantee again the smoothness of the solution, so that one 
can write 

/3A (xI,~ ,A,,u) = X/3A (XI,XA,A) + ,uPA (XI,XA,A.,,u), 
(2Sc) 

for some C'" functions PA' The same argument works for 
Eqs. (2Id), (22d), replacing RAB by ,uS(N)AB(XI,XA,A.) and 
using, besides the equations already mentioned, Eqs. (19f) 
and (25c) to check explicitly the smooth dependence in ,u, 

and the reduction to the equation for xl) when,u = O. In that 
case the initial conditions are l)(x l = 0) = 0 (because 
g22 ==0 on N 2 ), and Dl)(xl = 0) = - e IN, (as deduced 
from the restriction to S of the harmonfcity condition 
r 2 = 0; e I N, denotes the reference "expansion" of N2 , i.e., 
the analog of ( 19a) computed along N2 , with D replaced by 
a /ax2

). Note that the various two-surface derivatives that 
are hidden in the three dots on the left-hand sides of Eqs. 
(21a)-(2Id) (e.g., the ones included in the curvature sca­
lar), as well as the other D derivatives, are harmless in the 
present reasoning because they act on already known (at 
each stage) smooth functions ofxI,~,A, and,u. We then get 
also 

l)(xI,~ ,A,,u) = xl)(xI,~,A) + ,u8(XI,XA,A.,,u) , (25d) 

for some C '" function 8. 
Replacing now,u by A. N + I in Eqs. (25a)-(25d) we get 

on NI :Ngab (XI,XA,A.) = Xgab (XI,~,A.) 

for a, b = 1, ... ,4, and for some smooth functions kab' 
We can transpose the same reasoning for the constraints 

on N2 • The only differences, beyond exchanging the indices 
I and 2, are that the initial conditions for g1A.2 are obtained 
from the ones for g2A.I by writing the restriction to S of the 
harmonicity condition r A = 0 [where we recall that r a is 
defined by Eq. (15), and vanishes in standard coordinates] . 
Then the analog of (27) holds also on N 2 • The combination 
of this just proven equality on NI U N2 of the first N coeffi­
cients of the Taylor expansions ofNg(A.) and Xg(A.) with the 
result obtained above on the uniqueness of the solution of the 
reduced perturbation hierarchy completes the proof of the 
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first part of Theorem 3, the one concerning finite Taylor 
expansions. 

Let us now start from a Ricci-fiat background 
g(O)ab (x'C) and from an infinite sequence h (n)ab (x'C) satisfy­
ing the perturbation hierarchy (8). We can then construct a 
smooth one-parameter family of Lorentz metrics, by using 
the Theorem 1.2.6. of Ref. 20. This theorem generalizes Bor­
el's theorem (given any sequence of numbers there exists a 
C'" function defined near the origin of the real line which 
has these numbers as successive derivatives at the origin) to 
sequences of smooth functions. This theorem guarantees 
(locally) the existence (and constructability) of a smooth A.­

family '" g~b (x,c,A) such that its value at A. = 0 is g(O)ab (x'C), 
and its successive Taylor coefficients at A. = 0 are the 
h (n)ab (x'C), for all n;;.l. We can then use the same reasoning 
as above, starting now with "'g' (A.) instead ofNg' (A.) as "ap­
proximately Ricci-fiat" metric. Bya (locally smooth) A.-de­
pendent coordinate transformation we can introduce stan­
dard coordinates. Then we use ["'gAB] N,UN, and ["'g2A.I ] S 

as characteristic data to define a family of exactly Ricci-fiat 
metrics, in standard coordinates, say Xgab (xc,A). The com­
parison between the two families is done as above, 
'" Rab (xc,A.) = A. N + IS(N)ab (xc,A.) holding for any given val­
ue of N. This shows then that "'g(A.) and xg(A.) have the 
same infinite sequence of Taylor coefficients at A. = 0 (both 
in standard coordinates, and in the original coordinate sys­
tem). 0 

Note that, in a general C '" setting, there are many exact 
solutions giving rise to a given sequence of Taylor coeffi­
cients. Only in the case where the formal series in powers of A. 

that correspond to the characteristic data [ "'gAB] N, U N, and 
["'g2A.I ] s converge can we single out a preferred C '" family 
of exact solutions. 

Let us remark that the proofwe gave of the local reliabil­
ity of Einstein's vacuum field equations is essentially based 
on two broad facts: (i) the reduction, in some gauge, of the 
evolution equations to a system of quasilinear wave equa­
tions for some collection of fields, say </l (in our case the ten 
gab'S in harmonic coordinates), and (ii) the fact that the 
characteristic initial value problem leads to a hierarchical set 
of ordinary differential equations for determining the full 
characteristic data for the "reduced" field equations (i.e., 
the values of all the </l's on NI UN2 ) from some "free" char­
acteristic data, say X (in our case, essentially the conformal 
two-metric Y AB ). The essential structure used in the proof 
above of this hierarchical set of ordinary differential equa­
tions has been that it was a smooth function of the hypersur­
face derivatives of the </l's and the X's up to some finite order, 
and of any possible source term in the original field equa­
tions. 

Let us consider now the coupled Einstein-Yang-Mills 
system (see Theorem 2 above). It belongs to the just de­
scribed (</l,X) class of systems to which our method applies, 
if we take </l = (gab,Aa ) in standard gauge (see Definition 2 
above), and for X the data of Theorem 2. We find that the 
Einstein-Yang-Mills equations in standard gauge, consid­
ered along the null hypersurface N I , imply the following 
hierarchical set of ordinary differential equations: 
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Ea [Da,a, ... ] = 0, (28b) 

Ea [Da,a, ... ]: = (D + O)a + KBIIB + [AB,KB} = 0, (28c) 

E~ [D 2PA,DPA,PA""]: 
(28d) 

Ei; [D 28,D8,8, ... ]: 

= Efj + !ka2[ a-a + !yAA'yBB'FABoFA'B' ] = 0, (28e) 

EA,[DA2, ... ]:=DA2 -pBDAB 

+ !ayAB AB,A + !aa = 0, (28f) 

where KB denotes - J I AB·(i.e., FBI in standard gauge) 
and KB: = yBc Kc. Along N2 a corresponding set of equa­
tions must also hold. The initial conditions On S for these 
differential equations have been given in the proof of 
Theorem 2 above. When one considers (as needed in the 
proof of reliability) inhomogeneous Einstein-Yang-Mills 
systems, 

Rab - kTab = Sab' 

Y a = Ja , 

but still works in standard gauge, Eqs. (28) acquire the fol­
lowing respective source terms: 

- SII ,0, - J I ,aSIA' - !a2yABSAB'0. 

This makes it clear that our method of proof applies. There­
fore, one can conclude that Theorem 3 generalizes complete­
ly to the Einstein-Yang-Mills equations. 

Finally, the treatment of the characteristic initial value 
problem for the Einstein-Euler system (general relativistic 
perfect fluid) in Ref. 8 shows that our method can also be 
applied to prove the local reliability of perturbation expan­
sions for the coupled gravitation-perfect fluid system. How­
ever, this local result is valid only in a connected domain 
where p + p(p) > 0, i.e., inside one gravitating fluid, and, 
therefore it provides no mathematical justification to the 
use, say, of post-Mink ow ski an perturbation series to repre­
sent the gravitational field generated by finite bodies. What 
would be needed for this problem is, first of all, an existence 
theorem for solutions describing bodies of finite extent. In 
this respect it is amusing to note that, if the recently found 
"particlelike" solutions of the Einstein-Yang-Mills equa­
tions21 tum out to be stable, they might be of use in modeling 
an "N-body system" for which, as we just s,howed, a reliabil­
ity result exists. 

v. SMOOTH ONE·PARAMETER FAMILIES OF 
SEMIGLOBAL PAST-STATIONARY SPACE-TIMES 
ADMITTING A PIECE OF .'T WITH RADIATION 

Up to now we have considered only the question of the 
local reliability of perturbation theory. Our positive answer 
to this question allows one to justify the use of perturbation 
expansions to approximate, say, vacuum gravitational fields 
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over compact space-time domains. However, the algorithm 
developed by Blanchet and Damour2 was intended to ap­
proximate generic vacuum gravitational fields all over a non­
compact "weak-field zone outside the source." More pre­
cisely, their algorithm assumes the existence of, what can be 
called, "semiglobal past-stationary radiative vacuum space­
times" (for short, "semiglobal space-times") i.e., solutions 
of the vacuum Einstein equations over a manifold homeo­
morphic to ~4 minus a timelike cylinder, which are station­
ary before some time, and which admit (at least a piece of) a 
regular future null infinity (Y + ) with radiation. In subse­
quent papers22 they used their post-Minkowskian algorithm 
to study the structure of the gravitational radiation emitted 
by isolated material sources. The question therefore natural­
ly arises whether our result of local reliability can be ex­
tended to one of semiglobal reliability, which would give a 
mathematical justification to such perturbation approaches. 
By combining the method we used in Sec. IV with theorems 
of Friedrich 12 on the regularization of the conformal Ein­
stein equations we shall show that this is the case. More 
precisely we are going to prove: (i) the existence of semiglo­
bal past-stationary solutions of the vacuum Einstein equa­
tions admitting a piece of Y, and (ii) the possibility to con­
struct smooth one-parameter families of such semiglobal 
solutions whose Taylor coefficients in the A. expansion are of 
the "multipolar post-Minkowskian type" studied in Refs. 2 
and 22. The generalization of this construction to the Ein­
stein-Yang-Mills system is briefly discussed at the end of 
this section. 

To prove the existence of semiglobal past-stationary ra­
diative vacuum space-times let us start by giving ourselves a 
semiglobal stationary solution of the vacuum Einstein equa­
tions which is asymptotically flat, say 'g. Choose an asymp­
totically flat spacelike hypersurface C 3 (homeomorphic to 
~3 minus a ball) such that Sg is defined on the manifold 
C 3 X ~ (in the static case we would naturally take one of the 
preferred spacelike hypersurfaces orthogonal to the Killing 
vector). Select on C 3 a spacelike two-surface S (of spherical 
topology) such that the outgoing future-directed null geode­
sics issued from S generate a smooth null hypersurface, Nout, 
up to Y+ (no caustics). Denote by N in the null hypersur­
face generated locally by the ingoing future-directed null 
geodesics issued from S [see Fig. 1 (a) ]. We shall use the two 
null hypersurfaces23 Nout, N in to pose a characteristic initial 
value problem (using, say, two patches of standard coordi­
nates to cover S and its neighborhood). We consider a 
smooth one-parameter (or several-parameter) family of ini­
tial data on (S, Noul' N in ) such that: (i) they coincide on S 
and Nout with the data for Sgfor aliA. 's; (ii) they reduce when 
A. = OtothedataforSg; (iii) whenA. ¥OthedataonNin differ 
(smoothly) from the data for Sg only on the part of N in which 
is in the future of a null hypersurface N ~ut obtained by Lie 
dragging Nout some finite time in the future along the time­
like Killing vector defining the stationarity of 'g and extend­
ing it inwards down to ~n [see Fig. 1 (a)]. Rendall's results 
recalled in Sec. III above guarantee the existence and 
uniqueness of a smooth family of solutions, say gD (A.), gen­
erated by such data only in some local four-dimensional do­
main, say D 4, which is a neighborhood of S intersected with 
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(a) 

(b) 

FIG. 1. (a) Construction of hyperboloidal data in physical space-time by 
piecing together a local characteristic initial value problem and a stationary 
solution. (b) Evolution of the hyperboloidal data in an extended conformal 
picture. 

the future of S. Let us now introduce the infinite four-dimen­
sional domain B 4 defined as the union of the local domain 
D 4 with the domain sandwiched between Nout and N ~ut 
(and bounded inwardly by Nin ). By our choice of data, it is 
clear that we can define on B 4 a smooth family of solutions of 
Einstein's vacuum field equations, say gB (A), as being 
gD (A) on D 4 and Sg on B 4 - D 4. In the pseudo-Riemannian 
manifold (B 4,gB (A» we can select a smooth spacelike hy­
persurface, say H 3, which starts off in the "nonstationary" 
part of B 4 (i.e., the future of N ~ut ) and then extends out to 
Y + through the "stationary" part of B 4 in a smooth as­
ymptotically null manner (such H 3,S are called "hyperbo­
loids") . 

We can now use the theorems of Friedrich 12 about the 
regularization of the conformal Einstein vacuum equations 
to extend the nonstationary character of the metric out to 
infinity. By construction the metric gB (A) induces on the 
asymptotically null spacelike hypersurface H 3 data, say 
(h(A), k(A», that satisfy the "hyperboloidal constraints" 
of Ref. 12. Now, when ,1= 0 the data (h(O), k(O» corre­
spond (by our choice above oflocal characteristic data) to 
the stationary metric Sg, and therefore define uniquely Sg on 
the full domain of dependence of H 3. But such an asymptoti­
cally flat stationary metric is analytic at future null infinity, 
and admits a (unique) analytic extension through Y + (this 
was shown explicitly for the Schwarzschild solution in Ref. 
24, and is discussed for the general case in the Appendix). 
Placing ourselves in such an analytically extended confor­
mal picture (in which Y+ is brought down to a finite "dis­
tance"), Fig. 1 (b), we see that we have shown the existence 
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of a smooth family of Cauchy data for the conformal vacuum 
equations that satisfy the constraints for all A's, and that 
determine when ,1= 0 a known solution of Friedrich's con­
formal evolution equations in some domain K (which is 
compact in this conformal picture, but which extends be­
yond null infinity). As Friedrich's evolution equations con­
stitute a symmetric hyperbolic quasilinear system we can use 
the general result of Hamilton 7 of (C 00) stability (under 
variation of the data) of the Cauchy development of the data 
in a compact domain K having a spacelike future boundary. 
Therefore, for A small enough, we will have a smooth family 
of conformal metrics containing smooth (null) hypersur­
faces on which the conformal factor vanishes. 

Going back to the physical picture, we conclude that we 
have proven (for A small enough, i.e., for small enough de­
viations about some stationary metric) the existence of 
smooth families of semiglobal nonstationary solutions of the 
vacuum Einstein equations that are stationary before some 
retarded time, and which admit a smooth piece offuture null 
infinity, up to some (later) retarded time. Note that our 
class of solutions is rather general as it contains (for each A) 

two arbitrary functions of three variables. It is also interest­
ing to note that, after having constructed our solutions by 
means of a characteristic initial value problem, we can also 
consider the data they induce on a usual spacelike Cauchy 
surface (homeomorphic to g(3 minus a ball). As these 
Cauchy data (first and second fundamental forms) belong 
to a stationary space-time outside some two surface they 
clearly satisfy the asymptotic spatial fall-off conditions used 
in the recent work of Christodoulou and Klainerman. 25 If 
we assume that their result (proven for Cauchy surfaces ho­
meomorphic to g(3) holds true also for (small enough) data 
considered on a Cauchy surface homeomorphic to g(3 minus 
a ball, we can say that our result proves the existence of a 
subclass of Cauchy data which evolve into a (piece of a) 
smooth Y. The existence of such "good" data is not clear 
from their results, as the estimates they get for the fall off of 
the gravitational field at null infinity violate the "peeling 
property," and would therefore be incompatible with even a 
C 3 conformal structure at Y if they were sharp. An indica­
tion of how both types of results can be reconciled comes 
from perturbation calculations. Indeed, some perturbative 
results26 get a smooth Y for generic semiglobal past-sta­
tionary (approximate) space-times, but find, when a limit is 
taken that allows the space-time to have been always nonsta­
tionary, that the smoothness of Y can be destroyed, and that 
the peeling property may not hold (neither at Y- nor at 
Y + ). These calculations indicate also that the past-station­
arity of these semiglobal approximate space-times is a suffi­
cient but not necessary condition for the smoothness of Y. 
What seems needed is just a sufficiently fast approach to 
stationarity when going back in the past. In terms of Cauchy 
data, this would correspond to data that never belong, near 
spatial infinity, to a stationary space-time, but which, in 
some sense, tend fast enough to "stationary data" to preserve 
the smoothness of Y. (We are assuming here that the global 
time asymmetry, "no incoming radiation condition," which 
is built in most of the perturbation calculations is not crucial 
compared to the spatial fall-off). This suggests the interest-
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ing mathematical question of trying to characterize such 
"asymptotically stationary" data leading to a smooth !T 
among the general class of data which, probably (because of 
the singular conformal structure at spatial infinity, and of 
the existing exact25 and perturbative26 results), lead generi­
cally to a violation of peeling. 

In the above construction we have used the parameter 
dependence only to simplify our need to deviate slightly 
from a stationary solution. However, we can also put a pa­
rameter dependence in the data that define the stationary 
solution. In particular we can, for instance, replace the mass 
M by AM in the characteristic data for the Schwarzschild 
solution, and add, on Nin , nonstationary data that have also 
A in factor and which contain only a finite number of multi­
poles (starting smoothly off zero at some retarded time cor­
responding to N ~ut ). Such data will generate a smooth fam­
ily of semiglobal exact solutions whose A expansion will be of 
the type of the "multipolar post-Minkowskian" expansions 
studied in Refs 2 and 22. Thereby we have extended our 
result oflocal reliability of perturbation expansions to one of 
semiglobal reliability (including at future null infinity) for 
such "multipolar post-Minkowskian" expansions. 

Finally, we can straightforwardly generalize all the 
steps of our construction to the Einstein-Y ang-Mills case. 
The basic ingredients we need are available: they are the 
existence and uniqueness of C 00 solutions generated by C 00 

characteristic data (Theorem 2 above) and the possibility to 
regularize the conformal Einstein-Yang-Mills equations. 27 

As above, this proves the existence of a general class of se­
miglobal past-stationary radiative Einstein-Yang-Mills 
(and in particular Einstein-Maxwell) solutions admitting a 
C 00 conformal structure on a piece of !T, and the possibility 
to construct smooth multipolar-post-Minkowskian-type 
families of such solutions. 
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APPENDIX: ANALYTIC EXTENSION THROUGH Y OF 
STATIONARY VACUUM METRICS 

There are various ways, starting from the theorem of 
Beig and Simon,28 to show that, for a stationary asymptoti­
cally flat solution of the vacuum Einstein equations, there 
exists a chart (u,r,(},cp) such that the metric is conformal to a 
metric analytic in r: = 1/r near r = O. In general, such a 
chart will not be harmonic. If we wish, we can however as­
sume that the conditions of harmonicity are satisfied up to 
some finite order. If we assume that the mass does not van­
ish, and that the mass dipole is transformed to zero we have a 
metric ofthe form29 
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where r2: = oa{3ZZz!; a,/3 = 1,2,3. Note that the freedom of 
making spatial transformations was used for having a spatial 
metric which is conformally flat up to the order O(1lr). 
The functions F, Fa' Fa{3 into which we have collected the 
higher-order terms are analytic in 1/r and in the angular 
coordinates, «(},cp) = (t/JA); A = 3,4. Going to standard po­
lar coordinates one checks easily that all the terms of the 
conformal metric 052

: = r - 2 ds2 are analytic in r: = 1/ r near 
r = 0, in the (t,r,(},cp) chart, except for the term proportional 
to ar 2

• To take care of that term we must transform the time 
coordinate. The dangerous terms are contained in 

dS,2 = - A 2(r)dt 2 + B 2(r)dr2 

= - A 2(dt - (B 1 A )dr)(dt + (B 1 A )dr), 

where 

A 2 = 1 - 2M Ir + 2M21r2, 

2 2M 3 M2 
B =1+-+--. 

r 2 r2 

If we define a new time coordinate by 

u=t-f B(r) dr 
A(r) , 

we obtain 

dS'2 = - A 2 du(du + (2B 1 A )dr) 

= - A 2 du2 - 2AB du dr. 

We can now check that a~ = r - 2 ds2 is analytic in r, at 
r = 0, in the (u,r,(},cp) chart. The hypersurface r = 0 is easily 
seen to be a null hypersurface, with topology 9l X S 2. 
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Assuming that the physical three-space in a relativistic superdense star has the geometry of a 
three-spheroid, a static spherically symmetric model based on an analytic closed-form solution 
of Einstein's field equations is presented. Assuming the density of the order of 2 X 1014 g cm - 3, 
estimates of the total mass and size of the stars of the model are obtained for various values of a 
density-variation parameter that is suitably defined. The total mass and the boundary radius of 
each ofthese models are of the order of the mass and size of a neutron star. 

I. INTRODUCTION 

The models for relativistic spherical stars are usually 
constructed. by integrating numerically the appropriate set 
of Einstein's field equations on the basis of an a priori fur­
nished equation of state of its matter content. The precise 
nature of the behavior of matter in the central core regions of 
superdense stars like neutron stars being not known with 
certainty, one does not have reliable information about the 
equation of state for the matter content of such stars and one 
is led to make assumptions of a very general nature. How­
ever, the self-interaction of the gravitational field as reflected 
in the nonlinearity of Einstein's field equations, makes it dif­
ficult to obtain simple exact solutions useful for constructing 
models for relativistic stars. This problem has been consid­
ered by several authors. 1-7 

According to general relativity theory, the geometry of 
the physical space is governed by the matter-energy content 
of the space, which introduces curvatures in the acompany­
ing space-time. The physical three-space of the Schwarzs­
child interior solution, representing the gravitational field in 
the interior of a cold star filled with a uniform distribution of 
matter in equilibrium, is curved up into a three-spherical 
space whose radius R is directly linked with the density of 
matter content of the star. Following this observation Vai­
dya and Tikekar8 have shown that space-times whose asso­
ciated physical three-spaces obtained as t = const sections 
have geometry of a three-spheroid are useful in developing 
relativistic models for superdense spherical condensations of 
matter in equilibrium such as neutron stars. Only a few of the 
large number of closed-form solutions of Einstein's field 
equations for static spherical destributions of matter admit 
such possibilities. Accordingly, it is important to have exact 
solutions representing static fluid spheres that may serve as 
easily surveyable models for relativistic stars. The particular 
class of the superdense-star model ofVaidya and Tikekar8 is 
found to permit higher values of maximum mass for a neu­
tron star than the values permitted according to the nonnu­
clear analysis of Rhodes and Ruffini.9 Knutsen lO has dis­
cussed various physical properties of the Vaidya-Tikekar 
model and has shown that it is stable with respect to infini­
tesimal radial pulsations. 

In this paper, after a brief discussion of the distinctive 
features of the space-times whose associated physical three­
spaces have the geometry of a three-spheroid in Sec. I, we 

have obtained in Sec. II the relations governing the physical 
variables of equilibrium configurations of spherical distribu­
tions of matter, assuming that the background space-time 
has the above geometry. An exact solution of Einstein's field 
equations obtained in Sec. III, in this setup, is used to devel­
op in subsequent sections a relativistic model for a super­
dense star. Specifying the matter density on the boundary 
surface of the configuration to be 2 X 1014 g cm - 3, the value 
given by Rees et al., II for the surface density of matter for a 
neutron star, estimates of the total mass and size of the stars 
of the model are obtained for various values of a suitably 
introduced density-variation parameter. These estimates to­
gether with other relevant quantities are presented in Table 
I. 

These values show that the closed-form solution pre­
sented here leads to a class of physically viable static models 
for relativistic stars. An important feature of this class of 
models is that if the matter content of star of the model com­
plies with the requirement p - 3p/c2 > 0 inherent in the 
strong energy conditions, the maximum permissible mass is 

TABLE I. Masses and equilibrium radii corresponding to Pu = 2.0x 10'· 
g cm - 3. for the class of relativistic star models. 

Ser. A R(km) a(km) m(km) M/M0 a A B 
No. 

I 0.95 78.16 5.23 0.09 0.06 - 1.93 1.97 
2 0.9 76.08 7.36 0.26 0.18 - 1.87 2.06 
3 0.85 73.93 8.97 0.48 0.33 - 1.79 2.14 
4 0.80 71.73 10.31 0.75 0.51 -1.72 2.23 
5 0.75 69.45 11.47 1.05 0.71 -1.64 2.31 
6 0.70 67.09 12.49 1.39 0.94 - 1.55 2.39 
7 0.65 64.65 13.41 1.77 1.20 - 1.46 2.48 
8 0.60 62.12 14.24 2.19 1.49 - 1.36 2.55 
9 0.55 59.47 14.99 2.64 1.19 - 1.25 2.63 

10 0.50 56.70 15.68 3.12 2.12 - 1.14 2.70 
11 0.45 53.79 16.30 3.64 2.47 - 1.01 2.76 
12 0.40 50.72 16.86 4.20 2.85 -0.87 2.80 
13 0.35 47.44 17.35 4.79 3.24 -0.71 2.83 
14 0.30 43.92 17.78 5.43 3.68 -0.53 2.82 
15 0.25 40.10 18.13 6.10 4.14 -0.33 2.76 
16 0.20 35.86 18.39 6.81 4.62 -0.08 2.59 
17 0.15 31.06 18.54 7.56 5.12 0.21 2.23 
18 0.10 25.36 18.53 8.36 5.67 0.55 1.34 

a Note: M = mCZ/G. M0 = mass of the Sun. 
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close to the limit imposed by the analysis of Rhodes and 
Ruffini. 9 Higher masses are permissible if the above condi­
tion is relaxed. 

II. STATIC SPHEROIDAL SPACE-TIME 

A three-spheroid, immersed in the four-dimensional 
Euclidean space with metric 

dcr = dx2 + dy2 + d:l- + dw2, (2.1) 

will have the Cartesian equation 

(x2+y+r)/R2+w/b 2= 1. (2.2) 

The sections w = const of the three-spheroid are concentric 
spheres, while sections x = const, y = const, and z = const 
represent, respectively, systems of confocal ellipsoids. 

The parametrization 

x = R sin a sin 8 cos ¢, 

y = R sin a sin 8 sin ¢, 

z = R sin a cos 8, 

W= b cos a, 

of the three-spheroid leads to 

dcr = (R 2 cos2 a + b 2 sin2 a)da2 

+ R 2 sin2 a(d8 2 + sin2 8 d¢2), 

(2.3) 

(2.4) 

as the metric on the three-spheroid. Introducing a new space 
variable 

r= R sin a, (2.5) 

the metric dcr on the three-spheroid can be cast into the 
form 

dcr = [1 - K(r2/R 2)] (1 _ r2/R 2) -I dr2 

+ r2(d8 2 + sin2 8 d¢ )2, 

where 

K= 1_b 2/R2. 

(2.6) 

(2.7) 

It is evident that a spheroidal three-space is essentially 
spherically symmetric. Its geometry is governed by two cur­
vature parameters Rand K. The metric (2.6) is regular and 
positive definite at all points r < R for K < 1. 

In the case K = 1, the spheroidal three-space degener­
ates into a flat three-space and in the case K = 0, it becomes 
spherical. The static spherically symmetric space-time of the 
metric, 

ds2 = _ [1 _ K (r 2/ R 2) ] (1 _ r 2/ R 2) - 1 dr 2 _ r 2 d8 2 

_r2sin28d¢2+eV(rldt2, (2.8) 

has its associated three space, obtained as hypersurface 
t = const, a three-spheroidal space. The metric (2.8) with 
K = 0 and ev(rl = [A + B( 1 - r2/R 2) 112]2 is the metric of 
the Schwarzschild interior solution that is used to construct 
relativistic model for a cold, spherical star filled with uni­
form distribution of matter in equilibrium. 

III. MATTER DISTRIBUTION ON SPHERIODAL SPACE­
TIME 

We consider spherical distributions of matter in the 
form of a perfect fluid represented by the space-time metric 
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(2.8) when K < 1 and K #0, i.e., when the physical three­
space in (2.8) is spheroidal and not spherical or flat. 

The energy-momentum tensor for a perfect fluid is given 
by 

(3.1) 

where p and p, respectively, denote matter density and fluid 
pressure and ui represents the unit, four-velocity field of the 
fluid. For equilibrium configurations with background 
space-time metric (2.8) 

Einstein's field equations, 

Rij - !Rgij = - (87rG 1c2)Tij' 

lead to 

87rG 3(l-K) [1- (K/3)(r2/R2)] 

7 P = R2 [1-K(r2/R2)]2' 

(3.2) 

(3.3 ) 

(3.4 ) 

87rG ( v' 1 ) ( r 2 ) ( r 2 ) - 1 1 -p= -+- 1-- l-K- --, 
c4 r r 2 R 2 R 2 r 2 

(3.5) 

as the relations determining matter density p and fluid pres­
sure p in the distribution, together with the consistency con­
dition implied in the isotropy condition T: = Ti, viz, 

(3.6) 

Here, and in what follows, a prime indicates a differentiation 
with respect to r. 

In this approach, the usual equation of state of matter is 
replaced by the geometrical requirement that the physical 
three-space of the distribution be spheroidal. In the 
Schwarzschild interior solution K = 0 and the matter den­
sity is linked directly with the geometric parameter R-the 
radius of the spherical three-space. In the present case, the 
geometric parameter Rand K completely determine the 
matter density at all points of the distribution. 

Let 

(3.7) 

represent the total mass content of the distribution within 
the spherical region of radius r. The expression (3.4) for 
matter density gives 

mer) =1...c. (1 - K)r (3.8) 
2 R2 1-K(r2/R2) 

The condition 

1. dp = _ (p + p1c2) ([m(r) + (47rGP/c4 )r]) 
c2 dr r2 1 - 2m(r)/r ' 

(3.9) 

which ensures the hydrostatic equilibrium of spherically 
symmetric distributions of matter, contained in the field 
equations (3.4), (3.5), and (3.6), can be written in the form 
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(3.10) 

The matter density P as given by Eq. (3.4) is positive 
throughout the distribution. Accordingly, we observe from 
(3.10) that ifp(r) > 0 then the pressure gradient is negative 
at r and pressure will be decreasing radially outward. 

IV. A SOLUTION OF FIELD EQUATIONS 

The linear differential equation (3.6) can be expressed 
in the convenient form 

dZf/! df/! 
(l-K +Kr) --Kz-+K(K -l)f/!=O, (4.1) 

dr dz 

by adopting f/! and z defined by 

f/! = ev12 (4.2) 

and 

r = (1- r2/R 2), (4.3) 

as new dependent and independent variables, respectively. 
Equation (4.1) is found to admit the general closed­

form solution 

f/! = A(l- ~r + ~Z4) + Bz(1 - ~2)3/2, (4.4) 

for the particular choice of geometric parameter K = - 7, A 
and B being arbitrary constants of integration. 

The space-time metric of this solution written out expli­
citly reads 

dr = - 8 - 7r dr 2 _ R 2(1- r)(d0 2 + sin2 Odt/J)2 
r 

+[A(l- ~r+ ~: Z4) 

+ BZ( 1 - ~ zzy12f dtZ, (4.5) 

where r = 1 _ r2/R 2. 
The expressions for matter density and fluid pressure for 

the distribution of (4.5) are expressed as 

81TGp = ~ 10 -7r 
c2 R2 (8-7r)2 

24 (1 + ~r2/R 2) 
=-

R 2 (1 + 7r2/R 2)Z 
(4.6) 

A( -1 +¥r _~4) -!Bz(5 -7r)(1-~)1/2 

R2(1_~)[Bz(l-~)3/Z+A(1-~+~Z4)] 

(4.7) 

The solution (4.5) is a closed-form exact solution of Ein­
stein's field equations representing a spherical fluid distribu-
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tion at rest. Although it is not obtained on the basis of any 
explicit assumption about the interparticle interaction, it is a 
logical consequence of the potent geometrical structure as­
sumed for the background space-time. Such closed-form so­
lutions are expected to be of astrophysical interest provided 
they satisfy certain general basic requirements expected of 
the fluids at ultrahigh densities and pressures. 

V. PHYSICAL REQUIREMENTS 

In order that the solution (4.5) be physically meaning­
ful one has to study carefully the implications of the follow­
ing requirements it is expected to fulfill in its region of valid­
ity. 

(i) The matter density p and fluid pressure p should be 
positive everywhere. 

(ii) The gradients dp/dr and dp/dr should be negative. 
(iii) The speed of sound should be less than the speed of 

light. 
(iv) The interior metric should be joined continuously 

with the exterior Schwarzschild metric, 

dr = - (1- 2m/r) -I dr 2 - r2(d0 2 + sinz Odt/J2) 

+ (1-2m/r)dt2, (5.1) 

as one crosses the boundary surface r = a of the distribution. 
From the expression (4.6) if follows that p > 0 and further 
dp/ dr < 0 throughout the distribution. Accordingly, the flu­
id sphere ofthe configuration is a regular fluid sphere in the 
sense introduced by Buchdahl. 3 

The equation for hydrostatic equilibrium in the form 
(3.10) implies that at all points r<R, if the pressure 
p(r) > 0, then the pressure gradient dp/dr<O. At the center 
r = 0 of the distribution the density and pressure attain val­
ues Po and Po given by 

81TGpo/C2 = 24/R 2, (5.2) 

81TGpo 32 (2..[2A + 3B) 
-c-4 - = R2 ( - 22..[2A + 3B) , 

(5.3 ) 

respectively. 
The pressure at the center Po will be positive if the arbi­

trary constants A and B comply with either 

(a) 3B + 2~A > 0 and 3B - 22..[2A > 0 

or 

(b) 3B + 2..[2A < 0 and 3B - 22..[2A < O. 

We further impose the condition that p - 3p/c2>0 the 
so-called strong energy conditions then at the center 
Po - 3po/cz>0 and subsequently A and B should be further 
restricted to comply with 

(1o..[2A + 3B)/(22..[2A - 3B»0. 

It is observed that A and B should be restricted so that either 

(5.4 ) 

or 

A >0, - lcN2A < 3B < - 2..[2A. 

Equation (3.10) then implies that the pressure gradient will 
be negative in the central region and accordingly pressure 
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will be decreasing in the radially outward direction. We 
choose the surface r = a where the pressure vanishes as the 
boundary surface of the distribution. 

Across this boundary surface r = a, we join the interior 
metric (4.5) with the Schwarzschild exterior metric (5.1), 
stipulating the continuity of metric coefficients and also the 
continuity of pressure. Continuity of the metric coefficients 
give 

m = mea) 

(5.5) 

and 

(l-2m/a)I12=A(l-~~ +~z:) 

+ BZa (1 - ~~ )3/2, (5.6) 

where~ = I - a2/R 2. 

The continuity of pressure across r = a requires that 
pressure should vanish on the boundary implying that 

A ( - I + 6j~ - 11Z: ) 
= !Bza(l- ~)1I2(5 -7~). (5.7) 

Conditions (5.6) and (5.7) determine the arbitrary con­
stants A and B in terms of the curvature parameter R and the 
boundary radius a as 

A = (5 - 7z~) (1 - 2m/a) 112, (5.8) 

B = J.. (I _ 2m)I12(1 _ ~z:) -112 
Za a 8 a 

X( -4+21~ - ~ z:), (5.9) 

where the total mass m is determined by (5.5). 

VI. TOTAL MASS AND SIZE 

The matter density, given by Eq. (4.6) attains the value 
Pa given by 

81TGpa =~(I +~~) (I + 7 ~)-2 
c2 R2 3 R2 R 2 ' 

(6.1 ) 

on the boundary r = a of the distribution. Let 

A = Pa/PO (6.2) 

denote the ratio of the value of matter density on the bound­
ary surface with its value at the center. Then evidently A < 1 

since P is a decreasing function of r, and represents a density­
variation parameter, having the explicit expression 

(6.3) 

Equation (6.2) is a biquadratic equation in a/ R that deter­
mines a/ R in terms of A as 

a2/ R 2 = (1 - 6A + ~ (I + 24A »/ 4U, (6.4) 

the algebraic root assigning negative values to a2
/ R 2 being 

rejected to ensure that a/ R is real and positive. 
Equation (5.2) determines geometric parameter R in 

terms of surface density Pa and density-variation parameter 
A. Equation (6.4) determines the boundary radius "a" of the 
distribution and subsequently Eq. (5.5) determines the total 
mass of the configuration. Thus knowledge of the matter 
density on the boundary surface, Pa, and its ratio with the 
central density is enough to obtain estimates about the size 
and mass of the configuration. 

In order to ensure that P and p be well behaved through­
out the configuration we impose the restriction dp/ dp < c2, 
which implies that the speed of sound should not exceed 
speed of light c in the distribution. 

A straightforward calculation using Eqs. (3.4) and 
(3.10) leads to 

dp 21TGR 2 [I + 7(r2/R 2) Pcp + p/c2) 
-= 
dp 7 (1 - r2/R 2) [5 + 7(r2/R 2)] 

X [ 1 + 1T~P (I + 7 ~22) R 2]. (6.5) 

The values of dp/dp range between its value at the center 
where the density is the highest and its value near the bound­
ary surface where the density reaches its minimum valuepa. 

At the center, dp/dp has the value 

( dp ) = c
2
R2 81TG (po +Po) (81TGPoR

2 

+ 8). (6.6) 
dp 0 1120 c2 c2 c2 

Ifwe impose the condition Po - 3pO/c2 > 0 at the center then 
it readily follows that 

( dP ) < 0.46c2 

dp 0 

on using the expression (5.2) for Po. 
At the boundary we have the expression 

(6.7) 

(X)s = 21TGR2Pa (1 +7 ;:Y/7(1- ;:)(5+7 ;22) 
(6.8) 

for dp/dp which can be expressed in the form 

(I + ~ (1 + 24A) )3 
~~ __ ~~~==~~~ __ ~~~====~~C2 
(48A - I - ~(l + 24A»(1 + 24A + ~(l + 24A» 

(6.9) 

using Eqs. (6.4) and (6.1). It is observed that for models with 0.2<A < I, (dp/dp)s < c2
• In fact the requirement dp/dp < c2 is 

observed to be satisfied throughout the distribution for models with A> 0.25 and complying with the conditionp - p/c2;p0, 
reported in Table I. 
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VII. SUPERDENSE STARS 

A spherical star begins to contract under the influence 
of gravitational interaction of the matter content, when the 
thermonuclear sources of energy in its interior are exhaust­
ed. Its mass energy continues to increase and it ends up as a 
dense star-white dwarf, neutron star, or a black hole. The 
model proposed here describes a superdense star formed 
during these last stages of stellar evolution with densities in 
the range of 1014 _ 1016 g cm - 3. 

We take the matter density p a on the boundary r = a of 
the star as Po = 2 X 1014 g cm - 3. Choosing different values 
for the density-variation parameter A., for each value of A., we 
determine the boundary radius a ofthe star and its total mass 
m, in accordance with the scheme of Sec. VI. The value of m 
obtained is in kilometers. The mass of the star in grams is 
obtained using M = me2/G. The results of these computa­
tions together with the values of the constants A and B as 
determined by the Eqs. (5.8) and (5.9) are given in Table I. 

The first 13 values of A. in the table, i.e., ..1.;;.0.35, give a 
set of physically viable models wherein equilibrium radius of 
each of these star-models is of the order of the radius of a 
neutron star. Both m and a are decreasing functions of A.. 
The maximum mass of the configuration is obtained at the 
equilibrium radius of 17.35 km for A. = 0.35. This maximum 
mass is closer to the limit on the maximum mass of neutron 
star imposed by the non-nuclear analysis of Rhodes and Ruf­
fini. All these models comply with the conditionsp;;'O,p;;.O, 
p-3pIc2 ;;.0, dp/dr, dp/dr<0,dp/dp<e2 throughout the 
configuration. However if we relax these conditions to 
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p - p/ c2;;.0, complying with weak energy conditions, we can 
go as far as the first 15 values of A. in Table I; the model 
subsequently permitting higher values for m and a. One can­
not go beyond that because in these models with ..1.<0.20 the 
conditions p - p/ c2;;.0 and dp/ dp < e2 are not fulfilled with­
in their configurations. 

For the same values of the density-variation parameter 
the star models presented here have lesser values for equilib­
rium radius a and total mass m than the corresponding val­
ues for the star models obtained by Vaidya and Tikekar. The 
models presented here also permit more variation of density 
in the configuration without violating the physical require­
ments and admit the value for maximum mass that is close to 
the limiting value for maximum mass of a neutron star ob­
tained by Rhodes and Ruffini. 9 

I R. C. Tolman, Phys. Rev. 55, 364 (1939). 
2M. Wyman, Phys. Rev. 75,1930 (1949). 
J H. A. Buchdahl, Phys. Rev. 116, 1027 (1959). 
'c. Leibovitz, Phys. Rev. 185,1664 (1969). 
5 R. J. Adler, J. Math. Phys. 15, 727 (1974). 
b P. G. Whitman, J. Math. Phys. 18, 868 (1977). 
7 J. J. Matse and P. Whitman, Phys. Rev. D 22, 1270 (1980). 
"P. C. Vaidya and R. Tikekar, J. Astrophys. Astron. 3, 325 (1982). 
• C. E. Rhodes and R. Ruffini, Phys. Rev. Lett. 32, 324 (1974). 
wH. Knutsen, Mon. Not. R. Astron. Soc. 232,163 (1988). 
II M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves 

and Cosmology (Gordon and Breach, New York, 1975). 
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An initial value formulation for the dust solution with spherical symmetry is given explicitly in 
which the initial distributions of dust and its velocity on an initial surface are chosen to be the 
initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving 
coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are 
derived. 

I. INTRODUCTION 

The general dust solution of spherical symmetry in co­
moving coordinates has been extensively studied 1-6 with the 
use of the metric5 

ds2=dt 2 - y,2(t,r)/[I-Ej2(r)]dr 

(1.1) 

whereE= + 1, -1,0; Y'(t,r) = (a/ar)Y(t,r) andj(r) is 
an arbitrary function of r. The Einstein field equation reads 

y2 _ 2,u(r)/Y = - Ej2(r), (1.2) 

where Y = (a fat) Y(t,r) and,u(r) is another arbitrary func­
tion of r. The evolution of the mass density of the dust is 

p(t,r) =,u'/41Ty2 Y'. (1.3) 

The solution of Eq. (1.2) can be expressed in a parametric 
form as 

Y(t,r) = [,u( r)/j2(r)] h ' (7]), 

h(7]) = [J3 (r)/,u (r) ][t - n(r)], 

(1.4 ) 

(1.5 ) 

where nCr) is the third arbitrary function of r, 
h '(7]) = (d /d7])h(7]), and h(7]) is defined by 

{

7] - sin 7], for E = + 1, 

h(7]) = 1,7]3, forE=O, 

sinh 7] - 7], for E = - 1. 

( 1.6) 

Equations (1.1 )-( 1.6) constitute a complete set of ex­
act solutions to the field equations for spherically symmetric 
dust in general relativity (with the cosmological constant 
A = 0). We see that there are three independent arbitrary 
functions ,u (r),J( r), and n (r) to be determined for a given 
physical problem. Although one can, through a suitable spe­
cification for these three functions, produce a meaningful 
mass distributionp(t,r), we do not know any general proce­
dure by which the three functions can be determined expli­
citly for a reasonable physical system. The purpose of this 
paper is to look for such a procedure. 

In Sec. II we treat the dust solution as an initial value 
problem. We find that by rescaling the radial coordinate, the 
number of independent arbitrary functions in the solution 
decreases by one to two. Instead of these two functions we 
choose another two functions, the initial distributions of the 
dust and its velocity, as initial data, and then we express the 
solution in an initial value formulation explicitly. In the fol­
lowing sections we use the general procedure given in Sec. II 

to discuss some simple examples: the Friedmann universe in 
Sec. III, the Schwarzschild solution in Sec. IV, and a spheri­
cally symmetric and radially inhomogeneous cosmological 
model in Sec. V. 

II. INITIAL VALUE FORMULATION 

We have noticed that the three arbitrary functions ,u,/, 
and n depend on r solely and do not vary with time. This 
reminds us to treat the solution as an initial value problem. 

As a first step we take the initial values of the complete 
set of field Eqs. (1.2) and (1.3) on an initial surface 
t = ti = const, which give 

Y7 - 2,u/Yi = - Ej2, 

Pi = ,u'/41TY7Y ;, 

where 

Yi = Yi (r) == Y(ti,r) , Yi = Yi (r) == Y(ti,r) , 

Pi =Pi(r)==p(f;,r). 

(2.1 ) 

(2.2) 

Here we get exactly three initial values: Yi , Yi , and Pi' The 
first, Y;. is the initial radial coordinate of comoving particles. 
The second and third, Yi and Pi' are the initial velocity and 
the initial mass density, respectively. Here, Yi and Pi are 
physical initial data while Yi are coordinate initial data. 
Generally, Yi is a function of r, therefore the indeterminacy 
in Y i can be removed by rescaling the radial coordinate on 
the initial surface so as to make 

Yi(r) = ra;. 

where a i is a constant. Let 

y(t,r) = ra(t,r), 

then Eq. (2.3) implies a (t;.r) = a i = const. 

(2.3 ) 

(2.4 ) 

Substituting Eq. (2.4) into Eq. (2.2) and integrating 
,u(r), we get 

,u(r) = 41Ta: LPir2 dr. (2.5) 

Substituting Eqs. (2.1) and (2.4) into Eq. (1.2), we get 

ii - 2,u/a? = ti7 - 2,u/ai? (2.6) 

This is the evolution equation of the scale factor a(t,r). 
Equation (1.3) of the evolution of p(t,r) can be written, 
through Eq. (2.5), as 

(2.7) 
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Equations (2.5), (2.6), and (2.7) constitute a complete set 
of field equations that can replace the original equations 
( 1.2) and (1.3). For any given spherical dust system, the 
solution can be determined completely by this set of equa­
tions provided the initial data a; and P; are specified on the 
initial surface. 

Now we should also express the solutions (1.4) and 
(1.5) in initial forms. Substituting Eq. (2.4) into Eq. (1.4) 
and taking its initial value, we obtain 

f2(r) = (p/aJ)h'(1/;). 

Then Eq. (1.4) is reduced to 

a(t,r) =a;[h'(1/)/h'(1/;)]. 

(2.8) 

(2.9) 

The arbitrary function nCr) can be determined by taking the 
initial valueofEq. (1.5). Then substituting this nCr) and Eq. 
(2.8) back into Eq. (1.5), we get 

her!> =h(1/;) ± (1/p)[(p/a;r)h'(1/;)]3I2(t-t;). 
(2.10) 

The initial value of the parameter 1/ still needs to be 
determined. This can be achieved by differentiating Eqs. 
(2.9) and (2.10) with respect to t and then taking their ini­
tial values. The result can be written as 

ra;a;/2p = [h "( 1/;)] 2 /2h ' (1/;) 

{

!(1 + cos 1/;), for E = + I, 
= I, forc=O, (2.11) 

!(1 + cosh 1/;), for E = - 1. 

We see that for the E = 0 case 1/; is still undetermined. But in 
this case we in fact do not need to know the details of 1/;. 
Directly from (2.10) we can obtain 

1/3 = 1/: [I ± (3/2aJ)~ (2p/aJ) (t - t;)], for E = O. 

Therefore, from (2.9), 

a = a; [ I ± (3/2aJ)~ (2p/aJ) (t - t;) ] 213, for E = O. 
(2.12 ) 

The sign " ± "in Eqs. (2.10) and (2.12) should be chosen to 
meet the direction of the motion of the dust particles. 

Thus the initial value formulation for the spherically 
symmetric dust solution are completed. We sum up the solu­
tion explicitly in the following equations: 

ds2 = dt 2 _ a2(t,r){[ (1 + a - la'r)2/(1 _ kr 2) ]dr 2 

(2.13 ) 

k=2p/a;r-a;, p=41Ta; fpJ2dr, (2.14) 

a2+k=2p/ar, (2.15) 

P =p;a;a- 2/(ra)', (2.16) 

with a; being a constant and k, p, a;, P; depend only on r. The 
solutions ofEq. (2.15) are as follows. 

(i) k> 0: 

a = a; [(1 - cos 1/)/(1 - cos 1/;)], 

1/ - sin 1/ = 1/; - sin 1/; + (lip) [(/1-/aJ) 

X (1 - cos 1/;)] 3/2(t - t;), 
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(2.17a) 

(2.17b) 

I + cos 1/; = p- la;a;r. (2.17c) 

(ii) k = 0: 

a = a; [ I ± (3/2a;r)~ (2p/aJ) (t - t;) ] 2/3. (2.18) 

(iii) k <0: 

a = a;( (cosh 1/ - I )/(cosh 1/; - I)], (2.19a) 

sinh 1/ -1/ = sinh 1/; -1/; ± (lip) [(p/aJ) 

X (cosh 1/; _1)]3/2(t-t;), (2.19b) 

I + cosh 1/; = p- la;a;r. (2.19c) 

Here the initial time t; should be treated as a constant as 
usual. 

Note that the initial quantitiesp; and a; can be any phy­
sically reasonable functions of r. So, generally, k and 1/; are 
also functions of r. In the following sections we discuss some 
simple examples for P; and a;. 

III. FRIEDMANN UNIVERSE 

Suppose 

P; = const, a; = const, 

then, from Eqs. (2.14), 

p = ~1Tp;a;r\ k = ~1Tp;a; - a;, 

(3.1) 

(3.2) 

so k is a constant. From Eqs. (2.17)-(2.19) we can show 
that 1/; is also a constant and then a is independent of r. Thus 
Eqs. (2.15) and (2.16) reduce to 

a2 + k = ~1Tp;a;a-l, 

P = p;a;a- 3, 

and the line element (2.13) reduces to 

dr = dt 2 - a2(t) [dr/(1 _ kr 2) 

+ r2(d(J2 + sin2 (JdqJ2)]. 

This is just t~e Friedmann universe. 

IV. SCHWARZSCHILD SOLUTION 

(3.3 ) 

(3.4 ) 

For Schwarzschild fields we can construct the comov­
ing coordinates as follows. Imagine that the space is filled up 
with a dense cloud offreely falling test particles whose mass 
are negligible, and each particle is given a fixed radial coordi­
nate label and carries along a little clock. The space-time 
coordinates rand t of any event are defined by taking r as the 
radial label of the particle that is just going by when and 
where the event occurs, and by taking t as the time then 
shown on that particle's clock. This coordinate system is 
useful throughout the region occupied by the particle cloud, 
for whatever interval of time in which particle trajectories do 
not cross. 

In this comoving frame the initial distribution of the 
mass density should take the form 

Pier) = m8\r), (4.1) 

where m is the total mass of the point source. Without loss of 
generality we set a; = I, then Eq. (2.14) gives 

p=m. (4.2) 

By properly choosing the initial velocity ai> we obtain three 
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particular kinds of comoving coordinates for the Schwarzs­
child solution, which we list below without detailed calcula­
tion. 

(i) k>O. We choose 

ai =0, 

then TJ i = 1T and 

TJ - sin TJ = 1T + (2/r)~2m/r(t - t i ), 

ds2 = dt 2 -!(1 - cos TJ)2{(1 - 2m/r)-\ 

X [1 _ ~ sin TJ(TJ - sin TJ -1T) ]2dr2 
2 (1 - cos TJ)2 

+ r 2 (d(P + sin2 () dq; 2)} . 

(ii) k = O. 

(4.3) 

( 4.4a) 

( 4.4b) 

ds2 = dt 2 _ [1 ± (3/2r)~2m/r(t - t i )] - 2/3 dr 2 

- [1 ± (3/2r)~2m/r(t-ti)]4/3r2(d()2 
+ sin2 () drp 2). 

(iii) k<O. We choose 

a; = 4m/r3, 

(4.5) 

( 4.6) 

then 

cosh TJi = 3, (4.7a) 

sinh TJ - TJ = sinh TJi - TJi ± (2/r)~(2m/r)(t - t i ), 
(4.7b) 

d~ = dt 2 - !(cosh TJ - 1)2{(1 + 2m/r)-\ 

[ 
3 sinh TJ(sinh TJ - TJ - sinh TJi + TJi) ]2d 2 

X 1-- r 
2 (coshTJ-1)2 

+ r2(d()2 + sin2 ()drp2)}. (4.7c) 

We should point out that there are infinite kinds of co­
moving coordinates for the Schwarzschild solution, corre­
sponding to different choices of the initial velocity ai • This 
just reflects a trivial fact that one can use test particles with 
different initial velocity to test the Schwarzschild fields. The 
work on the relation of these comoving coordinates to the 
standard Schwarzschild coordinates is in progress. 

V. INHOMOGENEOUS COSMOLOGICAL MODELS 

Generally, we can construct any spherically symmetric 
and radially inhomogeneous cosmological models. Here is a 
simple example. 
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Suppose 

Pi (r) = Pee - rlR, (5.1) 

wherepe and R are two constants. Then, from Eqs. (2.14), 
we obtain 

per) = 41TPealR 3[2 - R - 2e - rlR(r 2 + 2Rr + 2R 2)]. 

(5.2) 

From this equation we find 

(5.3 ) 

Thus we get a cosmological model in which the total matter 
of the universe is finite. 

We can take an arbitrary choice for the initial velocity 0i 
of the dust in the model. For example, we choose 

o;(r) = a[2p(r)/ai~]' a = const, (5.4) 

then, from Eqs. (2.14), the three cases for a> 1, a = 1, and 
a < 1 correspond to k < 0, k = 0, and k> 0, respectively. 
From Eqs. (2.17) and (2.19) we find that TJ i = constant. 
The remaining calculation in Eqs. (2.13 )-( 2.19) are not 
very difficult. 

VI. CONCLUSION 

The general dust solution with spherical symmetry in 
co moving coordinates contains three arbitrary functions 
p (r),J( r), and n (r). It is of great significance to determine 
these functions for a given physical system. In this paper we 
have decreased the number of free functions from three to 
two by rescaling the radial coordinate on the initial surface. 
Then we have chosen two physically meaningful quantities, 
the initial mass density and the velocity of the dust, as initial 
data to reexpress the solution into an initial value formula­
tion. Following this formulation we have derived, as special 
cases, the Friedmann universe, the Schwarzschild solution, 
and a spherically symmetric and radially inhomogeneous 
cosmological model containing finite matter. Some more ap­
plications in cosmology and astrophysics are also possible. 

I G. Lemaitre, Ann. Soc. Sci. Bruxelles A 53, 51 (1933). 
2R. C. Tolman, Proc. Natl. Acad. Sci. USA 20,169 (1934) . 
. 1B. Datt, Z. Phys. 108, 314 (1938). 
4H. Bondi, Mon. Not. R. Astron. Soc. 107,410 (1947). 
5 D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions oj 
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"P. J. E. Peebles, The Large-Scale Structure o/the Universe (Princeton U. 

P., Princeton, NJ, 1980), p. 324. 
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Starting from the initial value formulation of dust solution given in the preceding paper [J. 
Math. Phys. 31, 2459 (1990)] a relativistic perturbation equation and its general solutions in 
spherically symmetric universes are derived. It is found that these solutions are in analogy with 
the Bonnor-Weinberg results of the Newtonian theory and contain three modes: a growing 
mode, a decaying mode, and a constant mode. 

I. INTRODUCTION 

In the preceding paper! we have expressed the spheri­
cally symmetric dust solution of general relativity into an 
initial value formulation that can be summarized in the fol­
lowing. 

The line element takes the form 

d~=dt2-a2(t,r)[(l +a-
1
a'r)2 dr 

1- kr2 

+ r2(d() 2 + sin2 
() dy) ], 

with 

k = 2/Llair - ai 2, 

/L = 41Tai 3 Sa' Pi r2 dr, 

(1.1 ) 

( 1.2a) 

(1.2b) 

where prime and dot represent partial derivatives with re­
spect to rand t, respectively; ai> ai' and Pi are the initial 
values of the scale factor a, its expanding velocity a, and the 
mass density P, respectively; and ai is a constant and ai' Pi> /L, 
and k depend only on r. The field equation is 

a2 + k = 2/Llar, (1.3) 

and the evolution of the mass density is 

(1.4) 

Suppose the universe is expanding at the initial time ti , then 
the solutions of Eq. (1.3) are as follows. 
(i) k> 0: 

a = ai [(1 - cos 11)/(1 - cos l1i)], 

11 - sin 11 = l1i - sin l1i + (lI/L) (/Llair) 

X (1 - cos l1i) P/32(t - ti ), 

1 + cos l1i = /L - !aiai 2r. 

(ii) k = 0: 

a=ai 1 +-- 1(t-li ) . [ 
3 ~ ]2/3 

2air air 

(iii) k <0: 

a = ai [(cosh 11 - 1)/(cosh l1i - 1)], 

sinh 11 - 11 = sinh l1i - l1i + (lI/L) [ (/Llair) 

X (cosh l1i - 1)] 312(1 - Ii)' 

1 + cosh l1i = /L - !aiai 2r. 

( 1.5a) 

(1.5b) 

( 1.5c) 

( 1.6) 

(1. 7a) 

(1. 7b) 

( 1.7c) 

Note that, generally, these solutions can describe any spheri­
cally symmetric cosmological models of dust universes. The 
isotropic and homogeneous Friedmann universe is just a 
particular model in which the initial velocity ai and mass 
density Pi are constants.! 

One of the most significant problems in cosmology is the 
formation of galaxies. The first Newtonian theory on this 
problem was proposed in 1902 by Jeans.2 His theory uses a 
static fluid as the background and therefore does not de­
scribe the actual situation in our universe. The first relativis­
tic theory of the instabilities in an expanding universe was 
given in 1946 by Lifshitz, 3 and an important development of 
Newtonian theory in describing an expanding universe was 
given in 1957 by Bonnor.4 All of these works are well 
known, but we have noticed another useful way to think of 
the problem. That is, one can also use the spherical dust 
solution to study the spherical mode of the perturbation. It 

. was shown5 that the unperturbed Newtonian equations pro­
posed by Zel'dovich6 can be derived from the homogeneous 
Friedmann universe. A spherical perturbation will violate 
the radial homogeneity of the Friedmann universe but still 
has the spherical symmetry. Therefore, we expect that the 
spherical perturbation equations may be derived from the 
general dust solution. In fact, Lemaitre7 was the first (of 
many) to notice that the dust solution is a pleasantly simple 
generalization of the usual homogeneous cosmological mod­
el. A detailed discussion for the spherical mode of the pertur­
bation in dust universes was given by Peebles. 8 Now from 
Eqs. (1.1 )-( 1. 7) we see that the dust solution has been suc­
cessfully expressed into an initial value formulation with 
physically meaningful quantitiespj, the initial mass density, 
and ai' the initial expanding velocity of the universe, as ini­
tial data on the initial surface t = Ii = const. Therefore, we 
are now in a position to be able to treat the spherical mode of 
the perturbation as an initial value problem, and this is the 
purpose of this paper. 

II. PERTURBATION EQUATION 

There are three initial quantities ai> ai> and Pi on the 
initial surface t = tj = const, in which ai is a constant and aj 

andpi are of physical significance. Now we seek the pertur­
bation equations, by adding initial perturbations {ja i and {jPi 

to the background quantities a i and Pi on the initial surface. 
Since {ja i and {jPi are also initial data, so they are functions of 
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ronly. Now insert op; into Eq. (1.2b), we get a perturbation 
Of..l as 

(2.1 ) 

so Of..l is also a function of r only. By using Eq. (1.2a) we 
rewrite the background equation (1.3) into the form 

Ii - 2f..l/ar = 0/ - 2f..l/a;r. (2.2) 

Then, to first-order in perturbations oa, 00, Of..l, and 00i> this 
equation gives 

. ~. Of..l f..l oa . ~. of..l-
a ua - - + -- = a; ua; - --. 

ar a2r air 
(2.3 ) 

Since a; keeps invariant in the perturbation, so oa must satis­
fy the constraint 

oa(t = t;,r) = oa; = O. (2.4) 

Without loss of generality we suppose 

oa = (a/3f..l)0f..l + oa" (2.5 ) 

then by substituting this equation into Eq. (2.3) and using 
Eq. (2.2) again, we can reduce Eq. (2.3) into a simple form 

000, + (f..l/a2r')oa, = A(r), (2.6a) 

where 

A(r) = 0; 00; - (0/ +~) Of..l . 
air' 3f..l 

(2.6b) 

This is the fundamental differential equation that governs 
the growth or decay of the perturbations in expanding dust 
universes with spherical symmetry. The fractional change in 
density can be derived from Eq. (1.4) by keeping only the 
first order of perturbations, 

op op; 20a (roa)' 
-=-------- (2.7) 
P p; a (ra)' 

Therefore, the density contrast op/ p can be obtained from 
this equation if the solution ofEq. (2.6a) is known. 

III. SOLUTIONS 

There are two methods to obtain the perturbed solu­
tions. The first is to integrate the perturbation equation 
(2.6a) directly. The second is to use the general solutions 
( 1.5 )-( 1. 7) because the perturbed field still has the spheri­
cal symmetry and still satisfies these equations. 

A. Method (1): Integrating the perturbation equation 
(2.6a) 

We find that the perturbation equation (2.6a) can be 
transformed into another form. Differentiating Eq. (2.2) 
with respect to t, we find 

f..l/a2r = - a. (3.1) 

Substituting this equation into Eq. (2.6a) we get 

ooa, -aoa, =A(r), 

then 

oa, =A(r)af
dt

. a2 

Combined with Eq. (2.5), we find 
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(3.2) 

(3.3 ) 

(3.4 ) 

The scale factor a (t,r) is given in Eqs. (1.5 )-( 1. 7) for 
the three cases k> 0, k = 0, and k < O. Substituting these 
expressions of aCt,r) into Eq. (3.4) and integrating it direct­
ly, we obtain the fractional change in scale factor aCt,r) as 
follows. 
(i)k>O: 

oa of..l a;rA(r) [- 31] sin 1] 5 + cos 1] -=-+ +---'---!' 
a 3f..l f..l (1 - cos 1]; ) (1 - cos 1] ) 2 1 - cos 1] 

sin 1] ] + C, (r) ------'--
(1 - cos 1])2 ' 

(5 + cos 1];)(1- cos 1];) 
C, (r) = 31]; - ----. ----­

sm 1]; 

(1 - cos 1]; )30f..l 

3a;r A (r)sin 1]; 

C2 (r) = - 1 - 5of..l/3a;rA(r). 

(iii) k<O: 

oa _ of..l air A (r) [- 31] sinh 1] 
-;; - 3f..l + f..l(cosh 1]; - 1) (cosh 1] - 1)2 

+ 5 + cosh 1] + C
3 
(r) sinh 1] ] , 

cosh 1] - 1 (cosh 1] - 1)2 

C 
(5 + cosh 1];)( cosh 1]; - 1) 

3 (r) = 31]; - ----.------'-­
smh 1]; 

(cosh 1]; - 1)30f..l 

3a;rA(r)sinh 1]; 

( 3.5a) 

(3.5b) 

(3.6b) 

(3.7a) 

(3.7b) 

In the above equations, C, (r), C2 (r), and C, (r) are con­
stants of integration and are determined by Eq.- (2.4), i.e., by 
the constraint that on the initial surface we must have 
oa=O. 

Compared to Eqs. (3.5)-(3.7) with the discussion giv­
en by Weinberg9 we find that in all three cases of k, the 
fractional change in the scale factor oa/ a contains three 
modes: a growing mode (oa/ a) +, a decaying mode 
(oa/a) _ , and a constant mode (oa/a)o' The constant 
mode is 

(~) = Of..l, for all k, 
a 0 3f..l 

and the other two modes are as follows. 
(i) k>O: 

( 
oa ) - 31] sin 1] 5 + cos 1] 

- a: + --'--'_.!.. 
a + Cl-COS1])2 l-cos1]' 

Hongya Liu 

(3.8) 
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( D;) sin 17 
ex: CI (r) -----''---

(l-cOS17)2 
(3.9b) 

(ii) k=O: 

-.!!... ex: 1+-- "'£"U-l i ) , (3.1Oa) (D) [ 3 ~ ]2/3 
a + 2air air 

(~) ex:C2(r)[I+_3- fii-U-I,)]-I 
a - 2a,r V air 

(3.1Ob) 

(iii)k<O: 

( 
Da ) - 317 sinh 17 5 + cosh 17 

- ex: + , 
a + (cosh 17 - 1)2 cosh 17- 1 

(3.lla) 

(~) ex: C
3 
(r) sinh 17 . 

a - (cosh 17- 1)2 
(3.llb) 

We can see that all these expressions (3.9) - ( 3. 11) are very 
analogous to those derived by Weinberg9 based on the New­
tonian theory with differences in two aspects. First, in New­
tonian theory given by Bonnor4 the growing mode and de­
caying mode are two independent solutions of the 
perturbation equation, while in the present theory the three 
modes are just different terms of a single solution of the equa­
tion and each has a definite coefficient. Second, in Newtoni­
an theory the background field is the Friedmann universe, 
while in the present theory the background field can be any 
spherically symmetric dust universes that include the Fried­
mann universe as a special case. 

B. Method (2): Using the general solutions (1.5)-(1.7) 

Since the perturbed field stilI satisfies the general solu­
tions (1.5 )-( 1.7), so we can seek the perturbed solutions by 
adding small perturbations Dai and Of-l directly to these solu­
tions and keeping only the first-order perturbation terms. 
The results are listed in the following. 
(i) k>O: 

Da = a[ sin 17 D17- sin 17i D17i] , 
l-cOS17 l-cOS17i 

(3.12a) 

D17 = D171 + + -1 - cos 17i { [ 3 sin 17i D17i Df-l ] 
1 - cos 17 2(1 - cos 17i) 2f-l 

17 - sin 17 - 17 i + sin 17 i } X , 
1 - cos 17i 

(3.12b) 

D17= - 2--- . 1 + cos 17i (Dai Df-l) 
I sin 17i ai f-l 

(3.12c) 

(ii) k = 0: 

~ = Df-l {I _ [1 + _3_ fii-u - Ii)] -I} . 
a 3f-l 2a;r V a;r 

(3.13 ) 

(iii) k<O: 

Da = a D17 - u17 i , [
sinh 17 sinh 17i J;:] 

cosh 17 - 1 cosh 17i - 1 
(3.14a) 

D17 = 817i + + -
cosh 17i - 1 { [3 sinh 17iD17i Df-l J 
cosh 17- 1 2 (cosh 17i - 1) 2f-l 
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sinh 17 - 17 - sinh 17i + 17i} X , 
cosh 17i - 1 

(3.14b) 

017 = 2--- . cosh 17i + 1 (Dai Df-l) 
1 sinh 17i ai f-l 

(3.14c) 

After a straightforward and careful calculation with use 
of Eqs. (1.5), (1.7), and (2.6b), we obtain precisely the 
same results as Eqs. (3.5) and (3.7) for k> 0 and k < 0, 
respectively, with expressions C I (r) and C3 (r) being deter­
mined automatically and without using the constraint (2.4). 
The result (3.13) ofthek = o case differs from Eqs. (3.6) by 
an absence of the growing mode. The reason is that the solu­
tion (1.6) requires precisely a/ = 2f-l(air) - I (i.e., k = 0), 
which gives aiDai = (air) - IDf-l' and thenA(r) = 0, which 
reduce Eqs. (3.6) into (3.13). Generally, if the unperturbed 
universe is of k = 0, then the perturbed universe must be of 
k> 0 or k < O. Therefore, the general perturbed solution in 
k = 0 case should be Eqs. (3.6). 

IV. DISCUSSION 

(i) The interpretation of the density perturbations in 
relativistic perturbation theory is a difficulty. While the den­
sity p is a scalar under coordinate transformations, the den­
sity perturbation Dp is not invariant under infinitesimal 
coordinate transformations; Dp is a gauge-dependent quanti­
ty.1O Here, gauge is a choice of a one-to-one correspondence 
between points in the background space-time and points in 
the perturbed space-time. Different gauge choices can give 
different results for Dp. II Therefore, we should clarify the 
meaning of the density perturbation Dp introduced in this 
paper. We know that the coordinate system in the dust solu­
tion ( 1.1 )-( 1. 7) is a comoving proper-time orthogonal sys­
tem in which I is the proper time of the dust particle and r is 
its radial coordinate label. Furthermore, the density pertur­
bation introduced in Sec. II is of the definition 

(4.1 ) 

wherepp is the density of the perturbed space-time andpb is 
the density of the background space-time, both at the same 
proper time I and for dust particles having the same radial 
coordinate label r. Imagine that there are two I = const co­
moving hypersurfaces; one is in the perturbed space-time 
and the other is in the background space-time. Then the con­
straint (2.4) tells us that at an initial moment these two 
hypersurfaces coincide and observers on these two hypersur­
faces synchronize their clocks to read Ii and are assigned a 
same radial coordinate label r. It should be pointed out that 
at a followed moment these two hypersurfaces might be sep­
arated practically. Thus the density perturbation Dp intro­
duced in this paper just measures the difference ofthe mass 
densities on these two hypersurfaces at the same proper time. 
The interpretation of other perturbation quantities, such as 
Da and Da, is in analogy with Dp. From the metric ( 1.1 ) and 
above discussion we can see that the gauge used in this paper 
also satisfies the synchronous gauge used in Refs. 8 and 9. 

(ii) It is of great interest to compare the relativistic per­
turbation equation (2.6a) derived in Sec. II and the Newto­
nian perturbation equation derived by Bonnor. In order to 
do this we set Da l = a€ in Eq. (2.6a), then differentiate it 
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with respect to t and use Eq. (3.1). Then we get 

€ + (2iI/a)E - (3J1ja3r 1 )E = O. (4.2) 

If the background space-time is the isotropic and homoge­
neous Friedmann universe, we have I 

P = Piai 3a - .1, fl = j1Tpa3r\ 
so Eq. (4.2) reduces to 

€ + (2iI/a)E - 41TpE = O. 

(4.3) 

(4.4) 

This is just the Bonnor equation of perturbation based on the 
Newtonian theory with the pressure being ignored.4

,9 

(iii) Now we consider the k = 0 solution (1.6), from 
which we find that for particles with radial coordinate label r 
the beginning time t, corresponds to a (t"r) = 0 and can be 
solved as 

t=t·--- ---2a;r~;r 
S I 3 2fl(r)' 

(4.5) 

We see that generally t, is not a constant but a function of r. 
Thus we arrive at a conclusion that particles in an inhomo­
geneous dust universe are not "created" at the same time as 
in the Friedmann universe. For the Friedmann universe we 
have 

(4.6) 

so, from (4.5), ts is a constant for all particles in the universe. 
Therefore, we can reset the origin of the time axis so that 
t = 0 corresponds to the beginning time of the universe. 
Then Eq. (1.6) gives arxt2/3, and, from (3.10) and (2.7), 
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the perturbation modes in the k = 0 Friedmann universe are 

(4.7a) 

(4.7b) 

as are expected. 
Finally, we should point out that if the perturbation 

quantities are not small compared to the corresponding 
background quantities, we still can use the general solutions 
(1.5 )-( 1. 7) to determine the fractional changes of the scale 
factor a (t,r) by, for instance, numerical method, and then to 
determine the density contrast 8p/p through Eq. (2.7). 
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A necessary and sufficient condition for the stationarity of all time correlation functions 
associated with a given globally linear classical dynamical system is rigorously established 
from basic principles. Since stationarity of time correlation functions is a physical requirement 
that must be satisfied, the necessary and sufficient condition obtained for its realization 
represents a universal dynamical constraint on globally linear classical dynamical models 
intended to describe the execution of spontaneous fluctuations about a stationary state. This 
dynamical constraint is shown to (i) impose restrictions on the symmetry properties ofthe 
transition operator appearing in the global propagator for a system; (ii) represent a universal 
operator relation that embodies detailed balance and microscopic reversibility, giving rise to 
their traditional formulations; and (iii) imply the existence of certain generalized symmetry 
relations for time correlation functions and their Laplace and Fourier transforms. Apart from 
elucidating some fundamental symmetries of classical dynamical systems, the reported theory 
has the advantage of providing a simple model independent framework for treating classical 
time correlation functions via the extraction and utilization of dynamically embedded 
information. This is demonstrated in a concrete way by exploiting the mathematical apparatus 
of dual Lanczos transformation theory to determine the advanced and retarded components of 
the elements of the correlation matrices for first and second moment coordinate and 
momentum fluctuations for the Brownian harmonic oscillator. The Laplace transforms of the 
retarded components of the time correlation functions and the Fourier transforms of the full­
time correlation functions are also obtained. 

I. INTRODUCTION dynamical constraint on globally linear classical dynamical 
models intended to describe the execution of spontaneous 
fluctuations about a stationary state. We show that this dy­
namical constraint (i) imposes restrictions on the symmetry 
properties of the transition operator appearing in the global 
propagator for a system; (ii) represents a universal operator 
relation that embodies detailed balance and microscopic re­
versibility, giving rise to their traditional formulations;3,5-7 
and (iii) implies the existence of certain generalized symme­
try relations for time correlation functions and their Laplace 
and Fourier transforms. 

Recent work undertaken by us on the problem of deter­
mining spectral densities [Fourier transforms] of time cor­
relation functions 1 via the extraction and utilization of dy­
namically embedded information 1,2 has prompted the 
following basic questions. (i) Do there exist constraints on 
the formal structure of the global propagator for a system? 
(ii) Do there exist symmetry constraints on the transition 
operator for a globally linear dynamical model intended to 
describe the execution of spontaneous fluctuations about a 
stationary state? The existence of such constraints is not only 
important from a fundamental point of view but is also im­
portant from the practical point of view in terms of the actual 
type of models that may be used to describe real physical 
systems. 

In this paper, we establish that constraints on the global 
dynamics of classical systems do indeed exist. In particular, 
a necessary and sufficient condition for the stationaritl,4 of 
all time correlation functions associated with a given global­
ly linear classical dynamical system is rigorously established 
from basic principles. Since stationarity is a physical require­
ment that must be satisfied, the necessary and sufficient con­
dition obtained by us for its realization represents a universal 

Apart from elucidating some fundamental symmetries 
of classical dynamical systems, the reported theory has the 
advantage of providing a simple model independent frame­
work for treating classical time correlation functions via the 
extraction and utilization of dynamically embedded infor­
mation. I,2 This is demonstrated in a concrete way by exploit­
ing the mathematical apparatus of dual Lanczos transforma­
tion theory l,2,8 to determine the advanced and retarded 
components of the elements of the correlation matrices for 
first and second moment coordinate and momentum fluctu­
ations for the Brownian harmonic oscillator.I,8b,c,9 We also 
obtain the Laplace transforms8c of the retarded components 
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of the time correlations functions and the Fourier trans­
formsl of the full-time correlation functions. 

II, BASIC STRUCTURE OF THE GLOBAL DYNAMICS 

In order to determine the spectral density (Fourier 
transform) of a time correlation function, it is necessary to 
introduce a global propagator U(t) that bears information 
about the time-reversal properties of a system by including 
both the forward and backward time evolution. I

•
1D The usu-

A 

al propagator exp( - Lt) is insufficient when the transition 
operator L possesses broken time-reversal symmetry, i.e., 
when £ =1= - L, where £ is the time-reversed form of 1. Of 

A 

course, the usual propagator exp( - Lt) is sufficient when 
we are dealing with a reversible system, i.e., when the sym-

metry relation £ = - L applies. 
On the basis of time-reversal arguments, we can assert 

that the backward time evolution of a system is given by 
()( - t)expcLt), where ()( - t) is the Hea'iside step func­
tion. Hence, we write the global propagator U(t) in the form 

U(t) = U> (t) + U < (t), (2.1 ) 

where 

U> (t) = (}(t)exp( - Lt) (2.2) 

and 

U < (t) = ()( - t)exp(£t). (2.3 ) 

TABLE I. Properties of the classical phase space representation. 

Definition of phase functions 

Orthonormality relation 

Closure relation 

A A 

In the above, U> (t) and U< (1), respectively, describe 
the retarded (forward in time) and advanced (backward in 

A 

time) dynamics of a system. The global propagator U(t) 

~ven by EqS'A (2.1 )-(2.3) assumes the usual form 
U(t) = exp( - Lt) for reversible systems when the substi­
tution £ = - L is made. 

Note that U(t) possesses the following properties. (i) 
U(t) = U> (t) for t>O and U(t) = U< (t) for t<O. (ii) 

A A 

lim/_a+ U(Q = lim/_o- U> CJ.) = I and lim/_o U(t) 
= lim/_o U< (t) = 1. (iii) U(t) is invariant with respect to 

the time-reversal transformation L,t--+£, - t. 
Property (iii) of the global propagator U(t) is common 

to both reversible and irreversible systems. Nonetheless, the 
transition operator L, in general, possesses broken time-re­
versal sym~etry even though the overall dynamics de­
scribed by U(t) is time-reversal invariant. 

The conditional transition probability P(r',t jr,O) for 
the system of interest to pass from the phase point r to the 
phase point r' during the time interval t is given by 

P(r',t Ir,O) = U(r',r;t) 

= (r'IU(t) Ir), 

(2.4a) 

(2.4b) 

where (r'1 and In are classical phase space state vectors 
(see Table I). 

Introducing the global propagator U(t) intoEq. (2.4b), 
we resolve P(r',t Ir,O) into advanced and retarded compo­
nents: 

Transition operator I. I. = f) drs) dr'W)L(r,r') (r'I, where L(r,r') = (r,II. W'. L(r,r') is real by virtue of the requirement 
that p(r;t) be real. So, I. t = I. T. 

Time-reversal transformation 

operator R 

Time-reversal transformations 

Nature of inner products 
(A IB) and (A *IB) 

Relationship between 
vectors 

Conservation of probability 

Detailed balance 

R = f) drf ) drlr'lR(r,r'l WI, where R(r,r') = li(r - r') = li(r - r'). 

R(r,r') is real. So, R t = R I: R is a real orthogonal operator satisfyina,R IR = RR T = I,R 1R T = RR = I, and 
R T = R. Alternatively, R is a real unitary operator satisfying R tR = RR t = 7, R tR t = RR = I, and R t = R. 

(,4 I = (A IR and IB) = R IBl, where (,4 I and IB) are time-reversed dynamical vectors. L = RI.R is the time­
reversed transition operator. 

(A IB) is a symmetricinnerproduct, i.e., (A IB) = (B IA). (A 'IB) is a symmetric and Hermitian inner product, i.e., 
(A 'IB) = (B IA ') and (A 'IB) = (B'IA)'. 

(A I = IA)I~(rl = W) I; and Ir*) = In. Also, (A 'I = IA)t and (r'i = In t = In 1: The requirement that 
(r*1 = (rl or Ir*) = In follows from self-consistency arguments. 

(II = (llexp( - I.t) for t> o and (II = (llexp(Lt) for t <0, where (11 = f .) dr(rl. Hence, (01 = (Ill. 1+ I and 
"" - -(01 = (1IL1+1 or f.)dr' L(r',nu+11=0 and f.)dr' L(r',nUtll=O for all 1";.0 and accessible phase 

points {r}. 
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p(r',tlrm =P>(r',tlrm +P«r',tlr,O), (2.5) 

where 
A 

P > (r',t Ir,O) = U> (r',r;t) 

= (r'l U > (t) Ir) 

= B(t)(r'lexp( - Lt) Ir) 

and 
P < (r',t Ir,O) = U < (r',r;t) 

= (r'1 U < (t) Ir) 

= B( - t)(r'lexp(lt) Ir). 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7a) 

(2.7b) 

(2.7c) 

It should be noted that P(r',t Ir,O) = P> (r',t Ir,O) for 
t> 0 and p(r',t Ir,O) = P< (r',t Ir,O) for t < O. Also, note 
that P(r',t Ir,O),p> (r',t Ir,O), and P< (r',t Ir,O) satisfy 
the initial conditions 

lim P(r',t Ir,O) = lim P > (r',t Ir,o) 
1-0+ 1-0+ 

=o(r'- r) 

and 

lim P(r',t Ir,o) = lim P < (r',t Ir,o) 
1-0- t_O~ 

=o(r'-r) 

by virtue of the orthonormality relation 
= o(r' - r) (see Table I). 

(2.8a) 

(2.8b) 

(2.9a) 

(2.9b) 

(r'Ir) 

Assuming that we are working with a closed system, 
P(r',t Ir,O),p> (r',t Ir,O), and P< (r',t Ir,O) are properly 
normalized,i.e., 

L dr' p(r',t !r,0) = 1 

for all t, 

L dr' P > (r',t Ir,o) = 1 

for t> 0, 

and 

L dr' P «r',t Ir,O) = 1 

for t<O, 

(2.10) 

(2.11 ) 

(2.12) 

where the integration over r' is restricted to the accessible 
phase space !l1. The above may be readily established from 
the conservation of probability relations 

L dr(rlexp( - Lt) = L dr(rl 

for t> 0 and 

for t<O (see Table I). 
It follows from Eqs. (2.6c) and (2.7c) [also, see Table 

I.] that the retarded and advanced components of the condi­
tional transition probability P(r',t Ir,O) satisfy the symme­
try relations 
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P> (r',t Ir,O) = P < (1", - t 11',0) (2.13 ) 

and 

P < (r',t Ir,O) = P > (1", - t Irm, (2.14 ) 

where I' = ( - p,q) is the time-reversed phase point corre­
sponding to the phase point r = (p,q), with p and q, respec­
tively, denoting the collective momentum and collective co­
ordinate vectors for the particles of interest. 

Making use of Eqs. (2.5), (2.13), and (2.14), we find 
that the conditional transition probability P(r',t Ir,O) pos­
sesses the symmetry 

P(r',t Ir,O) = Per', - t 11',0). (2.15 ) 

It should be' noted that this symmetry relation and those 
given by Eqs. (2.13) and (2.14) apply independent of 
whether or not the transition operator L possesses broken 
time-reversal symmetry. The symmetry property given by 
Eq. (2.15) is usually associated only with globally reversible 
systems. 11 

III. NECESSARY AND SUFFICIENT CONDITION FOR 
STATIONARITY 

Consider the equilibrium averaged time correlation 
function CA,B (t) characterizing the correlation between the 
classical dynamical variables A(r) and B(r) for a closed 
classical system for all time t, including t < 0 and t> O. We 
define CA,B (t) by3 

CA,B (t) = «A (t)B(O) »EQ 

= L dr L dr' A(r')P(r',t ICO) 

XB(r)PEQ(r), 

(3.1a) 

(3.1b) 

where PEQ (r) is the equilibrium probability density at the 
phase point r. The double bracket notation in Eq. (3.1a) has 
been used to indicate that the time correlation function 
~A (t)B(O) ~ EQ describes fluctuations in both the forward 
and backward directions of time. 

With the resolution given by Eq. (2.5), we can resolve 
the time correlation function CA,B (t) into retarded and ad­
vanced components: 

CA,B (t) = C ;,B (t) + C;'B (t), (3.2) 

where 

and 

C ;,B (t) = L dr L dr' A(r')P > (r',t Ir,O) 

C;'B(t) = L drL A(r')P«r',tlr,O) 

XB(r)PEQ(r)· 

(3.3 ) 

(3.4 ) 

Making use of the inner products (A I r') = A (r') an~ 
(rIBpEQ) = B(r)PEQ (r) and the closure relation I 
=s.:)drlr)(rl (see Table I), we cast CA,B(t),C;,B(t), 

and C;'B (t) into the following forms: 
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A 

= B(t)(A lexp( - Lt) IBpEQ) 

+ B( - t)(A lexp(Lt) I BpEQ ), 
A 

C l.B (t) = (A IU> (t) IBpEQ) 
A 

= B(t)(A (exp( - Lt)(BpEQ)' 

and 

C ~B (t) = (A I if < (t) IBpEQ) 

= B( - t)(A lexp(lt) IBpEQ)' 

(3.Sa) 

(3.Sb) 

(3.6a) 

(3.6b) 

(3.7a) 

(3. 7b) 

Let us make use of Eq. (3.Sb) to establish that the sym­
metry relation 

(3.8) 

is a necessary and sufficient condition for the time correla­
tion function CA•B (t) to be stationary, as embodied in the 
relation3

•
4 

CA,B (t) = CS,A ( - t) (3.9) 

or 

«A(t)B(O»)EQ = «B( - t)A(O»)EQ' (3.10) 

for all dynamical variables A and B. 
The operator L fQ appearing in Eq. (3.8) is the trans­

pose of the transformed transition operator 
A A _lA-A 

LEQ = SEQ LSEQ , (3.11) 

where the operators SEQ and S EQ1 are defined in such a way 
A A A 

that SEQIA) = IAPEQ),l... _~EQIIApEQ) = I~), (A .kS'~Ql 
= (ApEQ,I, and (APEQ IS "() = (A I· Also, SEQ and SEQ 

• ~ A 1 A A A AT 

pos~ess the ,Jlropert1e~ SEQS EQ = S EQlSEQ = J, SEQ 
= SEQ' and (S p;/)T = S EQI. 

Making use of the transformation given by Eq. (3.11) 
A A 

and the properties of the operators SEQ and S EQ1
, we write 

Eq.(3.Sb) in the form 
A 

CA.B (t) = B(t)(ApEQ lexp( - LEQt) IB) 

+ B( - t)(ApEQ lexp(lEQt) IB). (3.12) 

This equation may be rewritten as 

CA.B (I) = B(t)(B lexp( - L fQI) IApEQ) 

+ B( - t)(B lexp(l fQI) IApEQ)' 

It is clear from Eq. (3.Sb) that 

CB.A ( - I) = B(t)(B lexp( -II) IApEQ) 

+ B( - t)(B lexp(Lt) IAPEQ)' 

(3.13 ) 

(3.14 ) 

Upon comparing this equation with Eq. (3.13), we conclude 
that the symmetry relation given by Eq. (3.8) is a necessary 
and sufficient condition for the time correlation function 
CA•B (I) to be stationary, as embodied in Eq. (3.9), for all 
dynamical variables A and B. 

Since the stationarity condition given by Eq. (3.9) or 
(3.10) is a physical requirement that must be satisfied, it is 
clear that the necessary and sufficient condition given by Eq. 
(3.8) for its realization represents a universal dynamical 
constraint on globally linear classical dynamical models in­
tended to describe the execution of spontaneous fluctuations 
about a stationary state. If this constraint is not satisfied, 
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stationarity will be violated for some or perhaps all dynami­
cal variables. 

Since the transition operator L must conform to Eq. 
(3.8), Eq. (3.Sb) may be cast into the form 

CA,B(t) = B(I)(A (exp( -LI)IBPEQ) 
A 

+ B( - t)(B lexp(Lt) IApEQ)' (3.IS) 

In writing Eq. (3.1S), we have made use of the fact that the 
advancedcomponentC~B(t) [seeEqs. (3.2), (3.Sb), and 
(3.7b)] of CA•B (t) may be written 

(3.16) 

by virtue ofEq. (3.8). 
Note that the universal dynamical constraint given by 

Eq. (3.8) has allowed us to write both the retarded and ad­
vanced components of the time correlation function CA,B (t) 
in term~ of matrix elements of the usual propagator 
exp ( - LI). Apart from t~e Heaviside step function, the ma­
trix element (A lexp( - Lt) I BPEQ ) is simply the equilibri­
um-averaged time correlation function (A (t)B(O) hQ char­
acterizing the correlation between the dynamical variables A 
and B in the forward direction of time. Making use of this 
identification, we write CA,B (t), C l,B (t), and C ~B (t) in the 
more transparent forms 

and 

CA•B (t) = B( t) (A (t)B(O) )EQ 

+ B( - t)(A( - t)B(O»EQ 

= B(t) (A (t)B(O) )EQ 

+ B( - t)(B( - t)A(O»EQ' 

C l.B (t) = B(t) (A(t)B(O) )EQ' 

C ~B (t) = B( - I) (A ( - I)B(O) )EQ 

= B( - I)(B( - I)A(O»EQ' 

(3.17a) 

(3.17b) 

(3.18 ) 

(3.19a) 

(3.19b) 

The tilde in Eqs. (3.17a) and (3.19a) indicates that A andB 
are time-reversed dynamical variables, i.e., A (n = A (1') 

andB(n =B(I'). 
One can easily see from Eqs. (3.IS) and (3.17b) thatthe 

time correlation function CA,B (t) does indeed conform to 
the stationarity condition given by Eq. (3.9). Nonetheless, 
t~e ti~e correlation functions (A(t)B(O»EQ' 
(A( - t)B(O)hQ, and (B( - t)A(O»EQ appearinginEqs. 
(3.17a).;( 3.19~ are not stationary unl~ss the sxmmetry re­
lations LEQ = L [see Eq. (3.8)] and L = - L apply, i.e., 
the underlying dynamics is reversible. In fact, one can easily 
use our 0.Rerator)angu~e to e~ablish that the symmetry 
relations LEQ = Land L = - L represent a necessary and 
sufficient condition for the time correlation function 
(A (I)B(O) )EQ to be stationary for all dynamical variables A 
and B. For such cases, we have 

CA.B (t) = (A (t)B(O) )EQ 

= (B( - t)A(O»EQ' 

Wassam, Jr., Balderas-L6pez, and Torres-Vega 
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IV. CONSEQUENCES OF THE UNIVERSAL DYNAMICAL 
CONSTRAINT 

Now that we have established that Eq. (3.8) is a univer­
sal dynamical constraint on globally linear classical dynami­
cal models, let us proceed to explore its consequences. 

A. Stationary property of the equilibrium probability 
density 

A A 

It is obvious from the properties of SEQ and S EQ1 that 
A A 

(OISEQ = (01 and (1ISEQ = (PEQ I. Making useoft,Rese re-
lations, the conservation of probability relation (IlL = (01 
(see Table I), and the dynamical constraint given by Eq. 
(3.8), we find that (PEQ Ii> = (01 or L I PEQ) = 10 ). 
Hence, the state vector I PEQ) is stationary with respect to 
the retarded dynamics [see Eq. (2.2)1 A_ 

Now making use of the identity L I PEQ ) = RL I PEQ ) 
,lsee Table I], the conservation of probability relation 
LT 11) = 10), see Table I, ~nd the dynamicaI.econstraint giv­
enbyEq. (3.8),weobtainL IpEQ) = 10)orL IpEQ) = 10). 
Hence, the state vector I PEQ) is stationary with respect to 
the advanced dynamics [see Eq. (2.3)]. Combining this re­
sult with the result of the preceeding paragraph, we conclude 
that the universal dynamical constraint given by Eq. (3.8) 
and the conservation of probability ensure that I aEQ) is sta­
tionary with respect to the global dynamics, i.e., U(t) I PEQ) 
= I PEQ) [see Eqs. (2.1 )-(2.3)]. 

B. Detailed balance and microscopic reversibility 

The dynamical constraint given by Eq. (3.8) assumes 
the following form in the classical phase space representa-

... ... ... 

tion (see Table I): 

L(1',1") = L ~Q (r,r'), 

where 

LEQ (r,r') = PEQ1(r)L(r,r') PEQ (r'). 

(4.1 ) 

(4.2) 

Introducing Eq. (4.2) into Eq. (4.1), we obtain the fol­
lowing version of the principle of detailed balance for the 
matrix elements {L(r,r')} of the transition operator L: 

L(r,r')PEQ(r') = L(1",1')PEQ (1'), 

= PEQ (1')L T(1',1"), 

where the equality PEQ (1') = PEQ (r) is assumed. 

( 4.3a) 

(4.3b) 

Examples of globally linear classical dynamical models 
conforming to Eqs. (4.3a) and (4.3b) are displayed in Table 
II for the case of 1-0 systems. In defining the transpose 
L T(r,r') in Table II, we have made use of the relation 

L dr L dr' ¢(r)L(r,r')X(r') 

(4.4) 

and assumed that the phase functions ¢(r) and X(r) are of 
such a character that the surface contributions may be ne­
glected. This assumption is equivalent to asserting that we 
are dealing with a closed classical dynamical system and that 
the phase functions ¢(r) and X(r) satisfy the appropriate 
boundary conditions for ensuring the conservation ofproba­
bility.12 

In writing Eqs. (4.3a) and (4.3b), we have allowed for 
the use of both local and nonlocal dynamical models in the 

TABLE II. Matrix elements of the dimensionless operators L, L EQ . and L T in the classical phase space representation for "single particle, 1-D classical 
systems" described by Liouville, Fokker-Planck, Smoluchowski, and BGK dynamics. 

Dynamics 

Liouville 

Fokker-Planck 

BGK 

Smoluchowski 

Matrix elements of L, L EQ , and L Ta.b.c.d 

LCM;j)'lj') = [pta IJq) + €F(Ij) (a lap) )8(p - p')8(g - g') 
LEQ (p,g;p',g') = [pta IJq) + €FW (a lap) )8(p - p')8(g - g') 
LT(p,g;p',g') = [ - pta IJq) - €F\q)(a lap) )8(g - g') 

L(p,g;p',g') = ([pta IJq) + €F(g)(a lap)) - 7M lap)[p + (a lap) ]}8(p - p')8(g - g') 
LEQ (p,g;p',g') = ([pta IJq) + €F(q)(a lap») + 77[p(a lap) - (a 2Iap2) ]}8(p - p')8(g - g') 
LT(p,g;p',g') = ([ - pta IJq) - €F(q)(a lap)) + 77[p(a lap) - (a 2Iap2) ]}8(p - P'l8(g - g') 

L(p,q;p',g') = ([p(aIJq) + €F(q)(alap) )8(p - p') - g[PP.EQ (p) - 8(p - p') j}8(g - g') 
LEQ (p,g;p',g') = ([ - p(aIJq) - €F(q)(alap) )8(p - P'l - g[PP.EQ (p') - 8(p - p'l]}8(g - g') 
p(p,g;p',g') =([ -p(aIJq) -€F(Ij)(alap»)8(p-p') -g[PP.EQ(P') -8(p-p')j}8(g-g') 

L(g;g') = - (1!77)(a IJq) [(a IJq) - €F(g) )8(g - g') 
LEQ (g;g') = - (1/77) [(a 2/aq» + €F(q)(a IJq) )8(g - g') 
LT(g;g') = - (1/77) [(a2/aq» +€F(g)(aIJq»)8(g-g') 

a € = (€slkB n, where€s is the energy scale, kB is Boltzmann's constant, and Tis the equilibrium temperature. 77 = (m{3} rislkB n 1/2 = (risks T ImD2) 1/2 

and g = (mf~risl kB n 112, where {3I is the friction coefficient in Fokker-Planck dynamics, D is the diffusion coefficient in Smoluchowski dynamics,/. is the 
collisional frequency in BG K dynamics, m is the mass of the particle of interest, and q s is the length scale. g is the dimensionless coordinate g = ql q sand pis 
the dimensionless momentum p = pips, where Ps = (mkB n 1/2. The dimensionless force F(g) = - (d ldij) U(g) has been introduced by writing 
U(q) = €s U(g). f = t/i, where ts = (mqVkB n 1/2 is the time scale. 

b p andp' in the symbol L(p,g;p',g') is suppressed for the case ofSmoluchowski dynamics. _ 
cLEQ (p,g;p',g') has been determined by using the dimensionless canonical equilibrium probability density PEQ (p,g) = Z - 1 exp[ - (!)p2 - €U(g)], where 

Z = ftipfdij exp [ - (PP - €U(Ij)]. 
d For the case ofBGK dynamics,pp.EQ (p) = Z p- 1 exp[ - (pp2], where Zp = ftip exp[ _ q) p2]. 
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system phase space. For local models, such as Liouville and 
Fokker-Planck dynamics, L(r,r') = L(n6(r - r'), 
where L(n is a differential operator (see Table II). For 
such cases, Eq. (4.3b) assumed the differential form 

L(r) [6(r - r')PEQ (r')] = PEQ (I') [L T(r)6(r - r') J. 
(4.5) 

The above form is similar to the version of detailed balance 
discussed by Haken,6c Risken,5b.6b and Stillman and 
Freed6b for generalized Fokker-Planck systems in detailed 
balance. An account of the implications of the results of 
these investigators is given at the end of this section. 

The results given by Eqs. (4.3b) and (4.5) reveal that 
the universal dynamical constraint given by Eq. (3.8) is a 
universal operator relation that embodies detailed balance 
for both local and nonlocal globally linear classical dynami­
cal models. In essence, we have shown that the above ver­
sions of detailed balance may be derived from the necessary 
and sufficient condition given by Eq. (3.8) for the stationar­
ity of classical time correlation functions. To our knowledge, 
the concept of detailed balance has not been shown to 
emerge in such a fundamental way from basic principles. 
Usually detailed balance is simply a statement of commonly 
held intuitive notions about the behavior of a system in the 
state of equilibrium. Our results reveal that detailed balance 
is much more fundamental. Given this observation, it is our 
opinion that detailed balance should be regarded as a univer­
sal dynamical constraint as embodied in Eq. (3.8). Hence, 
we shall refer to Eq. (3.8) as the universal operator formula­
tion of detailed balance. 

If the transition operator L is invariant under the trans­
formation given by Eq. (3.11), i.e., LEQ = L, the universal 
formulation of detailed balance given by Eq. (3.8) reduces to 
the operator relation 

~ AT 
L=L. (4.6) 

In the classical phase space representation, the above sym­
metry relation assumes the form of a version of microscopic 
reversibility: 

L(L,r') = L T(r,r') 

=L(r',n. 

(4.7a) 

(4.7b) 

The above results reveal that microscopic reversibility is also 
embodied in Eq. (3.8) and that it is a special case of detailed 
balance. Henceforth, we shall refer to Eq. (4.6) as the uni­
versal operator formulation of microscopic r~ersibi!ity. 

For the case of Liouville dynamics, LEQ = Land 
I = - L (see Table II). Hence, the symmetry relation 
L T = - L must be satisfied in order for Liouville dynamics 
to be consistent with microscopic reversibility and more gen­
erally detailed balance. As we indicated earlier, the symme­
try relation L T = - L applies for Liouville dynamics only 
when we are dealing with a closed system. 

If Eq. (4.6) does indeed represent a universal operator 
formulation of microscopic reversibility, we should be able 
to use this symmetry relation to establish the usual formula­
tions given in terms of conditional transition probabilities. 3 

Making use of the relations 

(r'lexp( - Lt) jr) = (rlexp( - L Tt) Ir') 
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and 

(r'lexp(lt) Ir) = (rlexp(l T) Ir') 

and the formal expressions given by Eqs. (2.6c) and (2. 7c), 
we find with the aid of Eq. (4.6) that 

P > (r',t Ir,O) = P > (r,t Ir',O) (4.8) 

and 

P < (r',t Ir,O) = P < (I' ,t Ir:O). (4.9) 

It follows from Eqs. (2.5), (4.8), and (4.9) that the 
conditional transition probability P(r',t Ir,O) satisfies the 
symmetry relation 

P(r',t ICO) = P(r,t Ir',O). (4.10) 

Combining this result with Eq. (2.15), we obtain 

p(r',tlr,O) =p(r,-flr',O). (4.11) 

The usual approach3 for establishing microscopic rever­
sibility as described by Eqs. (4.10) and (4.11) is to employ 
complicated arguments based on causality and the time-re­
versal in variance of Hamilton's equations. Although this ap­
proach is useful, it only establishes sufficient conditions for 
the realization of microscopic reversibility as described by 
Eqs. (4.10) and (4.11). In sharp contrast to the usual ap­
proaches, we have established Eqs. (4.10) and (4.11) in a 
rather trivial fashion without appealing to any dynamical 
model and demonstrated that they are simply a consequence 
ofa special case of the universal dynamical constraint given 
by Eq. (3.8). To our knowledge, Eqs. (4.10) and (4.11) 
have not been established before in such a simple and elegant 
fashion based solely on universal symmetry principles. 

Now let us show that the universal dynamical constraint 
given by Eq. (3.8) leads to the formulation of detailed bal­
ance given in terms of joint probabilities, i.e.,3·5.7a 

p(r,t jr',O)PEQ (r') = P(r',f Ir,O)PEQ (r), (4.12) 

where the equality PEQ (I') = PEQ (n is required by virtue 
of the initial condition 6(r - r')PEQ (r') 
= O(r' - r)PEQ (l').6a.6c 

Making use of Eqs. (2.6c) and (2.7c), we can write the 
retarded and advanced components of the joint probability 
p(r,t 1r',O)PEQ (r') as 

and 

P > (r,t 1r',O)PEQ (r') = OU)(rlexp( - Lt) Ir'PEQ) 

(4.13) 

A 

P < (r,t 1r',O)PEQ (r') = O( - t)(rlexp(It) Ir'PEQ)' 

(4.14 ) 

where the components of the dynamical vector jr'PEQ ) are 
given by (rlr'PEQ) = 6(r - r')PEQ (r') in the classical 
phase space representation (see Table I). 

With Eqs. (4.13) and (4.14) at our disposal, we can 
make use of the transformation given by Eq. (3.11) and the 
universal dynamical constraint given by Eq. (3.8) to write 

P > (r,t 1r',O)PEQ (r') = P > (r',t Ir,O)PEQ (I') 

(4.15 ) 

and 
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p < (r,t Ir',O)PEQ (r') = p < (r',t Ir,O)PEQ (t). 
(4.16) 

The version of detailed balance given by Eq. (4.12) follows 
from the above symmetry relations and Eq. (2.5). 

Making use of the conservation of probability relations 

L dr(rlexp( -Lt) = L dnrl 

for t> ° and 

L d nrlexp(Lt) = L drcrl 

for t< ° (see Table I), the relations L IPEQ) = 10) and 
L IPEQ) = 10) obtained in Sec. IV A, and Eqs. (4.13) and 
(4.14), one can very easily establish that 

and 

L dr' p>(r,tlr',O)PEQ(r') =PEQ(r) 

for t> 0, and 

and 

L dr' p«r,tlr',O)PEQ(r') =PEQ(r) 

( 4.17) 

(4.18 ) 

(4.19 ) 

for t<O. (4.20) 

It follows from Eqs. (2.5) and (4.17)-(4.20) that the 
joint probability p(r,t 1r',O)PEQ (r') possesses the proper­
ties 

(4.21 ) 

and 

(4.22) 

The results given by Eqs. (4.12), (4.21), and (4.22) 
resemble the properties ofthe joint probabilities for so-called 
"coarse-grained" variables in the de Groot-Mazur treat­
ment of detailed balance in their formulation of the statisti­
cal foundations of nonequilibrium thermodynamics. 3a The 
de Groot-Mazur treatment of this problem is quite compli­
cated, relies on the use of Hamilton's equations, and applies 
only to "coarse-grained" microcanonical ensembles de­
scribed by reversible dynamics. In sharp contrast to the de 
Groot-Mazur treatment, we have established Eqs. (4.12), 
(4.21) and (4.22) in a rather trivial fashion without any 
reference to a specific dynamical model other than requiring 
that the dynamics conform to the universal operator rela­
tions embodying detailed balance and conservation ofprob­
ability. 

Starting with the argument that detailed balance is a 
physical property common to systems in thermal equilibri­
um and to those in more general stationary states described 
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by a potential function, Graham and Haken6a used a version 
of detailed balance identical in form to Eq. (4.12) to derive a 
set of restrictive conditions (called potential conditions) on 
the drift and diffusion coefficients in generalized Fokker­
Planck equations. They showed that this set of conditions 
ensure that a Fokker-Planck equation satisfies detailed bal­
ance and guarantee that it is always possible to explicitly 
determine the stationary solution of a Fokker-Planck equa­
tion by quadratures. 

The results of Graham and Haken6a
•
6c were further elu­

cidated by Risken. 5b
•
6b More specifically, Risken6b estab­

lished that a version of detailed balance, identical in form to 
Eq. (4.5) represents a necessary and sufficient condition for 
detailed balance as described by Eq. (4.12) for the case of 
local generalized Fokker-Planck systems. Furthermore, 
Risken6b showed that this localized version of detailed bal­
ance provides a simple starting point for deriving the above­
mentioned Graham-Haken potential conditions. 

The utility of the Graham-Haken-Risken treatment6 

of detailed balance in stochastic modeling has been demon­
strated by Stillman and Freed.6d In particular, these investi­
gators showed that the Graham-Haken potential condi­
tions6 could be employed as a vehicle for correcting Fokker­
Planck equations6d that fail to describe relaxation to the cor­
rect stationary state due to their violation of detailed bal­
ance. 

c. Generalized symmetry relations 

Now let us show that the universal dynamical constraint 
given by Eq. (3.8) implies the existence of certain general­
ized symmetry relations for CA.B (t),C ~,B (t),C :;;'B (t), 

CG'~,B(Z) [Laplace transform of C~.B(t)], and 'G'~.B(iW) 
[Fourier transform of CA,B (t)]. 

The symmetry properties of the retarded and advanced 
components of the time correlation function C A,B (t) may be 
established by starting with Eqs. (3.6b) and (3.7b) and 
adopting a procedure similar to the one used for establishing 
Eqs. (4.15) and (4.16). Taking this approach, we obtain 

C ~.B (t) = C i,A (t) (4.23 ) 

and 

C:;;'B(t)=Ck,A(t). (4.24) 

It follows from the above relations and Eq. (3.2) that the 
time correlation function C A.B (t) possesses the symmetry 

CA,B(t) = ClI.A (t). (4.25) 

Equations (3.2), (3.6b), and (3.7b) imply the follow­
ing additional symmetries for C ~.B (t). C RA (t), and 
CA,B(t): 

and 

C ~,B (t) = C ill ( - t). 

C:;;'B(t) =Ch( -t). 

(4.26) 

(4.27) 

(4.28) 

Note that the symmetries given by Eqs. (4.25) and (4.28) 
are consistent with the stationarity condition given by Eq. 
(3.9), 

It is evident from Eq. (4.23) that the Laplace transform 
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CIf ;;,B (Z) of the retarded component C ;;,B (t) of the time cor­
relation function CA,B (t) satisfies the symmetry relation 

CIf;;,B(Z) = CIf~,;dz). (4.29) 

The stationarity condition given by Eq. (3.9) and the 
symmetry relation given by Eq. (4.25) may be used to estab-
lish the following symmetry relations for the Fourier trans­
form CIf ~,B (iw) of the time correlation function CA,B (t): 

(4.30) 

and 

CIf ~,B (iw) = CIf ~,A ( - iw). (4.31 ) 

Clearly, 

CIf~,A (iw) = CIf~.A ( - iw). (4.32) 

It should be evident that all of the symmetry relations 
given by Eqs. (4.23 )-( 4.32) are a consequence of the univer­
sal dynamical constraint given by Eq. (3.8). Hence, they 
have universal applicability for all acceptable globally linear 
classical dynamical models. Clearly, the violation of these 
symmetry relations is a symptom of the use of an unaccepta­
ble model that violates Eq. (3.8). If this is indeed the case, 
the stationarity condition given by Eq. (3.9) is also violated. 

For cases in which the dynamical variables A and B pos­
sess definite time-reversal parity, the generalized symmetry 
relations given by Eqs. (4.25), (4.29), (4.30), and (4.32) 
assume the well-known forms 13 

and 

CA,B (t) = A,AA,BCB,A (t), 

CIf ;;,B (z) = A,AA,B CIf ]l,A (z), 

CIf ~,B (iw) = A, A A, B CIf L (iw ), 

(4.33 ) 

(4.34) 

(4.35 ) 

(4.36) 

usually associated with globally reversible systems, where 
A,A [A,B] is the time-reversal parity of A [B). 

Of course, the reader should realize that the symmetry 
relations given by Eqs. (4.33 )-( 4.36) and the generalized 
symmetry relations given by Eqs. (4.23)-(4.32) apply to 
both reversible and irreversible systems. A number of exam­
ples that conform to these symmetry relations may be found 
in our papers on dual Lanczos transformation theory. 1.2,8,12 

Usual approaches 13 for establishing the symmetry rela­
tions given by Eqs. (4.33 )-( 4.36) for the case of reversible 
systems either rely on traditional time-reversal transforma­
tion methods, such as those utilizing arguments based on the 
time-reversal invariance of Hamilton's equations, or appeal 
to the formulation of microscopic reversibility or detailed 
balance given by Eqs. (4.10)-(4.12). For the case ofirre­
versible systems, the symmetry relations given by Eqs. 
(4.33) and (4.34) have been established by making use of 
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I 

~ilq(t) ilp(O) ~ EQ) 

~ilp(t)ilp(O) ~EQ 

~ilq2(t)ilqp(0) ~EQ 

~ ilqp(t) ilqp (0) ~ EQ 

~ilp2(t)ilqp(0) ~EQ 
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the version of detailed balance given by Eq. (4.12).7a 
Although the aforementioned approaches for establish­

ing Eqs. (4,33)-(4.36) have been useful, they are generally 
complicated and model dependent. Moreover, these ap­
proaches have only led to sufficient conditions for the appli­
cability of Eqs. (4.33)-(4.36). In sharp contrast to these 
approaches, we have established the generalized symmetry 
relations given by Eqs. (4.23 )-( 4.32), which include Eqs. 
(4.33)-(4.36) as special cases, in a rather trivial fashion 
without any reference to a specific model and shown them to 
be simply a consequence of the universal dynamical con­
straint given by Eq. (3.8). Also, we have already shown that 
the versions of microscopic reversibility and detailed balance 
that have actually served as a starting point in the proof of 
Eqs. (4.33)-(4.36) are also consequences ofEq. (3.8). 

V. AN ILLUSTRATIVE APPLICATION 

Apart from elucidating some fundamental symmetries 
of classical dynamical systems, the theory given in the pre­
ceding sections has the advantage of providing a simple 
model independent framework for treating classical time 
correlation functions via the extraction and utilization of 
dynamically embedded information. I,2 Let us proceed to 
demonstrate this by exploiting the mathematical apparatus 
of dual Lanczos transformation theoryl.2.8,12 to determine 
the retarded and advanced components of the elements of 
the correlation matrices for first and second moment coordi­
nate and momentum fluctuations for the Brownian harmon­
ic oscillator.I,8b.8c,9 Also, we wish to obtain the Laplace 
transforms8c of the retarded components of the time correla­
tion functions and the Fourier transforms 1 of the full corre­
lation functions. 

As we have demonstrated elsewhere,8b the correlation 
matrices for first and second moment coordinate and mo­
mentum fluctuations are important not only for pedagogical 
reasons but also because they have an important bearing on 
problems in nonlinear dynamics and represent the spontane­
ous fluctuations that drive the temporal evolution of the 
noise filtered dynamical variables ilq(t) , ilp(t) , ilq2(t), 
ilqp(t), and ilp2(t) for the Brownian harmonic oscillator, 
where ilA (t) = A (t) - (A )EQ and p and q denote the mo­
mentum and coordinate, respectively. It should be evident 
that the dynamical variables ilp(t) and ilq(t) characterize 
the temporal evolution of the noise filtered trajectory 
[p(t),q(t)], while the dynamical variables ilq2(t), ilqp(t), 
and ilp2 (t) characterize the noise filtered square displace­
ments of the Brownian harmonic oscillator and its energy 
relaxation. 

The correlation matrices for first and second moment 
coordinate and momentum fluctuations for the Brownian 
harmonic oscillator are as follows: 8b 

~ilq2(t)ilp2(0) ~ EQ) 

~ilqp(t)ilp2(0) ~EQ . 

~ ilp2 (t )ilp2 (0) > EQ 

Wassam, Jr., Balderas-L6pez, and Torres-Vega 
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TABLE III. Retarded components of the elements of the correlation matrix for first moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Retarded Type of 
component C ;;.8 (t) eigenvalues··b Explicit form 

C ;{q.l>q(t) = 2 distinct 8(t)exp[ - (17/2)1 ]{cosh[ q)( 172 - 4) 1/2 t ] + [7J/( 712 
- 4) 112] sinh [ (1) (712 - 4) l12 t p 

8(t) (~q(t)~q(O) )EQ lof 8(t) (1 + t)exp( - t) 

multiplicity 2 

C;{q.l>p(t) = 2 distinct 8(t) [2/( 712 - 4) IIl]exp[ - (17/2)t )sinh [ q)( 712 - 4) l12 t ] 

8(t) (~q(t)~p(O) )EQ lof 8(t)t exp( - t) 

multiplicity 2 

C ;{P.l>q(t) = 2 distinct - 8(t) [2/( 712 
- 4) IIl]exp[ - (7J/2)t )sinh [q)( 712 - 4) 1/2t ] 

8(t) (~p(l)~q(O) )EQ lof - 8(t)t exp( - t) 

multiplicity 2 

C ;{P.l>p(t) = 2 distinct 8(t)exp[ - (7J/2)t ]{cosh [q)( 71' - 4) lI't] - [7J/( 17' - 4) 112)sinh[ (~)( 71' - 4) lilt]} 

8(1) (~p(l)~p(O) )EQ lof 8(t) (1 - t)exp( - t) 

multiplicity 2 

• 17 is the dimensionless friction coefficient defined in Ref. 8 (b). 
b 7J=f. 2 for the case of two distinct eigenvalues. 71 = 2 for the case of I eigenvalue of multiplicity 2. See Ref. 8 (b). 

In Eqs. (5.1) and (5.2) p and q are the dimensionless 
momentum and coordinate, respectively, for the Brownian 
harmonic oscillator. The time t is also dimensionless. Here­
after, it should be understood that we are working in dimen­
sionless units. For adqitional details, see Ref. 8(b). 

The double bracket notation ~A (t)B(O) ~ EQ in Eqs. 
(5.1) and (5.2) for the time correlation functions has been 

used to indicate that these time correlation functions are of 
the type discussed in Sec. III for which the propagation of 
the fluctuations is described in both the forward and back­
ward time directions. The reader should not confuse 
~A(t)B(O)~EQ with (A(t)B(O»EQ' The formal connec­

tion between these time correlation functions is given by Eqs. 
(3.17a) and (3.17b). 

TABLE IV. Advanced components of the elements of the correlation matrix for first moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Advanced Type of 
component C 18 (t) eigenvalues··b Explicit form 

C;'.l>q(t) = 2 distinct 8(t)exp[ (7J/2)t ]{cosh [ (V (172 - 4) lilt] - [7J/( 712 - 4) 1/2] sinh [ (V (712 - 4) l12 t p 

8( - t) (~q( - t)~q(O) )EQ lof 8( - t) (1 - t)exp(t) 

multiplicity 2 

C ~q.l>p(t) = 2 distinct 8( - t) [2/( 712 
- 4) IIl]exp[ (7J/2)t ) sinh [(P (712 - 4) lilt] 

- 8( - t)(~q( - t)~P(O»EQ 1 of 8( - t)t exp(t) 
multiplicity 2 

C ~P.l>q(t) = 2 distinct - 8( - t) [2/( 172 - 4) 1/2]exp[ (7J/2)t ]sinh [(1)( 712 
- 4) l12 t ] 

- 8( - t)(~p( - t)~q(O)hQ lof - 8( - t)t exp(t) 

multiplicity 2 

C~P.l>p(t) = 2 distinct 8( - t)exp[ (7J/2)t ]{cosh [(1) (712 - 4) lilt] + [7J/( 712 - 4) 1/2]sinh [(1)( 172 
- 4) 1/2 t p 

8( - t) (~p( - t)~p(O) )EQ lof 8( - t) (1 + t)exp(t) 
multiplicity 2 

a 71 is the dimensionless friction coefficient defined in Ref. 8 (b). 
b7J=f.2 for the case of two distinct eigenvalues. 71 = 2 for the case of 1 eigenvalue of multiplicity 2. See Ref. 8(b). 
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TABLE V. Retarded components of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Retarded Type of 
component C ;.8 (t) = eigenvalues··b Explicit form 

CAq'."q'(t) = 3 distinct 28(t)exp( - 1/t){[ (1/' - 2)/( rl' - 4) I cosh [( 1/' - 4) 1/2t I 
+ [1//(1/2 - 4) 112 I sinh [ (1/2 - 4) 1/2t I - [2/(1/2 - 4)]} 

8(t) (1lq'(t)Ilq'(O) )EQ 10f 20(1)(1 + t)'exp( - 21) 
multiplicity 3 

C :"'."qp (t) = 3 distinct 28(1)exp( - 1/t){[ 1]/( 1/2 - 4) I cosh [ (1/2 - 4) Il2t I 
+ [1/(1/'-4) 112 lsinh[(1/2-4)1I2t l- [1//(1/'-4)]} 

8(t) (1lq'(t)llqp(O) )EQ lof 28(t)t(1 + t)exp( - 2t) 

multiplicity 3 

C :",.,,; (1) = 3 distinct 8(t) [4/( 1/2 - 4) lexp( - 1/1){ - 1 + cosh [ (1/2 - 4) Il2t ]} 

8(t) (1lq'(t)llp2(O) )EQ lof 28(t)t" exp( - 2t) 

multiplicity 3 

C :qP."'" (1) = 3 distinct - 28(t)exp( - 1/1) { [1//( 1/2 - 4) I cosh [ (1/' - 4) 1/2t I 
+ [1/( 1/' - 4) 1/2lsinh[ (1/2 - 4) Il2t I 

- [1//(1/2 - 4)]} 

8(1) (llqp(t)Ilq'(O) )EQ 10f - 20(t)t(1 + t)exp( - 21) 
multiplicity 3 

C Aqp,"qp (1) = 3 distinct 8(1)[ 1/ ( 1/2 - 4 ) I exp ( - 1/t) {1/2 - 4 cosh [ ( 1/2 - 4) II' t ]} 

Ott) (llqp(t)llqp(O»EQ I of 8(t)(1- 2t2)exp( - 2t) 

multiplicity 3 

C :qP.,,; (1) = 3 distinct - 28(t)exp( - 1/t){[ 1]/( 1/2 - 4) I cosh [ (1/2 - 4) Il2t I 
- [1/(1/'-4) 112 lsinh[(1/2-4)ll2t l- [1//(1/2-4)]} 

8(1) (llqp(t)llp 2(O) )EQ lof 20(t)t(1 - t)exp( - 2t) 

multiplicity 3 

C :;.,,'" (1) = 3 distinct 8(1) [4/( 1/2 - 4) lexp( - 1/t){ - I + cosh [ (1/2 - 4) Il2t ]} 

0(1) (llp2(1)Ilq'(O) lEQ lof 28(t)t 2 exp( - 21) 
multiplicity 3 

C :;."qp (1) = 3 distinct 28(1)exp( - 1/t){ [1//( 1/' - 4) I cosh [( 1/2 - 4) Il2t I 
- [1/(1/2 - 4)ll2lsinh[ (1/' - 4) Il2t 1- [1//(1/2 - 4)]} 

8(1) (llp2(t)llqp(O) lEQ 10f - 20(t)t( 1 - t)exp( - 2t) 

multiplicity 3 

C :P""P' (t) = 3 distinct 28(1)exp( - 1/1){[ (1/2 - 2)/( 1/2 
- 4) I cosh [ (1/2 

- 4) Il2t I 
- [1//(1/2-4) 1/2 Isinh[(1/2-4)ll2t l- [2/(1/2_4)]} 

8(1) (llp,(t)llp,(O) lEQ lof 28(1)( 1- 1)'exp( - 21) 
multiplicity 3 

a 1/ is the dimensionless friction coefficient defined in Ref. 8 (b). 
b1/#2 for the case of3 distinct eigenvalues. 1/ = 2 for the case of I eigenvalue of mUltiplicity 3. See Ref. 8(b). 

One can readily determine the retarded [advanced] 
component C ;,B (t) [C 1,B ( - t)] of each time correlation 
function CA,B(I) in Eqs. (5.1) and (5.2) for t>O by first 
casting C ;.B (I) [C 1,B ( - t)] into the form of Eq. (3.6b) 
[Eq. (3.7b)] and subsequently making use of the concept of 
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extraction and utilization of dynamically embedded infor­
mation l •2 from dual Lanczos transformation theory.I,2,s 
C 1,B (I) is obtained from C 1,B ( - t) by simply replacing t 
with - t. The results for the retarded and advanced compo­
nents obtained by this procedure are summarized in Tables 
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TABLE VI. Advanced components of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Advanced 
component C :iB (t) 

C :,;.0.'; (t) = 

B( - t) (t:.lj( - t) t:.lj (0) )EO 

C :,;.o.qp (t) = 

- B( - t) (t:.lj( - t)t:.qp(O) )EO 

C :,;.o.P' (t) = 

B( - t) (t:.lj( - t)t:./(O) lEO 

C :.P.o.'; (t) = 

- B( - t) (t:.qp( - t)t:.lj(O) )EO 

C ~qp.o.qp (t) = 

B( - t) (t:.qp( - t)t:.qp(O) )EO 

C :qP."P' (t) = 

- B( - t)(t:.qp( - t)t:.p2(0)ho 

C :p' ... "'(t) = 

B( - t) (t:.p2( - t)t:.lj(O) )EO 

C :p' ... qp (t) = 

- B( - t) (t:.p2( - t)t:.qp(O) lEO 

C:; ... ;(t) = 

B( - t) (t:.p2( - t) t:.p2 (0) )EQ 

Type of 
eigenvalues··b 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

3 distinct 

lof 
multiplicity 3 

a1/ is the dimensionless friction coefficient defined in Ref. 8(b). 

Explicit form 

2B( - t)exp( 1]t){[ (1]2 - 2)/( 1]2 - 4) ] cosh [ (1]2 - 4) Il2t ] 

- [1]/(1]2-4)II2]sinh[(1]2-4)1/2t l - [2/(1]2-4»)} 

2B( - t) (1 - t) 2exp(2t) 

- 2B( - t)exp( 1]t){[ 1]/( 1]4 - 4] cosh [ (1]2 - 4) Il2t ] 

- [1/ ( 1]2 - 4) 1/2] sinh [ ( 1/2 - 4) 1/2 t I - [1]/ ( 1]2 - 4) )} 

2B( - t)t( 1 - t)exp(2t) 

B( - t) [4/(1/2 - 4) lexp(1]t){ - 1 + cosh [ (1/2 - 4)1I2t ]) 

2B( - t)t 2 exp(2t) 

2B( - tlexp( 1/tl{[ 1//( 1]2 - 4) I cosh [ (1]2 - 4) 1/2t ] 

- [1/( 1]2 - 4) J 1/2sinh[( 1/2 - 4) 1/2t J - [1]/( 1/2 - 4) J} 

- 2B( - t)t( 1 - t)exp(2t) 

B( - t) [1/(1/2 - 4) lexp( 1]t){1]2 - 4 cosh [ (1/2 - 4) 1/2 t ]} 

B( - t) (1 - 2t 2)exp(2t) 

2B( - t)exp( 1]t){ [1//( 1/2 - 4) Icosh[ (1/2 - 4) Il2t ] 

+ [1/(1/2-4)II2]sinh[(1/2-4)ll2t l - [1]/(1/2-4)]} 

2B(t)t( 1 + t)exp(2tl 

B( - t) [4/( 1]2 - 4) lexp( 1/t){ - 1 + cosh [ (1/2 - 4) Il2t )} 

2B( - t)t exp(2t) 

- 2B( - t)exp( 1/t){[ 1//( 1]2 - 4) I cosh [( 1]2 - 4) Il2t ] 

+ [1/( 1]2 - 4) 1/2lsinh[( 1/2 - 4) l12t] - [1]/( 1]2 - 4»)} 

- 2B( - t)t( 1+ t)exp(2t) 

2B( - t)exp( 1/t){[ (1]2 - 2)/( 1/2 - 4) I cosh [ (1]2 - 4) Il2 t I 

+ [1//(1/2 - 4) 1/2lsinh[ (1/2 - 4) Il2 t I - [2/(1/2 - 4)]} 

2B( - t) (1 + t)2 exp(2t) 

b 1/#2 for the case of 3 distinct eigenvalues. 1/ = 2 for the case of 1 eigenvalue of multiplicity 3. See Ref. 8(b). 

III_VI.14 The full time correlation function CA,B (t) is ob­
tained by simply adding the retarded and advanced compo­
nents [see Eq. (3.2)] in these tables. Note that the results 
displayed in Tables III-VI conform to the symmetry rela­
tions given by Eqs. (4.23), (4.24), (4.26), and (4.27). 
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Moreover, the full time correlation functions assembled 
from these results conform to the symmetry relations given 
by Eqs. (3.9), (4.25), and (4.28) [see Eq. (3.2)]. 

The Laplace transform [see Eq. (3.6b)] 
~;,B(Z) =(A l(zI+L)-IIBpEQ) (5.3) 
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TABLE VII. Laplace transforms of the retarded components of the ele­
ments of the correlation matrix for first moment coordinate and momentum 
fluctuations for the Brownian harmonic oscillator. 

Laplace transform 
C(; ;;.B (z) Explicit forma 

a;{o(z) 

- z[ a;{o (z) - (lIz)) 

z[ a;{o (z) - (liz) ] 

a at.o (z) = [(z + 1]) I (;? + 1]Z + 1)]. where 1] is the dimensionless friction 
coefficient defined in Ref. 8(b). 

of the retarded component C ;,B (t) of each of the time corre­
lation functions in Eqs. (5.1) and (5.2) may also be readily 
determined via the extraction and utilization of dynamically 
embedded information.I,2 Following such a procedure, we 
are led to the results displayed in Tables VII and VIII.IS 
Note that these results conform to the symmetry relation 
given by Eq. (4.29). 

Finally, the Fourier transform 'G' ~,B (iw) of each time 
correlation function CA,B(t) in Eqs. (5.1) and (5.2) maybe 
determined by writing 'G' ~,B (iw) in the form [ see Eq. 
(3.5b) ] 

'G'~,B (iw) = lim {(A I [(iw + €)I + L] -IIBpEQ) 
£_0+ 

(5.4) 

TABLE IX. Fourier transforms of the elements of the correlation matrix 
for first moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Fourier transform 
C(; ~.B (iw) 

C(; ~q."q ( jw ) 

Explicit form" 

"1] is the dimensionless friction coefficient defined in Ref. 8 (b). 

and subsequently exploiting the concept of extraction and 
utilization of dynamically embedded information. I,2 Such a 
procedure leads to the results displayed in Tables IX and 
X.16 Note that these results conform to the symmetry rela­
tions given by Eqs. (4.30)-(4.32). 

VI. CONCLUDING REMARKS 

We rigorously established from basic principles a uni­
versal dynamical constraint for globally linear classical dy­
namical models intended to describe the execution of spon­
taneous fluctuations about a stationary state. It was shown 
that this constraint arises from the requirement ofstationar­
ity and represents a necessary and sufficient condition for its 
realization for all time correlation functions associated with 
a given globally linear classical dynamical system. Since sta­
tionarity is a physical requirement that must be satisfied, the 
constraint is of universal character with applicability to all 
globally linear classical dynamical models. If the constraint 

TABLE VIII. Laplace transforms of the retarded components of the elements of the correlation matrix for second moment coordinate and momentum 
fluctuations for the Brownian harmonic oscillator. 

Laplace transform 
C(; ;;.B (z) Explicit form" 

- z[ at.o (z) - (lIz)] 

z[ at.o (z) - (liz) ] 

q){(z' + 1];? + 2z) [at." (z) - (z + 1])/(;? + 1]Z + 2) J} 

(;? + 1]Z + 2) [a,to (z) - (z + 1])/(;? + 1]Z + 2)] 

"a,;'" (z) = [;? + 31]z + 2(1]' + 1) ]![z' + 31];? + 2( 1]2 + 2)z + 41]]. where 1] is the dimensionless friction coefficient defined in Ref. 8(b). 
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TABLE X. Fourier transforms of the elements of the correlation matrix for second moment coordinate and momentum fluctuations for the Brownian 
harmonic oscillator. 

Fourier transform 
'6' ~.B (iw) 

'6' ~qp.",qp ( iw ) 

"17 is the dimensionless friction coefficient defined in Ref. 8(b). 

is not satisfied, stationarity and other symmetries arising 
from it will be violated for some or perhaps all dynamical 
variables. 

It was shown that the universal dynamical constraint 
obtained by us (i) imposes restrictions on the symmetry of 
the transition operator appearing in the global propagator 
for a system; (ii) coupled with the conservation of probabili­
ty implies that the equilibrium distribution is stationary with 
respect to the global dynamics, i.e., both the retarded and 
advanced dynamics of a system; (iii) represents a universal 
operator relation that embodies detailed balance and micro­
scopic reversibility, giving rise to their traditional formula­
tions for both local and nonlocal dynamical models; and (iv) 
implies the existence of certain generalized symmetry rela­
tions for time correlation functions and their Laplace and 
Fourier transforms that are applicable to both reversible and 
irreversible dynamical systems. 

Apart from elucidating some fundamental symmetries 
of classical dynamical systems, the reported theory has the 
advantage of providing a simple model independent frame­
work for treating classical time correlation functions via the 
extraction and utilization of dynamically embedded infor­
mation. I

•
2 This was demonstrated in a concrete way by ex­

ploiting the mathematical apparatus of dual Lanczos trans­
formation theory l,2,8,12 to determine the advanced and 
retarded components of the elements of the correlation ma­
trices for the first and second moment coordinate and mo­
mentum fluctuations for the Brownian harmonic oscilla­
tor. I ,8b,c,9 We also obtained the Laplace transforms8c of the 
retarded components of the time correlations functions and 
the Fourier transforms I of the full time correlations func­
tions. The results obtained were shown to conform to the 
symmetry relations implied by the universal operator formu­
lation of detailed balance. This is a consequence of the fact 
that dual Lanczos transformation theory l.2.8,12 works with 
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Explicit form" 

dynamically invariant subspaces embedded with all of the 
pertinent dynamical information in spite of the use ofa sub­
dynamics of the global dynamics.2 

Before concluding, we should remark that none of the 
approaches given by Mori,17 Diestler,18 Dupuis,19 Lado,20 
Grigolini,21 and Freed22 are able to handle the problem of 
determining all of the results displayed in Tables III-X. As 
we have discussed at length many times beforel.2.8,12 all of 
these approaches suffer from different intrinsic limitations 
and represent special limiting cases of dual Lanczos trans­
formation theory. The applicability of the approaches of 
Mori,17 Diestler,18 Dupuis, 19 Lado,20 Grigolini,21 and 
Freed22 is at best limited to the determination of a single 
autocorrelation function for a restricted class of dynamical 
systems. Even for the problem of determining the Fourier 
transform of an autocorrelation function for an irreversible 
system and a cross-correlation function for a reversible or 
irreversible system these approaches have difficulties as a 
result of their intrinsic limitations and lack of a proper treat­
ment of the retarded and advanced dynamics of a system. 

Given that the Brownian harmonic oscillator has served 
and continues to serve as a prototype model system in non­
equilibrium statistical mechanics, it is our opinion that any 
approach intended to provide an adequate framework for 
treating and understanding spectral and temporal properties 
of dynamical systems must at the very minimum be able to 
deal with the spectral and temporal properties of the Brow­
nian harmonic oscillator. In this respect, all of the ap­
proaches given by Mori,17 Diestler,18 Dupuis,t9 Lado,2° 
Grigolini,21 and Freed22 fail. In sharp contrast, the theory 
reported in this paper coupled with dual Lanczos transfor­
mation theory1.2,8.12 is able to deal with the Brownian har­
monic oscillator analytically in a rather trivial way and 
shows much promise in being able to handle more compli­
cated systems. 12 
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dipole field 

Ugo Moschella 
International School for Advanced Studies. Strada Costiera 11. 34014 Trieste. Italy 

(Received 21 November 1989; accepted for publication 2 May 1990) 

A four-dimensional quantum field theory model is studied that exhibits infrared singularities 
expected to occur in realistic models of confinement. The Fock-Hilbert-Krein structure 
associated with the model in a local and covariant formulation is constructed and its 
unconventional features, like the existence of translationally invariant field operators and states 
(other than the vacuum), the implementation of the symmetries, etc., are discussed. Also, a 
canonical quantization of the model which improves the existing ones is derived. Finally, it is 
shown that the infrared singularities are responsible of the breaking of the Poincare group in 
every nontrivial physical space; two explicit examples of possible physical spaces are 
constructed and it is shown that they have the same gauge invariant content. 

I. INTRODUCTION 

The aim of the present paper is to provide a rigorous 
treatment of the dipole field model, that is a Hermitian scalar 
field satisfying the equation 

D2~ = 0, D = JI"JI" (1.1) 

The motivations for such analysis are several. This model 
attracted the interest of theoretical physicists already in the 
1950s under the influence of the debated paper of Kallen and 
Pauli on the Lee model. 1-3 A revival of interest in the model 
came with the advent of gauge theories and this because the 
Fourier transform of the two-point function of the dipole 
field has a 0' (p2) singularity, p2 = P"p 1"' This singularity is 
the quantum field theory (QFT) version of the linearly 
growing potential believed a crucial feature of the quark­
antiquark interaction.4 Besides, it has been shown that the 
breaking of the gauge symmetry in the Abelian Higgs model 
requires, in local gauges, this kind of singularity. 5.6 Other 
classes of models that have a dipole field as a building block 
are the purely gauge QED,? the conformally invariant mod­
els,8.9 and the supersymmetric models. From a general point 
of view, the model can be regarded as a simple prototype of a 
four-dimensional quantum field theory exhibiting infrared 
singularities of the confining type, 10 which are not compati­
ble with the axiom of positivity. 11 Since the lack of positivity 
is an unavoidable feature of gauge quantum field theories 
when treated in local renormalizable gauges,12 a rigorous 
treatment of this model will shed light on those general 
mathematical structures characterizing nonpositive QFT's 
in the Wightman framework. 

Finally, a further motivation for a revisitation of this 
model is that the previous treatments are not completely 
satisfactory. The main open problems are: (1) a clear identi­
fication of the Hilbert space of states associated to the 
Wightman functions of this model; (2) the existence of 
translationally invariant states other than the vacuum state 
(i.e., the essential uniqueness of the vacuum); (3) the sym­
metry breaking problem in the model; (4) the possible iden­
tification of the physical space and the physical interpreta-

tion of the model; and (5) the justification of a canonical 
quantization of the field in a positive space. 

As we will see, our results will significantly improve 
(actually in most of the cases correct) the previous treat­
ments. The point is that, as emphasized in Refs. 10 and 13, 
the structural questions concerning an indefinite metric 
QFT cannot be correctly posed and answered without mak­
ing reference to a Hilbert space realization of the model. 

The starting point of the following discussion of the di­
pole field is a set oflocal and covariant Wightman functions 
that satisfy the weak spectral condition. The lack of positi­
vity implies that the reconstruction theorem lO

•
11 yields only 

a linear space !iJ endowed with a sesquilinear form < , ). To 
obtain a Hilbert space, it is necessary to introduce in !iJ a 
Hilbert topology compatible with the intrinsic indefinite 
product < , ). There are, of course, many possible ways to 
introduce a Hilbert structure in !iJ, but the most interesting 
ca,ses are given by those structures that are maximal, i.e., not 
properly contained in any other compatible Hilbert struc­
ture. In this case, the metric operator, TJ, which represents 
the sesquilinear form < . ), has the property that TJ2 = 1 and 
the corresponding Hilbert space is a Krein space. 14 

In Sec. II, we will construct a Hilbert-Krein structure 
associated with the dipole field; we will show that the Hilbert 
representation space K of the theory contains vectors (dif­
ferent from the vacuum) that are invariant under the Poin­
care group (infrared states); the vacuum is, however, essen­
tially unique, 10 i.e., there is no strictly positive (with respect 
to < , ) subspace of K invariant under translations, whose 
dimension is greater than 1. The infrared states have an in­
teresting counterpart in the strong closure of the local field 
algebra: Indeed, this closure includes operators that are in­
variant under the Poincare group (infrared operators). This 
property has been already noticed for the massless scalar 
two-dimensional field,15 and appears naturally when the 
confining infrared singularities are controlled by a maximal 
Hilbert structure. In Sec. III, we tum our attention to the 
symmetries of the model; their treatment has unconvention­
al features due to the indefiniteness of the theory. The equa­
tions of motion are invariant under the group ~ of local 

2480 J. Math. Phys. 31 (10), October 1990 0022-2488/90/102480-10$03.00 © 1990 American Institute of Physics 2480 



                                                                                                                                    

gauge transformations ifJ -+ ifJ + a, where a is a smooth real 
solution of the equation Oa = 0. The subgroup of global 
gauge transformations a = const is not broken in K and its 
generator is constructed using the infrared operators. Also, 
the scale transformations are implementable in the space K 
and, in fact, the translationally invariant operator, which 
was introduced as a new dynamical variable to account for 
the scale transformations of ifJ (Refs. 8 and 9) is here an 
intrinsic element of the theory and is exactly the infinitely 
delocalized limit of ifJ. In Sec. IV, we reconsider the problem 
of the quantization of the dipole field using the canonical 
formalism. 

Finally, in Sec. V, we discuss the physical interpretation 
of the model. Our proposal is very different from those of 
Refs. 6, 7, 16, and 17. The authors of Ref. 6 obtain a Poincare 
invariant Hilbert space with positive metric but they repre­
sent the field by a non-Hermitian operator and give up the 
relation between the Wightman functions and the scalar 
product in the physical space (from this point of view their 
solution has essentially changed the terms of the problem!). 
On the other hand, a rigid application of the requests of 
gauge invariance of the fields and Poincare invariance of the 
physical space forces the authors of Ref. 7, 16, and 17 to 
conclude that the theory has a trivial content. On the con­
trary, we will show that the model may have a nontrivial 
physical meaning; we will prove that the severe singularities 
of the theory imply that the Poincare group must be broken 
in every nontrivial physical space (mechanism of confine­
ment); in particular, we will construct two positive quanti­
zations of the dipole; in the first one, the time translations are 
broken while the space translations are an exact symmetry 
and the contrary happens in the second one. However, it is 
possible to define a vacuum sector that is the same for the 
two quantizations and with the property that the whole 
translation group is implementable on it. 

II. THE HILBERT-KREIN STRUCTURE ASSOCIATED TO 
THE DIPOLE FIELD 

A local and covariant quantization of the dipole field is 
characterized by a set of Wightman functions {'lr" } satisfy­
ing the following axioms. 

A. Temperedness 

Here, 'lrn is a distribution belonging to Y'(R4n
), the 

dual of the Schwartz space of the rapidly decreasing func­
tions. '8 

B. Covariance 

For any Poincare transformation {a, A} the n-point 
functions are invariant: 
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C. Locality 

If Xi - Xi +, = Si is spacelike, then 

'lrn (x" ... ,Xi,Xi +, , ... ,xn) = 'lr" (x" ... ,xi +, ,xj> ... ,xn ). 
(2.2) 

D. Weak spectral condition 

The Fourier transforms W(k" ... ,kn _ , ) of the distribu-
tions W" (S" ... ,S" _, ) = 'lrn (x" ... ,xn ), have support con-
tained in the cones 

(2.3 ) 

The Fourier transforms of test functions and distributions 
are defined by the following formulas: 

j(k" ... ,k,,) = (217") - 2n f expUk,x, + ... + iknx,,) 

xf(x" ... ,x" )dx," 'dx", 

1'(f) = T(j), 

(2.4 ) 

(2.5) 

where kx is the Lorentz invariant product, fEY (R4n 
) and 

TEY'(R4
). These axioms and the equation of motion (1.1) 

lead us to the following two-point function: 

'lr2(X"X2 ) = W(S) = - (16~) - 'In( - S2 + iESo)' 
(2.6) 

We assume that the one-point function and all the truncated 
n-point functions vanish. As shown in Ref. 10 these Wight­
man functions define only a representation of the dipole field 
that is an operator-valued distribution on a linear space §J 

(the local states): Indeed, one considers the Borchers alge­
bra &1, which is the set of finite sequences f= (fo, ... jj, ... ) 
with/oEC,.t;EY(R4j); in &1, one defines the following inner 
product: 

(2.7) 

where (fxg)1l =~k+,~"fkg"f*(x" ... ,xn) =/(xll,.··,x,) 
and the bar means complex conjugation. 

Then, §J is defined to be &1 / f; f is the Wightman 
ideal: 

f = {fE&1:(f,g) = O,'v'gE&1} (2.8) 

(it is an ideal of &1 with respect to the product x). Elements 
of §J are denoted by the symbol [f]. By construction the 
inner product (2.7) is nondegenerate on §J. We may define 
the field operator on §J as follows: 

ifJ(j) [g] = [fXg], (2.9) 

where a representative for f is (OJ,O, ... ). It is clear that the 
vacuum vector '1'0' whose representative is ( 1,0, ... ), is cyclic 
with respect to Y, the polynomial algebra generated by the 
fields ifJ (j). There is a linear representation of the Poincare 
group on §J, defined by 

U(a,A) [f] = [f{a.A}]' (2.10) 

where Aa.A} (x) = f(A - I (x - a». The covariance of the 
Wightman functions implies that the operators U(a,A) pre­
serve the inner product (2.7) (77-unitary operators). 

In the following, we will shortly denote by the same 
symbolf the test function entering in the field ifJ(j) and the 
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corresponding vector obtained by applying that field to the 
vacuum. 

A supplement of information is now necessary if one 
wants to get a Hilbert space which represents the theory. The 
following condition 10 replaces the standard axiom of posit i­
vity.1I 

E. Hilbert space structure condition 

There exists a set of Hilbert seminorms {P n }, P n de­
fined on Y(R4n) and Y continuous, such that 

(2.11 ) 

Without loss of generality we may assume in addition that 
these seminorms vanish on f. Using standard methods, we 
may now complete f» with respect to the topology induced 
by the seminorms {p n} and get a Hilbert space H. The more, 
we can extend the inner product (2.7) to the whole Hand 
there exists a bounded and self-adjoint operator 'TJ such 
that l9 

(2.12 ) 

where ( , ) is the Hilbert scalar product in H, defined by the 
seminorms {p n}. It is worth it to point out again that differ­
ent choices of the seminorms give rise to different Hilbert 
spaces and whereas in the standard case the Wightman func­
tions uniquely fix the closure of f», in the indefinite metric 
case different closures are available corresponding to differ­
ent topologies. 

In our case, the factorization of the n-point functions 
(free-field theory) implies that a possible set of seminorms 
may be constructed using a single seminorm P defined on 
Y (R4). We denote the inner product induced in Y (R4) by 
the definition (2.7) by the same symbol ( , ). It is possible to 
chooseaXEY(R4) such thati(O) = 1 and (X,X) = 0 (Ref. 
7). Then one has that2° 

(f,g) = ~ 1T f {(1 - D)[fo(k)go(k) + f(O)X(k)go(k) 

+ g(O)Io(k)i(k)] }Ic + 0) - 3d 3k, (2.13 ) 

with /o(k) =/(k) - f(O)X(k), Df(k) = koalakof(k), 
and 0)2 = k i + k ~ + k ~. We now define a Hilbert product 
in Y(R4) as follows: 

(/,g) =+1T f [F\(k)GI(k) +F2 (k)G2(k)]0)-3d 3k 

+ (f,X) (X,g) + f(O)g(O), (2.14) 

with 

FI (k) = [(1 - D)Io(k)] Ic+ and F2 (k) = [D/o(k)] Ic + . 
(2.15 ) 

It is easy to see that I (f,g) I..; Ilfllllgll, with Ilfl12 = if/)· Now 
we have that the vectors 

\}In = (n!) -112:"-(/) ... "-if, ):\}I 
/. ... /" 'f"1 'f'n 0 (2.16) 

generate f». The symbol: : denotes the Wick-ordered prod­
uct defined in terms of Wightman functions. 2 

I It follows that 
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(\}Ii" ... J;, ' \}I;:, ... ,g", ) 

(2,17) 

where ~1T denotes the sum over all the permutations. We 
may now define a Hilbert product in f» simply by 

(\}Ii., ... J;"\}I;:, ... ,g,,,) = (n!) - \5n,m L1Tifl,g;,)'" ifn,g;)· 

(2.18 ) 

Denoting by K the Hilbert completion of f» with respect to 
the topology induced by the (2.18), it follows that 

(2.19) 

where K (I) is the Hilbert completion of Y(R4) and ® s 

denotes the symmetric tensor product. Therefore, the study 
of K (I) completely fixes the Hilbert space of the theory. The 
main result of this section consists in the proof that K is a 
Krein space. To prove this, we need to study in advance the 
space H (I), which is the completion of the space 

Y O(R4) = (fEY(R4)f(O) = O} (2.20) 

with respect to the Hilbert topology induced by the scalar 
product 

1 f - -[f,g] =T1T [F1(k)G1(k) +F2(k)G2(k)]0)-3d 3k. 

(2.21 ) 

Lemma 2.1: It is possible to extend the product (2.13) 
to the whole H( I) and there exists a bounded and self-adjoint 
operator 'TJo such that 

(j,g) = [f,'TJ~], Vj,gEH(I), 

and besides 

('TJO)2 = 1; 

i.e., H(I) is a Krein space. 

(2.22) 

(2.23 ) 

Proof: The first part of the lemma follows from standard 
theorems offunctional analysis. 19 We need only to show the 
(2.23). To this end, we consider the space Yo(R 4) ® C 2 en­
dowed with the products 

{F,G} ± = ~ 1T f[fl(k)gl(k) 

(2.24) 

(2.25) 

It is obvious that we may extend the operator U to an opera­
tor U defined on H (I) with values in the Hilbert completion 
of ran ( U) with respect to the topology induced by the prod-

uct { , } + ' which we denote by R ( U). The operator U has 
the following properties: 

{Uj,Ug} + = [f,g], {Uj,Ug} _ = (j,g), (2.26) 

Vj,gEH(l) . Besides, one has that 

{Uj,Ug} _ = {Uj,0'3Ug} + (2.27) 
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ffjJ,U1]~} + = [J,1]~] 

= (f,g) = {uJ,Ug} _ = {UJ,0"3Ug} + , 

(2.28) 

'rJJ,geH(l). It is now possible to show that 0"3 maps R( U) 
into itself; this implies that we may apply Eq. (2.28) twice 
and obtain that 

[J,(1]O)2g] = {UJ,(0"3)2Ug} + = {UJ,Ug} + = [J,g]. 
(2.29) 

This relation is valid 'rJ J,gEli (\) and this implies (2.23). 
The fact that D is a differential operator non tangential 

to the future cone C + implies that R (U) is isomorphic to 
the Hilbert space L 2( C + - {O},w - 3 d 3k) ® C2

, which we 
briefly denote L 2 ® C2

• The use of the operator U makes pos­
sible the proof of the following. 

Corollary 2.2: H (\) is isomorphic to L 2 ® C2
, which is 

the space of two complex component functions, defined on 
{C + - {O}}, square integrable with respect to the measure 
w - 3 d 3k. 

We are now in a position to state and prove the main 
theorem of this section. 

Theorem 2.3: It is possible to extend the inner product 
( 2.13 ) to the whole K ( I) and there exists a bounded and self­
adjoint operator 1]( I) such that 'rJJ,gEK (I), it happens that 

(f,g) = (j,1](I)g), (2.30) 

(2.31) 

Prool As in precedence we need only to show Eq. 
(2.31). Let us define from K (I) the following functional: 

XCI) = (X,J). (2.32) 

This functional is continuous because IX(j) 1< Ilfll; actually 
it is possible to show that its norm is exactly one: Indeed, if 
we take the sequence of elements of Yo (R4) defined by 

I~(k) = {In (w)i(k), (2.33 ) 

with {I(t) an infinitely differentiable nondecreasing real 
function, which is zero for t<O and is one for t> 1, and 
{In (t) = {I(nt), we find that 

IX(fn ) 1/1l!" II -> 1. (2.34) 
n- 00 

The Riesz lemma implies that th~re exists a vector v + EK (I) 
such that (v+ ,v+) = 1 and 'rJ/EK(I) 

<X,J) = (v+ ,J). (2.35) 

It is not difficult to show that the sequence 

vn+ = ( (X,Jn ) -1~ (2.36) 

converges to v + in K ( I). We may think to K (I) as decom­
posed into orthogonal subspaces 

(2.37) 

where V + and X are the one-dimensional subspaces genera­
ted by v + and X and 

K 6\) = {fEK (I):(X,J) = (v+ ,J) = O}. (2.38) 

It follows from the formulas (2.13, 14,38) and the Corollary 
2.2 that K 61

) is isomorphic to L 2 ® C2
• 

Now, we want to compute explicitly the action of the 
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metric operator 1](1) on the subspace V + EB X. We have that 
for any /EK(I) 

(v+,J) = (X,J) = (1](I)X,J), (2.39) 

and this implies 1](l)X = v+. Now, let/EY(R4). We have 
that 

(X/) =1(0), (2.40) 

(v+,J) = lim (vn+ ,J) =1(0) = (1](1)v+ ,J). (2.41) 

The density of Y(R4) finally implies that 1](l)v+ = X. We 
may write 

(2.42) 

where Pis theprojectoronK 61
). FromEq. (2.42), it follows 

that 

(J,g) = (J,P1](I)Pg) + (J,v+ )(X,g) + (J,X)(v+ ,g). 
(2.43 ) 

Theorem 2.1 and the decomposition (2.37) imply that 
P7J( I) P = P7J61

) P. Defining by P ± the projectors on the vec­
tors 2 -1I2(V+ + X), we obtain 

(J,g) = (J,1](1)g) = (J,{P1]6\)P + P + - P - }g) 
(2.44) 

and, therefore, 

1](1)=P1]61)P+P+ -P_. (2.45) 

Equation (2.45) finally implies that (1](1) f = 1. 
Corollary 2.4: K (]) is isomorphic to (L 2 ® C2 ) 

EBV+EBx. 
Corollary 2.5: K is a Krein space. 
The implementers of the Poincare group are 1]-unitary 

but unbounded, and therefore they are defined only on a 
dense set. We remark that the sequence (2.36) converges 
pointwise to zero; this means that the vector v + is not a 
function and it describes a Poincare invariant state (infrared 
state); indeed it is easy to prove that v + belongs to the do­
main of the operators U(a,A); then, 'rJ/EY(R4), we have 

({U(a,A)v+ - v+},J) = (v+ ,j{a,A}) - (v+,J) 

=1(0) - 1(0) = O. (2.46) 

The density of Y(R4) and the nondegeneracy of the inner 
product (2.13) implies that 

U(a,A)v+ =v+. (2.47) 

However, the vector v + has zero 1] norm. This implies that 
the vacuum vector is essentially unique; 10 i.e., there is no 
positive subspace oftranslationally invariant vectors, whose 
dimension is greater than one. We may represent the field 
operator in K by the following formula: 

(t,6(/)'I')(n) 

= (n + 1) - 112 ({,'I'(n + I) (kl, ... ,kn ) + (n) - 112 

n 

X I I(kj ) 'I'(n - \) (k], ... ,1:j, ... ,kn ) (2.48 ) 
j= ] 

where the/appearing at the r.h.s. has to be regarded as an 
element of K (I), 'I'(m+ I) = 'I'(m+ ])(k,k]>, .. ,kn ) and k is 
the "integrated" variable. This formula also gives explicit 
expressions for the positive and negative frequencies parts of 

Ugo Moschella 2483 



                                                                                                                                    

the field operator. Note that with our conventions on the 
Fourier transforms of distributions, positive frequencies cor­
respond to "creation" operators. Also the covariance of the 
field follows easily by (2.48). When the smearing function I 
is real, the operator ¢(j) is essentially self-adjoint with re­
spect to the indefinite product (1] self-adjoint). The follow­
ing estimate may be proven using the representation (2.48), 
exactly as in the ordinary case: 19 

II¢( f)'I'(m) II < (m + 1) 112 ( II I + II + II I -11), (2.49) 

with} ± (k) =} ( ± k). We may now define another semi­
norm on Y(R4) by 

q(/)2 = 11/+11 2 + 11/-11 2
• (2.50) 

The completion of Y(R4) with respect to the topology in­
duced by the seminorm q gives, exactly as before, the space 

(L 2(C + - {O},w- 3 d 3k) ® C2) 

EB (L 2(C _ - {O},w- 3 d 3k) ® C2
) 

EB V+ EB V- EBX, (2.51 ) 

where v - is the one-dimensional subspace generated by the 
vector v - = lim v n- . By (2.49), we see that the sequence 

{ 'I't. ,···,In } = {:¢(In ,.·.,In ):'I'o} 
Il, k 1 k 

(2.52) 

converges in K if each of the Vn} converges in the space 
(2.51).1t follows that the local field algebra Y has an exten­
sion Y ex ! which contains the fields ¢(j), withfbelonging to 
the space (2.51). In particular, Y ex! encloses the infrared 
field operators ¢(v + ) and ¢(v- ), which are invariant un­
der the Poincare group. 

We stress again that the existence of the infrared state 
and operators is a consequence of the fact that K is a maximal 
space associated with the given Wightman functions; this 
feature is not shared by non-Krein realizations of the theory. 

III. SYMMETRIES 

The construction of the Hilbert-Krein space of the theo­
ry allows a correct discussion ofthe questions concerning the 
symmetries of the model. We have already discussed the 
Poincare symmetry and we will again turn our attention to it 
when we treat the physical interpretation of the model. An­
other very important symmetry of this model is the gauge 
symmetry; in fact, one sees immediately that the equation of 
motion (1.1) is invariant under the following gauge trans­
formations of the second kind (local gauge transforma­
tions) : 

¢-¢+a, (3.1) 

where a is a real smooth solution of the equation Da = O. 
There is an important class of solutions of this equation, 
given by the equation a (x) = A = const. These solutions are 
called gauge transformations of the first kind (global trans­
formations); they define the following automorphism of the 
field algebra: 

'I':¢(x) -¢(x) + A. (3.2) 

It is instructive to consider this case to see how different the 
treatment of symmetries is in the indefinite metric case with 
respect to the standard case. Consider the following local 
charge: 
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(3.3 ) 

where I(x) is an indefinitely differentiable function such 
that/(x) = l,iflxl<l,and/(x) = 0, iflxl>2,and ad (xo) is 
an infinitely differentiable function of compact support such 
that 

f ad (xo)dxo = 1, lim ad (xo) = 8(xo)' 
d-O 

One has 

.!!...yA(¢(/»IA=o = i lim [QR,¢(/)] 
dA R-oo 

(3.4) 

= (21T)2}(0) = f l(x)d 4x. (3.5) 

Theorem 4.1: The automorphism 'I' is implementated in 
the Krein space K by the operator r A = exp 2~iAQ, with 
Q= (2~)-lw-limQR' 

Proof Define 

(3.6) 

It is easy to see that QR converges to (2~)Q as a bilinear 
form on YJ X YJ. Besides, one has the following uniform ma­
jorization 

(3.7) 

This implies that QR is weakly convergent to 2~Q. Now we 
have YJ as a set of analytic vectors for Q and therefore we 
may exponentiate it and obtain 

r A = exp 2~iQ. (3.8) 

The fact that r A actually implements the symmetry 'I' is 
now evident. 

Thus the global gauge symmetry is unbroken in the 
Krein space (i.e., there exists a one-parameter group of 1]­
unitary operators implementing the global gauge transfor­
mations). We remark that this symmetry would have been 
broken if we had used a non-Krein topology (see the analo­
gous mechanism in Ref. 15). Here emerges a feature that is 
not shared by conventional theories: The symmetry is imple­
mentable but the vacuum is not invariant under the action of 
the implementers pl. It is, however, essentially invariant: 
Indeed the extra term is a translationally invariant null vec­
tor. Another very interesting symmetry of the theory is given 
by the scale transformations x-sx. These transformations 
act on the two-point function by adding the constant 
- (8~) - 1 In s. Let us define the following automorphism 

of Y ex!: 

(3.9) 

with 
!sex) =s-Y(x/s) and ¢(v) =¢(v+) +¢(v-). 

(3.10) 

Theorem 4.2: The automorphism as is implemented in 
the Krein space K by the operators U (s) which are 1]-unitary 
and leave the vacuum invariant. 

Proof' It is easy to verify that 

('I'o,as(¢( I »as (¢ (g»'I' 0) = ('I'o,¢( I )¢(g) '1'0)' 
( 3.11) 
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The action of U(s) is determined by its definition on the one­
particle space: 

U(s) \II/ = \II!, + !n2j(O)logsv+ (3.12) 

and because of the invariance of the Wightman functions one 
has 

(3.13 ) 

We see here that the translationally invariant operator that 
has been introduced in literature as a new dynamical vari­
able to account for the scale transformations of ¢ in the con­
text of conformally invariant models,8,9 is exactly ¢( v), the 
infinitely delocalized limit of ¢; it is therefore an intrinsic 
content of the model in the Krein space approach. 

IV. CANONICAL QUANTIZATION 

In this section, we want to reconsider the problem of the 
quantization of the dipole field from an algebraic point of 
view. To this end, we consider an abstract (i.e., not realized) 
operator-valued distribution ¢, obeying to the equation 
¢ = ° and to the commutation rules 

[¢(x),¢(y)] = - (i/81T)E(So)t'J(S2), (4.1) 

wheret't(t) is the step function and E(t) = {J(t) - {J( - t); 
the commutator (4.1 ) follows immediately by the two-point 
function (2.6). To avoid ambiguities, we restrict test func­
tions to those of Y (R4

). It is then possible to introduce in a 
standard wayll the splitting of the field ¢ into positive and 
negative frequency parts ¢ = ¢ + + ¢ - . General proper­
ties of hyperbolic equations22 allow us to extend the possible 
test functions to distributions of the form 
j, (x) = 8(xo - t)j(x) with jEYo(R3

). The commutator 
(4.1) then implies that the only nonzero fixed time commu-
tators are the following: 

[¢(t,x),aoD¢(t,y)] = [D¢(t,x),ao¢(t,y)] 

= i8\x - y). (4.2) 

The commutators (4.2) are exactly those that one imposes 
in the canonical quantization of a system of two fields with 
Lagrangian4 

X' = al'¢al' A + iA2. (4.3) 

Actually A is not independent on ¢: Indeed the equations of 
motion that follow from (4.3) are 

D¢=A, DA=O (4.4 ) 

(which together imply D2¢ = 0). We consider then the star 
algebra generated by the fields ¢( ± l,ao¢( ± l,A ( ± ) ,aoN ± ), 

taken at t = ° [i.e., smeared with test functions of the form 
8(xo)j(x) ]. Clearly, not all of these fields are algebraically 
independent: Indeed they are linked by the four relations 
given by conjugation and by the two commutators (4.3). 
Taking these relations into account, we are led to the fields 

,pI (O,x) = ( - d)3/4¢(0,X) + i( - d) 1/4 ao¢(O,x) 

+ (i/2)( - d) - 3/4 aoA(0,x), (4.5) 

,p2(0,X) = (_d)3/4¢(0,X) +i( -d) 1I4 ao¢(0,x) 

- ~( - d) - 1I4A(0,x). (4.6) 

By construction, these fields contain only negative frequen-
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cies (and, therefore, when conjugated contain only positive 
frequencies); we may obtain two pairs of creation and anni­
hilation operators simply by Fourier transform: 

(4.7) 

aT(k) = (21T) - 3/2 J exp( - ikx),pT(0,x)d 3x. (4.8) 

These operators satisfy to the following (pseudo) canonical 
commutation relations: 

[al(q),aT(k)] =83 (q-k), 

[a2 (q),ai (k)] = - 83 (q - k). 

(4.9) 

(4.10) 

The remaining commutators are zero. We remark that the 
minus sign at the r.h.s. is an unavoidable consequence of the 
relation between the spectral condition and the splitting of 
the field operator into positive and negative frequencies. Ob­
viously, one may take a combination of these operators to 
obtain the canonical commutation relatons (C.C.R.) in the 
usual form (without the minus sign), but the so obtained 
operators are no longer related to the positive and negative 
frequency pairs of the field (for instance, this relation is lost 
in the treatment of the dipole given in Ref. 4). The field 
equation determines the following time evolution of the a's: 

1'/(al(k» = exp( - iwt) [(1 + iwt)al(k) - iwta2(k)], 
( 4.11) 

1'/(a2 (k» = exp( - iwt)[iwta l (k) + (1 - iwt)a2 (k)]. 
( 4.12) 

Therefore, the time evolution mixes a I with a2; however, it is 
not a Bogoliubov transformation because it does not mix­
creators and annihilators. Using the previous formulas, one 
may obtain the following representation of the field: 

¢(t,x) = (21T) - 3/2 J exp(iwt - ikx) [ (1 - iwt)al (k) 

+ iwtai (k)] (2W3/2
) -I d 3k 

+ (21T) - 3/2 J exp( - iwt + ikx) 

X [(1 + iwt)a l (k) - ililt a2 (k) ](2lU3/2 ) - I d 3k. 

(4.13) 

The commutation relations ( 4. 9) and (4.1 0) also imply that 
the Fock space in which the whole canonical algebra is rep­
resented must have an indefinite metric. The Fock vacuum is 
defined by the following conditions: 

al(k)!l =a2 (k)!l =0. (4.14) 

The usual methods of Lagrangian field theory lead us to the 
following four momentum: 

H = J w[ai(k)(al(k) -a2(k» 

+ (aT (k) - ai (k) )a2 (k) ] d 3k (4.15 ) 

pi= J ki[aT(k)al(k) -ai(k)a2 (k)]d 3k. ( 4.16) 

The Hamiltonian given in the (4.14) does indeed generate 
the time evolution 1'/; in fact, one has 
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( 4.17) 

Therefore, the time evolution is implementable in the (inde­
finite metric) Fock space of the model. We will return again 
to this canonical formalism in the next chapter when we will 
discuss the physical interpretation of the model. 

v. THE PHYSICAL INTERPRETATION 

It is necessary at this point to identify some subspace K' 
of the Krein space K by means of which constructing the 
physical space of the theory. Here K ' must satisfy at least the 
two following requirements: The vacuum vector must be­
long to K' (i.e., the vacuum is a physical state); and K ' must 
be semidefinite (i.e., ('1','1');;;.0, V'I'EK') for the probabi­
listic interpretation of the theory. It is usual to define the 
space K' using an operatorial supplementary condition, as in 
the Gupta-Bleuler or B.R.S.T. quantization. Then, defining 

K" = {'I'EK':('I','I') =O}, (5.1) 

we obtain as a candidate for the physical space ofthe theory 
the following Hilbert space: 

K phys = (K'/K"), (5.2) 

where the completion is taken with respect to the Hilbert 
topology induced by the scalar product ( , ). Before per­
forming the explicit construction of some possible physical 
spaces, we state and prove the following important no-go 
theorem. 

Theorem 5.1: Every semidefinite subspace of fP , invar­
iant under space-time translations is a null subspace of fP . 

Proof It is clear that it is enough to show this result at 
the one particle level and, therefore, we consider a positive 
semidefinite subspace of Y(R4) which contains a certain 
function/and all of its translated/a; Eq. (2.10) implies that 
fa (k) = expUka)i(k). Call this space Y f . We use at first 
the invariance of Y f under time translations. Let a = (t,O) 
and define 

(5.3 ) 

By hypothesis, TI (t);;;.0 and it is obvious that TI (0) = O. 
Therefore, the point t = 0 must be a minimum for TI (t), and 
this implies that 

d 2 

dt 2TI (t)I,=o 

= -1T J [(1 +D)li(k)12]lc+W-ld3k;;;'0. (5.4) 

The same argument may be applied to the function 

Tn (t) = ( .I (~)( - l)1j"I (~)( - 1)1j,). (5.5) 
}=o } }=o } 

By induction one has 

(5.6) 

The fact that t = 0 must be a minimum for Tn (t) now gives 
the condition 
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Now we exploit the invariance of Y f under space transla­
tions. To illustrate the method let us suppose at first that 
/EYo(R4). The non-negativity of Y f implies that 

(f,/) =l..1TJ [(1-D)li(k)121Ic w- J d 3k;;;.0. 2 + 

(5.8) 

The invariance of Y f under space translations implies that, 
actually, it must be 

[(1-D)li(k)lllc+;;;'O (5.9) 

pointwise. Indeed, let us define 

F".N(k) = (;yI2 nl,n2,n~ -N expUqnE)in" (k), (5.10) 

with nE = (0,n I E,n2E,n3E) and E> O. When E and N stay fi­
nite, F",N belongs to Y f and, by hypothesis, 

(F",N,F",N) 

=l..J.!....)J ± JeXP(i(k-q)(n-m)E] 
2 "\ n n.m= -N 

(5.11 ) 

By choosing E = N- 112 and taking the limit of the last 
expression for N -+ 00, we obtain (5.8). Repeating now the 
steps that led us to the formula (5.7), we conclude that it 
must be 

(5.12) 

where it is no more necessary to suppose that/EY 0 (R4). It is 
now evident that the system of inequalities (5.12) may be 
verified if and only if 

i(k)lc =0. (5.13) 
+ 

Therefore, Y f is contained in the linear space 

,.,1/ = {/EY(R4 ):j(k) Ic }, 
+ 

(5.14 ) 

which is a null subspace of Y (R4) invariant under the trans­
lations group. Therefore, Y f is a null subspace of Y(R4). 

Corollary 5.2: Every semidefinite (actually null) trans­
lationally invariant subspace of Y (R4) is contained in ,.,1/. 

Thus, according to Corollary (5.2), there is no hope of 
obtaining a nontrivial physical space that be Poincare invar­
iant: Indeed, the condition (5.13) leads to a physical space 
that contains only the vacuum vector.7

•16,17 This fact does 
not mean that the content of the theory is trivial; it means 
only that we must construct a physical space in which the 
Poincare symmetry is broken. This should not come as a 
surprise: Indeed, already in QED4 the construction of the 
physical charged sectors requires the breaking of the Lor­
entz group.23 Besides, confinement of charged massless par­
ticles in QED4 and of charged massive particles in QEDJ is a 
consequence of the breaking of the translation group in the 
physical space.24 Also, in the present case, the infrared sin­
gularities are of the confining type, and lead to the breaking 
of the translation group in the physical space (mechanism oj 
confinement). Let us see the concrete construction of some 
possible physical spaces: Consider a complex valued infinite­
ly differentiable function z = z(k), such that 

Rez(k) =/-L< 112, IImz(k)1 <constlk I. (5.15) 
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Each z ( k) that satisfies the previous conditions labels a pos­
sible physical space Kz,phys' Indeed, following the procedure 
briefly illustrated at the beginning of this section, we may 

define the one particle space K ; I)' as the Krein closure of the 
dense set 

(5.16 ) 

Here, K; may be obtained as the symmetric Fock space over 
K ; I)', and the physical space Kz,phys is given by K ;/ K ;. It is 
possible to see that K; is a maximal non-negative subspace 
of K (i.e., it is not properly contained in any other non­
negative subspace of K). Note that the set (5.16) is not sta­
ble under the translation group; indeed one has 

( 5.17) 

Equation (5.17) implies that K; is not stable under time 
translations while its stable under space translations; in par­
ticular the time translations map a dense set of a maximal 
non-negative subspace of K onto a dense set of another maxi­
mal non-negative subspace of K and therefore define orbits 
(of maximal non-negative subspaces of K). 

The same happens for the Lorentz boosts, while purely 
spatial rotations leave each K; invariant. 

To get a closer insight into the structure of these spaces 
we now study in some detail the case z = O. We have 

K(I)' =L2(C -{0}m- 3 d 3k)ffiV+ (5.18) z=o +, , 

( 5.19) 

K(I) -L 2 (C -{0},m- 3 d 3k). (5.20) z=O,phys - + 

The total physical space K z = O,phys may be obtained by the 
usual Fock procedure. The fact that K; = 0 is maximal semi­
definite may be understood by looking at (5.18). Equation 
(2.48) implies that the vectors of K;=o may be character­
ized by the following Gupta-Bleuler condition: 

t/J- (j)'II = 0, VjEYo(R4) 

such that (1 - D)j( - k) Ie = 0, 
+ 

(5.21 ) 

The next interesting question concerns the definition of the 
fields on the physical space. We distinguish here two notions 
of "quotientability" that are similar to those notions of 
gauge invariance introduced in Ref. 25. Let A be a bounded 
operator in K. Here, A is said to be quotientable with respect 
toK'if 

AK'c;;;,.K', AK'~K". (5.22) 

A is said to be weakly quotientable if the matrix elements 
('II 1,A'II 2)' 'II I' 'II 2EK', depend only on equivalence classes of 
K ' / Kif. These definitions may be easily generalized to cover 
the case of unbounded operators. There is a unique operator 
A in K phys associated with a quotientable opxrator A. If A is 
only weakly quotientable, the existence of A is guaranteed 
only in the case in which the space K ' / K If is complete. 24 In 
this case, A is constructed using the representation theorem 
for sesquilinear forms. 19 Let us come back to our concrete 
cases. It is evident that for a generic test functionj 

(5.23) 
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but it is not difficult to show that t/J( j) is weakly quotienta­
ble whenjEYo(R4) [the severe infrared singularities of the 
theory prevent the possibility to extend the quotiented field 
to functions belonging to Y (R4) ]. The explicit expression 
of the quotiented field with respect to K ; = 0 is the following: 

(~(j)w)(n) = ..l1T(n + 1) 112 J [(1 - D)j( - k)] Ie 
2 + 

X Win + I) (k,kl, ... ,kn + I )m - 3 d 3k 

n 

+ (n)-1I2 L [(1-D)j(kj )]le+ 
j=O 

XW<n)(kl, ... ,lj, ... ,kn ). (5.24) 

This expression gives a positive (noncovariant) quantiza­
tion of the dipole field (D2~ = 0) as an operator-valued dis­
tribution on Yo (R4), acting on a Hilbert space with positive 
metric. The fact that time translations are a broken symme­
try now becomes more evident: Indeed, one may define a 
map Yt in the polynomial algebra generated by the quotient­
ed field~: 

Yt(~(j) = ~(f.), (5.25) 

with!, (x) =j(xo - t,x). It turns out that Yt is no more a 
symmetry. The same holds for the Lorentz boosts. 

From Eq. (5.24), one can easily obtain the quotient of 
the gauge invariant field A = Dt/J. It is possible to find a non­
trivial "vacuum sector" by apaIying polynomials of the quo­
tiented gauge invariant field A to the vacuum vector (and 
completing with respect to ( , ): 

(5.26) 

This conclusion is in contrast with those of Refs. 7, 16, and 
17. The explanation of this contrast is that while the vacuum 
expectation values of the polynomial algebra generated by A 
vanish, this is not the case for &1 (A) at the quotient and this 
because of the (5.23). It is worth mentioning that the map YI 
may be interpreted as time evolution in Kvac,z = 0' and its 
representation is the usual one; for instance, if 'IIEK ~!~,z = 0 , 

one sees that the implementer of Yt is given by 

V(t)'II = exp(ikot)'II. (5.27) 

Therefore, starting from the local and covariant quantiza­
tion of Sec. II, we have as a special case a positive quantiza­
tion somewhat related to that exhibited in Ref. 4. The pres­
ent derivation clarifies the general mechanism responsible 
for the peculiar features of their quantization; in particular, 
the time translations are implementable in the Krein space 
K, but not in K phys ' Here, we have another example (see also 
Ref. 14) supporting the advantages of the strategy of com­
puting the Wightman functions (or equivalently solving the 
dynamics) in a local and covariant gauge, where a lot of 
symmetries are implementable and the theory has a linear 
structure. The physical interpretation of the model is then 
obtained simply by a linear subsidiary condition; it is at this 
stage that the physical structure, which is, in general, non­
symmetric, appears. 
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The physical space K z = O,phys we have just constructed, 
may be regained easily using the canonical formalism intro­
duced in the previous section. The Gupta-Bleuler condition 
now is written as follows: 

(5.28) 

It follows that il2 = 0, ill = ai' The quotiented field is given 
by 

¢(t,x) = (21T) - 3/2 f exp(iwt - ikx) 

X (1 - iwt)ilT (k) (2w3/2) -I d 3k 

+ (21T) - 312 f exp( - iwt + ikx) 

X (1 + iwt)il l (k)(2w3/2) - 1 d 3k. (5.29) 

The Hamiltonian is quotiented to zero. Again the time trans­
lations are not broken on the vacuum sector; their generator 
is the following: 

Hu = f wilT (k)il l (k)d 3k. (5.30) 

On the other side, the space translations are implementable 
on the whole physical space and their generator is exactly the 
quotiented momentum: 

pi = f k iilT (k)il l (k)d 3k. (5.31 ) 

We note also that the equal time commutators involving 
quotiented fields which are not gauge invariant may depend 
explicitly on time. 

It would now be interesting to know if there is the possi­
bility of obtaining a positive quantization of the dipole field 
in which the time translations are an exact symmetry for the 
whole physical space and not only for the vacuum sector. 
This question has already been posed in literature by Narn­
hofer and Thirring.4 The Krein space approach allows the 
possibility of giving an answer to this question. Indeed there 
are many other positive semidefinite subspaces of K and we 
may try to find some that are stable under time translations. 
Therefore, let us consider the following construction: Let 
w = w(k) a complex-valued infinitely differentiable func­
tion such that 

Re w(k) = f-l> - 112, 11m w(k) I <constlk I. (5.32) 

The one-particle semidefinite subspace we are looking for is 
defined as the Krein completion H ~I)' of the dense set 

[1~I) = (fEYo(R4 ):[(G - w(k)}f(k)] Ic = O}, 
+ 

(5.33 ) 

where G=kla/akl+k2a/ak2+k3a/ak3' Again, H: 
is obtained by constructing the symmetric Fock space over 

H ~l) and the physical space H w,phys is given by H:/ H:. In 
this case, we have 

U(a)[1~I)= [1~I~'ka' (5.34) 

This implies that H: is not stable under space translations 
while it is stable under time translations, which, therefore, 
define an exact symmetry in H w,phys' As in precedence, we 

2488 J. Math. Phys., Vol. 31, No. 10, October 1990 

give the supplementary condition that characterizes the 
spaceH:=o: 

<P - (f) '11 = 0, V fEY 0 (R4) such that 

[(1-D)f( -k)]lc 
+ 

= -G[j"(-k)lc+], 
(5.35) 

Exactly as before the quotiented field may be constructed 
only for those test functions belonging to Yo (R4

). We do 
not give here the complicated expression of the quotiented 
field but write its two-point function: 

G(x - y) = W(x - y) + (32~) -I iJtl XjXj f kikj 

Xexp[ik(x - y)] Ic+ w - 3 d 3k. (5.36) 

Thus we have obtained another (noncovariant) positive 
quantization of the dipole field for which the time transla­
tions are an exact symmetry of the physical space while the 
space translations are not. We remark that this quantization 
can never be obtained in a formal approach which exploits 
the usual creation and annihilation operators: Indeed, the 
supplementary condition (5.35) cannot be rewritten in 
terms of them. 

Clearly the two quantizations that we have constructed 
must have the same physical meaning and indeed it is again 
possible to construct a "vacuum sector" in which the whole 
translation group is implementable and actually this vacuum 
sector is isomorphic to the previous one: This may be under­
stood by looking at the Wightman functions of the gauge 
invariant quotiented fields that are the same in the two cases, 
as it may be directly verified using formulas (5.24) and 
(5.36). 

VI. CONCLUDING REMARKS 

We have come to the following conclusions: A local and 
covariant quantization of the dipole field model may only be 
obtained by making use of an indefinite metric space and it 
turns out that the most natural setting to discuss the model is 
the Krein space K, whose features have been described in 
Secs. II and III. Then, the thing to do is to look for a positive 
semidefinite subspace of K by means of constructing the 
physical space (and therefore the physical interpretation) of 
the model. In our case, we have seen that the infrared singu­
larities of the Wightman functions forbid the possibility of 
constructing a Poincare invariant physical space different 
from the vacuum vector. There is, however, the possibility to 
find subspaces of K that are not invariant under the Poincare 
group and which originate physical spaces exhibiting its 
breaking (mechanism of confinement). In particular, we 
have constructed two explicit examples: In the first one, the 
time translations are broken while the space translations are 
an exact symmetry, and the contrary happens in the second 
one (actually other choices are possible but all exhibiting the 
breaking of the whole translation group). What is important 
is the fact that it is possible to construct a "vacuum sector" 
and this is the same in the two cases; therefore, the gauge 
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invariant content of the two positive quantizations that we 
have constructed is the same. 
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Us~ng a priori estimates by Taubes [A. Jaffe and C. H. Taubes, Vortices and Monopoles 
(~Irkhauser: Boston, .19~0)] on the rate of decay of finite energy solutions of the Yang-Mills­
I:I1~gs equations, the llI~lltS of the solution fields are proven to exist at infinity. As expected, the 
hmlt of the gauge field IS a pure Yang-Mills field on the reduction bundle over S 2 defined by 
the limit of the Higgs field . 

. I. INTRODUCTION 

We give a detailed proof of a fact conjectured by physi­
cists a long time ago. I 

Consider any finite energy solution (A, <1» of the Y ang­
Mills-Higgs equations on R3: 

dA*FA = [dA<I>,<I>], 

dA *dAct> = (A /2)( 1ct>1 2 
- 1)ct>. 

Then A becomes a pure U (1 )-Yang-Mills connection on 
the "sphere at infinity." For a physicist this means that at 
large atomic scales all that is left from a non-Abelian 
t'Hooft-Polyakov monopole is an Abelian Dirac monopole. 
This was one of the main reasons for introducing the theory, 
after all. For a survey see Taubes. 2 

Now it is well known that the holonomy of a Yang­
Mills field on the sphere is either R or U ( 1 ), see Atiyah and 
Bote and Friedrich and Habermann.4 Starting with a com­
pact gauge group immediately excludes R. On the other 
hand, a connection always reduces to its holonomy bundle. 
The conjecture then is that any finite energy monopole be­
comes a pure Yang-Mills field at infinity. [In the case we 
study here, G = SU(2),H = U(1). The above complication 
is not apparent since we prove directly that the limit is a 
U ( 1 ) -Yang-Mills field. ] 

Of course, the first thing one has to make sense of is what 
exactly is meant by "sphere at infinity." Since R3

,\ {o} is 
S 2 X (0,00 ) only topologically but not metrically, some care 
has to be taken. In fact, we have found this point to be a 
major step in the proof. 

The idea is that the sphere at infinity should be inter­
preted as a family of configurations on the fixed unit sphere 
S2 in R3 with its standard Riemannian metric. This family is 
parametrized by r, the distance from the origin in R3. The 
limits at infinity are nothing but the limits of the family as the 
parameter tends to infinity. This does not influence the cal­
culations for the Higgs field at all, since we deal with limits of 
functions. It does, however, clarify the form part of the con­
figuration, where the Riemannian structure comes to the 
fore. 

Morally speaking if d A ct> decays to zero the first of the 
equations above should give the Yang-Mills equation: 

dA*FA = O. 

It is this observation one has to make sense of. For this, we 

have found that the Sobolev spaces of fields over S2 are the 
appropriate setting; although one starts with solutions, 
therefore smooth objects, some differentiability is lost by 
passing to the limit. Such a limit can be realized only in a 
Sobolev space. 

Having realized these two points, the rest of the proof 
relies on Taubes' estimates in Taubes5 and Jaffe and 
Taubes,6 Uhlenbeck's weak compactness theorem,7 and a 
formula by Taubes as it appears here. The rest consists of 
analytic pleasantries. 

Finally, viewing the problem as the behavior of solu­
tions to a system of partial differential equations, with the 
finite energy condition replacing boundary values, we see 
that monopoles behave quite differently than harmonic 
functions for example, see Anderson and Schoen.8 How­
ever, for the Bogomol'nyi case (the minima of the A = 0 
case) with hyperbolic metric the conjecture is no longer true, 
see Braam and Austin. 9 

After quickly going over the basic definitions of the the­
ory in Sec. II, we prove the existence of limits for the Higgs 
part of finite energy configurations in Sec. III. In the same 
section we also describe the symmetry breaking in terms of 
reductions of bundles, a more or less standard procedure. 
Section IV first states Taubes' estimates for finite energy so­
lutions for the SU(2) case. These are used to prove the exis­
tence of limits for the gauge part of a solution. Using the 
same estimates, it is easy to see that the limit connection 
reduces to the subbundle defined by the Higgs part of the 
solution. Section IV shows why this limit connection is co­
closed, i.e., a U( 1 )-Yang-Mills field onS 2

• Here, we have to 
use a formula by Taubes. We explain how to derive the for­
mula in the Appendix. 

Apart from Sec. III, we concentrate on the case with 
gauge group SU(2). As it will become clear, the same results 
would hold for any gauge group G and any small group H if 
we knew that the estimates of Theorem 4.1 were true in this 
generality. For the case when His an Abelian subgroup of G 
one recovers most of the estimates, see Taubes, 10 using more 
or less the same techniques as in Jaffe and Taubes.6 How­
ever, further analysis needs to be carried out when H is not 
Abelian. 

II. THE YANG-MILLS-HIGGS EQUATIONS 
The mathematical setting for the Yang-Mills-Higgs 

theory is provided by connections A on a principle G bundle 
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P over lR3 and a sections 4> of an associated bundle P X GL. 
Here, L is a finite dimensional, inner product space on which 
G, a compact Lie group, acts orthogonally. The group of 
gauge transformations acts on pairs (A,4» by 

(g,(A,4») ..... (gAg- 1+ g dg- l,g'4». 

The Lagrangian of the theory is to be viewed as a gauge 
invariant functional on such pairs (A,4» given by 

YMH(A,4» = i {~IFA 12 + ~ IdA 4>1 2 + V(4))}d 3x. 
R' 2 2 

Here, FA is the curvature of A, dA 4> is the covariant deriva­
tive, and Va Higgs potential satisfying the following proper­
ties: (a) It is smooth, non-negative, and G-invariant func­
tion defined on the representation space L. (b) It gives 
symmetry breaking, that is, it achieves the minimum value 
zero on a single nontrivial orbit, the vacuum. For future use, 
let H denote the (uniquely determined up to conjugation) 
isotropy group of this orbit. (Other conditions usually im­
posed on V, such as renormalizability conditions, are of no 
relevance here.) 

The configurations (A,4» are usually taken to be in the 
corresponding L 2 1,Ioc section spaces. This, and the definition 
of the action forces the gauge transformations to be in 
L 22,IOC (lR3,G). However, it is a theorem of Taubes6 that 
such a solution (A,4» of the corresponding Euler-Lagrange 
equations 

dA*FA = - L (t(S;)'4>,dA4»S;, 

d *d 4> = av 
A A a4> 

(YMHl) 

(YMH2) 

is always gauge equivalent to a smooth pair if its energy 
YMH(A,4» is finite. Hence, whenever interested in finite 
energy solutions only, we shall always start with smooth 
(A,4». 

The case that is mostly studied is for G = SU (2), acting 
on its Lie algebra via the adjoint representation. For Higgs 
potential one then takes V( 4» = A /2 ( 14> 12 - 1) 2, the vacu­
um orbit then being the unit sphere in the Lie algebra and 
H = U ( 1 ). The equations can then be written exactly as in 
the Introduction. 

III. FINITE ENERGY CONFIGURATIONS: THE GENERAL 
CASE 

We present here some preliminary results concerning 
the asymptotics of finite energy fields. In particular, we are 
not assuming that the fields solve any equations. Weare 
assuming the structure group G to be any compact Lie 
group, the small group H to be any subgroup of G and V to be 
any symmetry breaking Higgs potential. It turns out that 
much more can be said about the Higgs field 4> than the 
gauge potential A. In the next chapter, where we specialize to 
solutions for G = SU (2) and H = U ( 1), we can deal with 
the asymptotics of A using known estimates for FA' 

By configuration we mean a pair (A,4» with both 
members of the pair in the corresponding L 2 1,IOC spaces and 
such that the energy is finite. We use spherical coordinates 
(r,O,ip) with O,;;;;r, O.;;;;O';;;;1T, 0';;;;ip.;;;;21T on lR3 so that the vol-
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ume element on lR3 is r 2 sin 0 dr dO dip and the metric is 
ds2 = dr 2 + r 2 dO 2 + r 2 sin 0 dip 2. An orthonormal basis 
for the cotangent space at a point is then given by 

{dr,r dO,r sin 0 dip}. 

We write dfl for the volume element of the unit sphere, 
dfl = sin 0 dO dip. 

Lemma 3.1: If 4> is in L 21,IOC then 4> is continuous in 
almost any radial direction. II 

Proof' Since 4> is in L 21,IOC' 4> is in L 21 on the annulus 
{x: 1.;;;; Ixl .;;;;Rn} for Rn > 1. Therefore, in spherical coordi­
nates we have that 

{ {R .. r2( 14>12 + Id4>12)drdfl 
JS2JI 

is finite. This means that in almost any radial direction the 
integral 

IR .. r2( 14>12 + Id4>1 2)dr 

and since r> 1 the integral 

IR .. (/<1>1 2 + Id<1>1 2)dr, 

is finite, too. Hence, 4> is in L 21 in almost any radial direc­
tion within the annulus. By Sobolev's embedding theorem 
for dimension 1,4> is continuous in each such direction. Tak­
ing an increasing sequence of Rn 's so as to cover the whole of 
lR3 and forgetting each time a set of measure zero, we end up 
with almost all radial directions on each of which 4> is con­
tinuous. 

One of the major technical problems when dealing with 
the coupling term d A 4> of the Lagrangian is that it involves 
both the 4> and the A field and therefore, in general, gives 
information for none of them unless something is known 
about one of them. This difficulty can be avoided for the 
radial components when working in the radial gauge, which 
is characterized by the condition ~x,A; = 0 or, in terms of 
the spherical coordinates of the connection form, Ar = O. 
For the existence of such gauges see the next section. We use 
such a gauge in the following proposition. 

Proposition 3.2: Let (A,4» be a finite energy configura­
tion (not necessarily a solution). Then in a radial gauge 4> 
achieves a limit in almost any radial direction. 

Proof' The finite energy condition means that IIdA <1>112 is 
finite. Written out in a radial gauge this gives 

r {'"' {r 2Ia,<1>1 2 + lae<1> + [Ae,4» 12 JS2 Jo 
+ sin 0 -2Ia<p4> + [A<p,<1» j2}drdfl < 00. 

Then for almost any radial direction 

fO r21ar <1>12 dr 

is finite. 
Pick a generic radial direction ( ., liJo ) in R3 for which 

this integral is finite and the previous lemma is true and two 
points (R I> liJo ) and (R 2 , liJo ) with R I < R 2 • On such a 
direction, using Holder's inequality and the continuity of 4>, 
we have 
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Therefore, for each such radial direction the Higgs field has a 
limit as the distance from the origin tends to infinity. 

Notice that the constant M in the proof of the proposi­
tion depends on the direction and hence the estimate is not 
uniform. 

Let <1>", (w) denote the limit on the radial direction 
(r,w) of the Higgs field <I> as r tends to infinity whenever this 
limit exists. Exploiting the finite energy condition through 
the third term in the Lagrangian gives that 

i f'" r2 sin BV(<I>(r,w) )dr dw < 00. 

s, Jo 
Therefore, 

So'" r 2V(<I>(r,w»dr 

is finite for almost any radial direction w. 
Since <I> (r,w) has a limit as r tends to infinity and Vis at 

least continuous, V(<I> (r,w» must go to zero as r tends to 
infinity, for the last integral to be finite. But V achieves the 
value ° only on the vacuum orbit, therefore <I> 00 defines a 
map 

<I> '" :S2--+G IH. 

Such a map defines a reduction of any trivial G bundle over 
S 2 to an H subbundle in the following way: It is well known 
that reductions of a Gbundle P to H subbundles are in one to 
one correspondence with sections of the associated bundle 

Q=PXGGIH;::::PIH. 

Here, G acts on the quotient space by left multiplication, see 
Kobayashi and Nomizu. 12 In our case P is trivial and hence 
isomorphic to S 2 X G. Using this identification, the bundle Q 
is isomorphic to S 2 X G I H via the following isomorphism: 

[(w,g),g'H ]f--+(w,gg'H). 

It is then clear that a map like <I> '" defines a section of 
S 2 X G I H, hence a section of Q and therefore a reduction of 
P to an H bundle. 

We have deliberately avoided any adjectives like 
smooth, continuous, and the similar. As we are going to 
prove in the next section, <I> 00 is continuous when dealing 
with solutions and therefore the reduction will be within the 
known framework. We just mention here that measurable 
reductions of bundles have been studied, see Zimmer. 13 This 
kind of analysis together with the methods of Uhlenbeck 14 

for Sobolev connections should give a way of defining a mag­
netic charge in the general setting as a generalized character­
istic class of some measurable reduction. 
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IV. G=SU(2), ADJOINT REPRESENTATION: THE 
ASYMPTOTICS OF A FINITE ENERGY SOLUTION 

Taubess.6 proves the following for the adjoint SU(2) 
case. 

Theorem 4.1: Let (A,<I» be a smooth finite energy solu­
tion of the Yang-Mills-Higgs equations. Then we have the 
following a priori estimates. 

Coupling term estimate: there exists a positive constant 
m and for any positive € there exists a positive real number 
M(€) such that 

IdA <1>1 (x) ,M(€)e - (I - €)mlx l • 

Higgs field estimate: 

0,1 - 1<1>1 ,M(€)e - (t - €)mlxl. 

Curvature estimate: there exists a constant M such that 
for x with Ixl sufficiently large 

IFA I (x),M(1 + Ix1 2
) - I. 

In particular, we have for the transverse to <I> components: 

I [FA><I>] I ,M(€)e - (I - €)Ixl. 

Equipped with these estimates, start in a gauge where the 
solution configuration (A,<I» is smooth on R3. Gauge trans­
form to a radial gauge using a smooth gauge transformation, 
which we can obtain by solving the following ordinary differ­
ential equation for g( . ,cp,B): 

g - I (r,cp,B)A r (r,cp,B)g( r,cp,B) 

+ g - I (r,cp,B)a rg( r,cp,B) = 0, 

with some initial conditions. We are then in a gauge where A 
and <I> are smooth and 

We shall now see how the connection part of the configura­
tion behaves in this gauge. Let 

iR :S 2--+R3 

be the family of embeddings that send the point (cp,B) of the 
sphere to (r,cp,B) in R3. Using them to pull back the bundle P 
and the connection A we have the one parameter family 
iR * (P) of bundles over S 2, all equivalent to the trivial one, 
each supplied with the connection i R * (A ). Since we are in a 
radial gauge and we can write A over R3 as 

A (r,cp,B) = A", (r,cp,B)dcp + Ae (r,cp,B)dB, 

on the sphere we have that 

iR * (A) (cp,B) = A", (R,cp,B)dcp + Ae (R,rp,B)dB. 

From now on we write A R for i R * (A) when there is no con­
fusion and 

AR = (A R)", (rp,B)drp + (AR)e (rp,B)dB. 

That is, we want to view the r variable in R3 as a parameter 
for S2. The respective curvatures FA on S2 are 

R 

FAR (rp,B) = F",e (R,cp,B)drp 1\ dB, 

where 

FA (r,rp,B) = F",e (r,rp,B)dcp 1\ dB + F r£I (r,rp,B)dr 1\ dB 

+ F r", (r,rp,B)dr 1\ drp 
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on R3. 
The curvature estimate of Theorem 4.1 then gives that 

!Fcpf) (r,q;,O)dq;1\ dO I<M(1 + r2) -I. 

An orthonormal basis for the cotangent space of R3 at the 
point (r,q;,O) is given by 

{dr,r sin 0 dq;,r dO}. 

Therefore, 

Ir- Z sin 0 - IFcpf) (r,q;,O) I 

= Ir- 2 sin 0 -IFcpf)(r,q;,O)(rsin O)dq;l\rdO I 

<M(I+r2)-I, 

which gives that 

Isin 0 - I Fcpf) (r,q;,O) I <M 

or 

!FAR (q;,O) I <M, 

for all R. 
That is, the AR 's are connections with uniform bounds 

on the curvature in the sense of Uhlenbeck. 7 This provides 
us with an elegant, if somewhat sophisticated, way of finding 
the limit of{A R }. We know of no other way. 

The main result in Uhlenbeck 7 is the following theorem. 
Theorem 4.2: Let M be a compact manifold of dimen­

sion M and {An} a sequence of connections on a bundle P 
over M, in L PI (M) with 2p> n. If there exists a constant B 
such that 

IIFAJu<B 

then there exists a subsequence {A n;} of {A n } and a sequence 
{gn) of gauge transformations in L Pz (M) with the proper­

ty: gn; 'A n; converges weakly to a connection A in LP I (M). 
It is part of the proof of the theorem that A defines a 

connection on a bundle isomorphic to the original P. For 
p = 2n this is no longer the case, see Sedlacheck. 15 In our 
case, we have that M = S 2 and then n = 2. The family of 
connections is smooth and therefore each of them is in the 
LP I (S2) Sobolev space required by the theorem, for any p. 
To avoid any ambiguity concerning the limit connection we 
take the sequence on which to apply the theorem to be {A R } 

for all positive integersR. Then theA R 's live on bundles that 
are equivalent to the trivial one and the theorem applies with 
B = M. We call the weak limit connection A '" . It lives on the 
trivial bundle over S2 and is inL PI (S2), forp > 1. Ofcourse, 
we rename the subsequences to {A R} and {gR}' 

To make sure that we are still within the configuration 
space we have chosen, we want to realize the corresponding 
gauge in R3. Define g:R3 

- G by 

g(r,q;,O) = gR (q;,O) 

when r is in the strip 

[(R - 1) + R ]12 < r < [(R + 1) + R ]12. 

Ifwetakep = 2, eachgR isL 22 on the sphere andgisL 22 on 
the strips. Using a bump function identically 1 on the nar­
rower strips 

(4R - 1)/4<r< (4R + 1)/4, 
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it is clear that we can join things together so that g is L 22,IOC' 

The resulting configuration then on R3 is gauge equivalent to 
the original one via one of the gauge transformations of the 
theory. This is the gauge we wish to work in. 

We now want to prove that the limit of the Higgs field in 
this gauge is continuous and therefore defines a reduction to 
a U (1) subbundle as explained in Sec. III. We shall also 
prove that the limit connection reduces to this subbundle, or, 
to use a piece of terminology from Physics, the finite energy 
condition is satisfied. (It is well known that in a radial gauge 
«P has a continuous limit at infinity, see Jaffe and Taubes, 6 p. 
38. The problem here is that since the gauge transformations 
gR in L Pz do not necessarily have a limit we cannot conclude 
immediately that the limit of «P in the final gauge exists.) 

We claim that «P R has a pointwise limit «P '" in the gauge 
where A", exists. For this, first notice that since 1«P1<1, 
{«P R } is bounded in any L p(S2), for any p: 

II«PR lip «vol(S2»I/P. 

This is true for any gauge, since I«PI is a gauge invariant 
quantity. Now it is a standard fact that in a reflexive space 
bounded sets are weakly compact. Therefore, in any gauge 
«P R has a subsequence that converges weakly in L P, for any 
p';;>2. 

We also have that A R converge weakly to A '" in L PI for 
all p. By the Rellich-Kondrachov theorem, they converge 
strongly in L q for q';;> 1, and therefore (up to subsequences) 
pointwise, In particular, A R is bounded in L q, q';;> 1. 

Then [A R , «P R ] is bounded in L q, too: using the elemen­
tary inequality 

I[AR,«PRW+ I(A R,«PR)1 2
= IA 121«PRI2, 

we see that 

I [ A R ,«P R ] I.;;; IA R II «P R I.;;; IA R I, 

Applying this for p = 2 we have that [AR,«PR] converges 
weakly to a limit B '" in L p. (We shall prove in a while that 
this limit is independent of p,) 

Now use the coupling term estimate of Theorem 1: The 
exponential decay of IdA «PIon R3 means that IdAR «PR 1-0 on 
S2, much faster than R -I. Hence, dA «PR -0 in any L P 

R 

strongly. 
Then 

d(<<PR) + [AR,«PR]-O 

and 

[AR,«PR] -Boo weakly 

give that 

acp,f)«Pr - - (Boo )cp,f) (4,1) 

in L P, weakly. Notice that «P R are differentiable since we 
started from a smooth gauge and transformed by L P 2 , that is 
C I if p > 2, transformations, This means that «P R has a weak 
limit in L PI (S 2). Let «P 00 denote this limit. [Naive proof: 
For a smooth function/ on the sphere we have that 

f (acp,f) «PRJ) 

-f (<<PR,acp,f)/)- - f (<<Poe ,acp,f)/)' 
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while 

I (J<p,o <l>RI)--+ I «Boo )'1',0/), 

which gives that 

I (<I>oo,J<p,of) = - I «Boo )'1',0/).] 

Since <l>R converges weakly in L PI for p>2, it converges 
strongly in L q for q> 1. In particular, its weak limits in L P for 
p>2 are its pointwise limit and the weak limit B of 
[AR,<I> R ] is nothing but the pointwise limit [A 00 ,<I> 00 f. 

This has the following two consequences: First, the limit 
of the Higgs field in the final gauge is continuous: Taking 
p = 3 in Eq. (4.1), for example, we have that <I> 00 lies in L 3 1 

and hence is continuous. Second, Eq. (4.1) shows that d<l> 
is - [A 00 ,<I> 00 ]. That is, we have the reduction (finite ene;­
gy) condition: 

dA~ <I> 00 = O. 

As an elementary instance of bootstrapping, notice that by 
embedding theorems again A 00 is continuous and since we 
just proved that <I> 00 is continuous we have that the deriva­
tives of <I> 00 are continuous, therefore <I> 00 is C 1. Therefore, 
the finite energy condition holds in a strong sense. Summa­
rizing, we have the following for the SU (2) -adjoint case. 

Theorem 4.3: Every finite energy solution is gauge 
equivalent to a smooth solution (A,<I» with the following 
properties. (a) The connections AR on the trivial bundle 
over S2 converge to a connection Aoo on the same bundle. 
The con vergence is strong in L P (S 2) and weak in L PI (S 2 ) . 
In any case A 00 is continuous. (b) The Higgs fields converge 
pointwise to <I> 00 and weakly in L PI (S 2) and <I> 00 is at least 
C 1. (c) A 00 and <I> 00 satisfy the finite energy condition 
dA~ <I> 00 = O. 

Recall now the discussion on the reduction of the pre­
vious section. Since in the case we are studying the Higgs 
potential is given by V(<I» = (1<1>1 2 - 1)2, the small group 
of the theory is U ( 1 ). Therefore, <I> 00 defines a reduction of 
the trivial bundle over S 2 on which A 00 is defined, to a U ( 1 ) 
subbundle. The meaning of the finite energy condition is that 
A 00 reduces on this subbundle. That is, its restriction on the 
subbundle is a U (1) connection. (Recall I2 that, given a sec­
tion s of the associated bundle P X G G / H defining a reduc­
tion of the Gbundle P to an Hbundle S, a given connection A 
on Preduces toSifand only if s is parallel with respect toA.) 

We would like to remark here that the finite energy con­
dition is a geometrical way of proving something that ought 
to be provable using analysis: Since A 00 reduces to a U ( 1 ) 
connection only the corresponding U ( 1) components of A 
on lR3 survive and the rest fade away. In terms of massive and 
massless components, one should be able to form appropri­
ate equations that would give exponential decay to all the 
components but the ones corresponding to the U ( 1) sub­
group. The major technical problem is that we do not know 
of any global gauge on lR3 in which the Yang-Mills-Higgs 
equations are elliptic for A. Only local gauges are known to 
exist in which the extra condition d • A is satisfied. In fact, 
these are the gauges used by Uhlenbeck in her weak com­
pactness theorem. 
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V.A", IS YANG-MILLS 

We shall now show that the reduced connection is 
Yang-Mills. 

First recall that the curvature form for the connection 
induced by A 00 on the subbundle defined by the <I> 00 section 

is given [up to a multiple of.JT=T)] by 

(FAy,<I> 00 ) + <[ dAy <I> 00 ,dA~ <I> 00 ],<1> 00 ), 

see for example Madore. 17 The same formula appears also in 
Schwarz. I8 By the finite energy condition we are left with 

(FAy,<I> 00 ). 

This is the curvature of the reduced connection since by de­
finition a connection that reduces equals its induced connec­
tion. It is here that we need Taubes' formula. 

Proposition 5.1: On lR\ 

(FA ,<I» = C dS 2 + lV, 

where dS 2 is the area element of the unit sphere in lR3 and lV 
is a real valued two-form on lR3 with 1 (ar)klV l<r- 3 - k. 

We give a proof of this in the Appendix. Now every 
constant multiple of dS 2 is a Yang-Mills curvature. Since lV 
decays to zero, the formula shows that at large distances we 
are left only with a Yang-Mills field. However, it does not 
explain why only the (FA' <1» part is relevant, or why this 
limit is actually realized on a bundle "at infinity." Using it, 
we finally prove the following theorem. 

Theorem 5.2: (FAy,<I> 00 ) is a pure Yang-Mills solution 
on the sphere. 

Proof From Taubes' formula we see that (FAR,<I>R) con­
verges to CdS 2 strongly in any L peS 2) 

(FA ,<I» = C dS 2 + lV 

on ]R3, gives that 

(FAR,<I>R) = C dS 2 + lV<po(R,' )dq;1\ d(). 

Since IlVl < Ixl- 3 on lR\ IlV<pO (R,) 1 <R - 1 on S2. Hence, 
(FAR,<I>R) - CdS 2 tends to zero in any LP norm. Notice 
that this is a gauge invariant statement. 

We want to argue that in our gauge the limit of 
(FAR,<I>R) is actually (FAy,<I> 00 ). SinceA R converges weak­
lytoA oo inLP I it follows that FAR converges weakly to FA, 
in L P, but this does not seem to be enough to prove that 
(FAR,<I>R) converges in any sense to (FAy,<I>oo)' We present 
here a somewhat indirect argument: As argued above, 
(FAR,<I>R) has a pointwise limit and, in the gauge we are 
working in, so does <I> R , see above. Therefore, 
I<I>R 1- 2(FAR ,<I>R )<I>R has a pointwise limit. (We also use the 
fact that I<I>R 1 tends to 1, another gauge invariant argu­
ment.) 

Similarly, from the estimate on the transverse compo­
nents of Theorem 4.1, 

I<I>R 1- 2[<I>R,[<I>R,FAR ]] 

has a pointwise limit zero. Since this accounts for the whole 
of the curvature, FAR has a pointwise limit which of course 
has to be equal to its weak L P limit, FA , by the uniqueness of 
a weak limit. Here, we use the standa;d fact that a bounded 
sequence in L P with pointwise limit converges weakly to this 
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limit for p>2, see Aubin. 19 Then (FAR,<I>R) converges 
pointwise to (FA~,<I> 00 ) (therefore, also weakly and strong­
ly) and hence (FA~,<I> 00 ) = C dS 2. 

Remark: Had we chosen some other sequence of A R 's 
they would still have the same curvature on the reduced bun­
dle, as the theorem shows. Then their limits on the reduced 
bundle would be gauge equivalent: for any two connections 
A I and A2 on the sphere with dA I = dA 2 we have 
AI =A2 +gdg-l,g=expjwithdj=A I -A2· 
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APPENDIX: THE ASYMPTOTIC FORMULA 

We describe how one proves the formula as we learned it 
from Taubes.20 Basic ideas of the estimates for a slightly 
more complicated situation in the Prasad-Sommerfield lim­
it can be found also in Taubes.21 

One starts with the real valued one-form a = (<1>,* EFA ) 
on R3. The Bianchi identity and the first Yang-Mills-Higgs 
equation give 

and 

d *Ea = d *E(<I>'*EFA) 

=d(<I>,FA) = (dA<I>/\FA) + (<I>,dAFA) 

= (dA <I>/\FA) =:p 

*Eda = *Ed (<I>'*EFA) 

= *E(dA<I>/\*EFA) + *E(<I>,dA*EFA) 

= *E(dA<I>/\*EFA) + (<I>'*EdA*EFA) 

= *E(dA<I>/\*EFA) = :q, 

respectively. Note that once again the coupling term esti­
mate and the curvature estimate give that both p and q have 
exponentially decaying lengths. 

We now define the operator 

L:Oo(H3 ) eO I (H3 )_00(H3
) eO I (H3), 

by 

L(f,fJ) = (d*fJ,dj + *EdfJ). 

In Taubes' quaternionic notation, if 

'I' = (f,fJ) = '1'0 + l: 'I' i 'T i 

with '1'0 = j and 'l'i = fJi' the formula for L becomes 

where quaternionic multiplication is meant. 
We can then write the equations above in a compact 

form as 

L(O,a) = (*EP,q). 

The main point now is that L is in a sense the square root of 
the Laplacian on 00(R3

) e 0 1 (H3
): 
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L2(f,fJ) =L(d*fJ,dj+ *E dfJ) 

= (d* dJ,dd*fJ + *Ed *E dfJ) 

= (d * dJ,dd *fJ + d * dfJ) 

= ( - aJ, - A/3). 
Here, we have used that on two-forms over R3 

*Ed*E = d* 

and a denotes the Laplacian both on functions and forms. 
One uses this observation to write a Green's function for 

L and therefore a formula for a. Following the quaternionic 
notation, since L(O,a) = (*p,q) and since Green's function 
for the Laplacian on H3 is Ix - yl- I, 

(O,a)(x) = L ai(x)'Ti 
i 

- {,L(lx-YI-I,Q)(*p+ ~qi'Ti) 

- r (0, L Xi - Yi
3 

'Ti)(*P + L qi'Ti) 
JR' i Ix - yl i 

(Al) 

where quaternionic multiplication is implied. 
The way to prove this is similar to the way one proves 

that the unique solution that vanishes at infinity for the 
equation 

au=Vj 

is given by the formula: 

u(x) = 1, d Ix - yl- ~(y)dy, 
see the last chapter of Jaffe and Taubes.6 The decay of the 
fields guaranties that the integrals are finite. 

The first thing that Eq. (AI) implies is that 

r L ~i - ~i3 qi(y)dy = O. 
JR' ; X - Y 

Now use the multi pole expansion 

Xi - Yi Xi Yi Xi _ 3 

Ix-yl3 =~-~+ ... =~+ (ixi ). 
We then have that for all X in H3 

L f I
X

'I' 3 qi(y)dy 
i JR" X 

- O( Ixl- 3) ~ 1, F(y)qi(y)dy = O. (A2) 

Notice that we have enough decay on q so that the last inte­
gral is finite no matter what power of y appears in the inte­
grand. Now choose X = (t,0,0), t> O. Then (A2) becomes 

1, It 1- 2ql (y)dy + O(lt 1- 3) ~ 1, F(y)qi(y)dy = O. 

Multiplying by It 12 and letting t tend to infinity we have 
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R3ql (y)dy = O. 

Treat q2 and q3 similarly. 
The second thing that Eq. (At) implies is that 

a = - f I x; - y; *p1". _ f I x; - y; 1"q.1". 
JR' Ix-yl3 ' JR';J Ix-yl3 'J J 

Using again the multipole expansion 

x;-y; =~_~+"'=~+O(lxl-3) 
Ix - yl3 Ixl3 Ixl3 Ixl3 

and the fact that the decay conditions on p and q give bound­
ed integrals, 

a= - I I
X

;1 3 f *p1"; +-1
1
13 Ii y;*p1"; 

; X JR' x; R" 

+ ... - I x; 3 i 1";qj1"j 
;#j Ixl R' 

+~ I f y;1";qj1"j + O(lxl-3). 
Ixl ;",)0{' 

Finally, using that 

f q;(y)dy=O 
JR' 

we can write, going back to the differential forms of notation: 

a = - (f *P(y)dY) I ~dx; + O(lxl- 3
). 

UR' ; Ixl 
Now notice that in polar coordinates 

x· 
'" -' dx· = rdr "7- Ixl3 ' , 

hence, 

a = Cr- 2 dr + O( Ixl- 3). 
Since we had set a = (<1>,* EFA ), we have on R3: 

(<I>,FA) = C sin 0 dcp AdO + O( Ixl- 3). 
Since we have not presented any formulas for the magnetic 
charge of a monopole solution, we do it here. Notice that by 
definition 

C= L, *p(y)dy= 1, (dA<I>AFA)· 

Now the first Chern class of the reduced bundle over S 2 is 
given by 

C
I 

= _1_ f (FA ,<1>",,) = _t_c vol(S2) = C. 
41T JS2 ~ 41T 

Since the reduced bundle is nothing but the pull-back bundle 
via <I> "" of the Hopf fibration U ( 1) -+ SU (2) -+ S 2 we have 
that C I = deg (<I> "" ). That is, we recover the well-known for­
mula for magnetic charge: 
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Magneticcharge=deg(<I>",,) = 1, (dA<I>AFA)· 

Or, as physicists argue, see Schwarz,18 the magnetic field is 
the projection of the electromagnetic field on the Higgs di­
rection and the magnetic charge is obtained by integrating 
the magnetic flux. 
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A formula for scalar products of Bethe wave functions in the nonlinear Schrodinger model of 
spin-~ particles is proposed. It is shown, in addition, that one can replace conjugate states by 
dual eigenfunctions to calculate correlation functions for integrable systems. 

I. INTRODUCTION AND BETHE WAVE FUNCTIONS OF 
THE MODEL 

Recently, there has been much interest in the calcula­
tions of the correlation functions for integrable models. I A 
first step toward this goal is to calculate the norms of the 
Bethe wave functions. 2 Norms of the eigenfunctions for the 
nonlinear Schrodinger model of spin-zero particles and for 
the xxz Heisenberg chains were obtained before. 3.4 The main 
purpose of this paper is to study the norms of Bethe wave 
functions for the nonlinear Schrodinger model of spin-~ par­
ticles. 

The Hamiltonian for the nonlinear Schrodinger model 
of spin-~ particles with repulsive interaction is 

H=fdX{au+ au +c:u+uu+u:}, 
ax ax 

(1) 

where c> ° is the coupling constant. The field operator 
U = (~: ) has two components and they satisfy the anticom­
mutation relations 

{U; (x,t),u/ (x' ,f) } = OijO(x - x'), 

{U; (X,f), ~ (x',t)} = 0, i,j = 1,2. (2) 

Note that H has been diagonalized by QISM in Ref. 5. 
The associated monodromy matrix (on lattice interval 
[O,L] ) 

A 12 (A) 

A 22 (A) 

C2 (A) 

!I(~»)=(A(A) D(A») 
2() qA) D(A) 

D(A) 

(3) 

is a 3 X 3 matrix in the present case. Commutation relations 
between these matrix elements are given by formula 

Tki (A) T lj (ft) 

= Tlj(ft) Tki (A)( - 1)Ip(kl+ p(i»)[p(ll+pU)1 

+ b(A - ft) ( _ 1 )p(I)p(k) + p(i)p(l) + p(k)P(i) [T/i (ft) 
a(A - ft) 

X Tkj(A) - T/i(A)Tkj(ft)], iJ,k,l= 1,2,3, (4) 

where 
. {O, when i = 1,2, 

pel) = . 
1, when I = 3, 

a(A) = 1 - b(A) = A I(A + ic). (5) 

The Hamiltonian H and the transfer matrix 
str TL (A) =A II (A) + A22 (A) - D(A) have common eigen­
functions that are constructed by 

1t/I(ul'''un;{v)) = qUI) ® •.. ®C(un)lo) 

xC (I)(vl)"'C (1) (vm ) 10(1», 

(6) 

provided that {uJ and {vJ satisfy the following Bethe an­
satz equations: 

a(u,) m 
----= II a(vi -u,), 1= 1, ... ,n, 
d(u,) i~1 

n m {a (v i - vj ) } II a(v i - u,) = II ' 
'~I j~1 a(vj-vi ) 

where 10) is the pseudovacuum and 

(
a(A) 0) 

A(A) 10) = 0 a(A) 10), 

D(A)lo) =d(A)lo), D(A)lo) =0. 

i= 1, ... m, (7) 

(8) 

Here, c< \) (v) is an element of matrix T (I) (v), which is de­
fined by 

(9) 

where 
2 2 

Lj(v) =a(v) L eoo®er+b(v) L eab®er (10) 
a,b~ I a,b= I 

can be considered5 as the transfer matrix at sitej of a Heisen­
berg ferromagnetic chain with dynamical variables er, and 
the associated vacuum lor I) ) is defined by 

The Yang-Baxter relation for L j (v) is 

r( v I - V2) [ Lj ( V I) ® Lj ( V2 )] 

= [Lj (v2 ) ®Lj(vl)]r(v\ - v2 ), 

where 
2 

r(v)=b(v) +a(v) L eij®eji 
iJ= I 

(11 ) 

(12) 

(13) 
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and eij is in a two-dimensional auxiliary space. 
The eigenvalue of H is given by 

( ,I·(U "'U ·{v·})IHI,I·(U ···u '{v}» E(c) = 'f/ I n" 'f/ I n" 

(I/J(u I" • Un ;{vJ) II/J(u l ' .. Un ;{vJ» 
n 

= L u/. (14) 
i= I 

It can be shown that 

(~(un"'ul;{vJ)1 

=(o(l)IB (I)(vm)"'B (I)(vl)(oIB(un) 

® ••• ®B(u l ) (15) 

is the dual eigenfunction ofstr TL (A) with the same eigen­
value as II/J(u l " 'un;{vJ», which is to say 

(~(un'''ul;{vJ)lstr TdA) 

= (41(un ' "ul;{vJ)IO(A,{UJ,{vJ), (16) 

where O(A, {u j }, {v j }) also satisfies 

str TdA)II/J(ul"'un;{vj}» 

= O(A,{uJ,{vJ)II/J(uI"·un;{vJ». (17) 

The operator B (I)(v) in (15) is defined by 

B (I) (v) = (1,O){Ln (v - ul )··· LI (v - Un )}(~). (18) 

If we write 

C (I )(v
l
)· .. C (I)(vm) lot I) 

=~ga ... a (un"'u l )(a l )l®"'®(an )n' 
I n a, 

(o(I)IB (I)(vm)"'B (I)(v l ) 

=~ g~ ... a (u I " 'un )(a l ) 1+ ® •.• ® (an )n+, (19) 
, n 

a, 

where (aj ); = (~); or (6) i> then we can also show that (see 
Appendix A) 

II. NORMS OF THE BETHE WAVE FUNCTIONS 

In physics, the correlation function in state II/J) is gener­
ally expressed by (I/JIP I I/J)/(I/JII/J), where (I/JI = II/J) + andP 

I 

where U; c(u/) is different from uj c(u/) when i#j. 
It is easily seen that 

(~(un"'uI;{vJ)II/J(UI"'Un;{vJ» =Ilu,c=u/' (27) 
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is an operator. The first step to calculate this correlation 
function is to calculate the norm (1/J11/J).2 However, it is al­
most impossible in the present problem to calculate (I/JII/J) 
directly from the Yang-Baxter relation between TL + (u) 

and TL (v) even in the simplest case, e.g., 
(oiCI + (u)CI (u) 10). Therefore, an attempt to replace (I/JI 
by the dual eigenfunction (~ I arose. Since 

C(u)#B+(u), B(I)(u)#[C(I)(u)]+ (21) 

in our problem, the conjugate state (I/JI is generally not equal 
to the dual eigenfunction ( q; I. However, it can be shown 
that for integrable systems we have (see Appendix B) 

(I/JIP II/J)/(I/JII/J) = (~IP II/J)/(~ II/J)· (22) 

So we can replace (I/JI by (~ I to calculate the correlation 
function, and the remaining part of this paper is devoted to 
proposing a formula for the scalar product between II/J) and 
the dual eigenfunction (~I, which is proportional to the 
norm (I/JI I/J) , as shown in Appendix B. 

For some small values of m and n, one can see by direct 
calculation that (~(un" 'ul;{vJ) II/J(u l " 'un;{vJ» is pro­
portional to 

{
ikfJk

O
} {acp.l} Dn,m =detn __ -- detm _1_ , 

au[ av; 
(23) 

which is the denominator in the expression of au;lac ob­
tained from (7) by differentiating the logarithm and the Ja­
cobi matrixes4 in (23) are defined by 

iJCPk 0 _ acpk 0 ~ (aCPk 0) _ I (aCPa I ) 
----=-- - ~ -- (M ){3a -- , 

au[ au, a,{3= I aV{3 au, 

0_ (ii(Ud) ~ ( 1 ) CPk =In ---- + ~ In , 
d( Uk) j = I a( Vj - Uk) 

M= _1_ {
acp.l} 

- av; mxm' 

I /I m (a(vk - V)) 
CPj = L In a (Vj - u;) + L In _ . (24) 

,=1 k=1 a(vj Vk) 

#j 

Comparing the present case with that of spin-zero, we con­
jecture, leaving its justification to be discussed in later publi­
cations, that the proportional relation between 
(~(un'''uI;{vJ)II/J(UI'''Un;{VJ» and Dn,m is valid, in 
general, and we write 

(~(un .. 'ul;{vJ) II/J(u l " 'Un ;{vJ» = fDn,m' (25) 

the coefficient/is determined in the following. 
Now we consider 

(26) 

which may be calculated from (26) by using (4) and (8) 
after taking limit u; c .... u; B. 

From (4) and (8), we see that I) is a function of 
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O(U/(C», and (f(u/(C». Thus II has poles in the limit 
Uj C -+ Uj B due to the factor a - I (uj B(C) - Uj C(B». When we 
use I'Hopital's rule to calculate the resides, we will find that 
there are terms proportional to xj==aln[o(uj)/{f(u j)]/ 
aUi> which can be considered as a variable independent of 
{uj } according to the discussing in Ref. 4. The interesting 
term in I after taking limit U j C -+ U j B is the term proportional 
to n7= I Xi> which can be easily calculated by using (4), (8), 
and (20), and the result is (here we have set (010) = 1) 

{

n - I n ( 1 )2} / I u," = u
j
C = ( - ic) n IT IT 

;=lj=;+1 a(u;-u) 

X LUI O(U;)d(U;)] 

X [J; gp". '{3, (u l ·· ·un )g{3,,"'{3, (u I ·• ·un ) ] 

(28) 

where Q is a polynomial and each term of Q does not depend 
on all X;, i = I, ... ,n. 

Since 

where 

= (0(1)111 (1)(v
m

)···11 (1)(VI)C(l)(VI )··· 

XC(I)(vm )lo(l», (29) 

C(I) (v) == (0,1 ){Ln (v - u l )·· ·L I (v - un )}(~), (30) 

and the Yang-Baxter equation (12) for Lj (v) is similar to 
that for the xxx model, we can use Korepin's result4 to calcu­
late /2' and the obtained result is 

12 = (ic)m[ IT IT 1 1 detm {arpk I}. (31) 
j= I k = I a(vj - vk ) aVj 

~j 

Substitute (31) into (28) and comparing it to (25), we 
now obtain 

and the final result is 

(i'p(u n ••• U I;{VJ) I¢'( UI · .. Un ;{vJ» 

= ( _ ic)n{nif IT [ 1 ]2} 
;=lj=;+1 a(u;-uj ) 
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X[.IT O(Uj){f(Uj)]detn{"J!'kO}(iC)m 
1=1 au, 

X [IT IT 1 jdetm { arpk I }, 

j= I j:} a(vj - Vj) av, 
(33) 

where the Jacobi matrices are defined by (24). We have ex­
plicitly verified (33) by direct calculation for some small 
values of m and n, e.g., n = 2 and m = 1. A proof of the 
formula (33) for arbitrary nand m is needed. 

APPENDIX A: PROPERTIES OF ga, ... a/Un· .. U1) 

From definition (19), we have 

ga .... a,,(un···u 1 ) = (al)t ® .•. ® (an)n+ 

xC (I)(vl)···C (I) (v
m

) 10(1). 
(AI) 

Now we write 
n 

(a ) + ® ... ® (a ) + = II a+ I Inn - J 
j= I 

10(1» = (0) ® •.• ® (0) == IT l;, 
1 lIn ;= I 

C(I)(V{3) = (O,l){Ln (v{3 -un )···LI(v{3 -Ul)}(~) 

==ll{Ln (v{3 - un )···L I(v{3 - u l )}t{3' (A2) 

then 

ga .... a. (Un'· ·U I ) 

= till a/ } Ull{3+ [Ln (V{3 - Un)··· 

LI (V{3 - U I )] t{3} Lill lj} 

= CUI l{3+ } tUn a/ r(uj Hj } CUI t{3}' (A3) 

(A4) 

Here we have used the fact that L j (va - uj ) and 
L;(v{3 - u;) commutes when a=/=(J andj=/=i. The Yang­
Baxter relation for r( u) is 

r(u 1 - u2 )[ r(u2 ) ® r(u l )] = [r(u l ) ® r(u2 )]r(u l - u2 )· 

(A5) 

Since 

-a,~ I r(u,+ I ) !,+ I a/ r(u,) !,. 

= (a,+ I ),~ I r(u,+ I H,+ I (a,)/r(u,)!" 

we see from (A5) the following. 
(a) When a,+ I = a, = tor !, we have 

(a,+ I ),~ I r(u,+ I H,+ I (a,)/r(u,H, 

= (a,),~ I r(u,H,+ I (a,+ I ),+r(u,+ I H, 

= (a,+ I ),~ I r(u,)!,+ I (a,)/r(u,+ I H,· 

Pang, Pu, and Zhao 

(A6) 

(A7) 

2499 



                                                                                                                                    

(b) When a 1+ 1 = t and al = l, we have 

(al+ 1 )I~ l r (U I + 1 H I + 1 (al)/r(uIH I 

= B (2) (u l + 1 )D (2)(UI ) = [l/a(u l - UI + l)]D (2)(u l )B (2)(UI+ 1 ) 

- [b(u l - UI+ 1 )/a(ul - UI + l)]D (2)(UI + 1 )B (2)(UI ) 

= [l/a(u l - UI + 1 )](al)I~lr(UIHI+1 (al+ I )/ 

Xr(ul+ 1 HI - [b(u l - UI+ 1 )/a(ul - UI + 1)] {(a l )I~ l r (U I + I H I + 1 (al + 1 )/ r(u l HI}. (A8) 

(c) When al+ 1 = land al = t, the result is similar to 
that of (b). From (a)-(c), we conclude that 

(A9) 

APPENDIX B: RELATION BETWEEN (cfil AND ("'I 
Consider an integrable circular chain with the number 

of total degrees of freedom N. Denote I th ) the jth eigenfunc­
tion of str Td,1), (tPjl the jth dual eigenfunction of 
str TL (A) with the same eigenvalue as I th) and (tPj I the 
conjugate state (I (tPj I = I tPj) + ), where TL (A.) is the asso­
ciated monodromy matrix. Since the number of total conser­
vative quantities is equal to the number of total degrees of 
freedom for intagrable systems, we assume (hp ,/3 = 1, ... ,N} 
are the N operators of the total conservative quantities of the 
integrable chain. For physics system we have hi = h /. 
From QISM, we know that I tPj) is the common eigenfunc­
tion ofstr TL (A.) and hp for any /3, and we write 

hpltP) = hpj ItP), /3 = 1, ... ,N. (Bl) 

It can be shown that 

(tPjlhp = (tPjlh~ = (tPjlhpj , 

(tPj Ihp = (~j Ihpj , 

from the definition of (tPj I and (tPj I· 

(B2) 

Since str TL (A.) can, and only can, generate N indepen­
dent conservative quantities, there at least exists one opera-
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I A 

tor, for example, ha for which hai is not equal to haj in (Bl) 
when i =/= j, where i =/= j means that I tPi) and I tP) are two dif­
ferent eigenfunctions of str T L (A.), and we get 

(tPjltPi) =Oand (tPjltPi) =0, wheni=/=j. (B3) 

Ifwe write 

then from (B3) we have 

fij = 8ij (tPj ItPj )/(tPj ItPj)' 
Therefore, 

and 

(B4) 

(BS) 

(B6) 

(tPj IP I tP) / (tPj ItPj) = (tPj IP ItP) / (tPj I tP), (B7) 

where P is an arbitrary operator. 
For the continuous (integrable) field-theoretical mod­

els, which have infinite number offreedom degrees, we first 
take their lattice forms (with N finite) and then let the lattice 
spacing tl ..... O(N ..... (0). It is reasonable to conjecture that 
(B7) is still correct in the continuous limit tl ..... O(N ..... (0). 
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The multi vectorial generalization of the Cartan map, for l/i' ( 1,3) space-time Clifford algebra 
and an arbitrary gauge group in an isotopic space, is applied to the standard Dirac equation to 
generate the multivectorial Dirac equation. Using both geometrical and physical reasoning, a 
particular case discussed by Reifter and Morris [J. Math. Phys. 26, 2059 (1985)] is projected 
from the general multi vectorial Dirac equation, to discuss the properties and limitations 
associated to their quatemion model. The use of the general multivectorial Dirac equation, 
which can be defined on any space-time manifold, is also illustrated. 

I. INTRODUCTION 

Historically the dynamical equations for particles and 
fields have been developed using several mathematical struc­
tures including tensors, spinors, and twistors. However, 
spinor fields can only be defined on a restricted class of mani­
folds admitting spin structure. I

-
3 Therefore it is desirable to 

show the relations between these structures to overcome as 
many limitations as possible in a physical model. 

On the other hand, multivectorial fields can be defined 
on any manifold4--6 (parallelizable or not) and they include 
all the previous mathematical structures in an unified lan­
guage. We constructed a multi vectorial generalization ofthe 
Cartan map,7 mapping Weyl spinors into complex quater­
nions, to a mapping from any dimensional spinor spaces (we 
used the concept of spinor-like minimum ideal of a nonde­
generate Clifford algebra) onto a multivectorial space with 
two symmetries, one of them being the space-time Clifford 
group 'G' (1,3) and another one being an isotopic space 
group (in multivectorial representation) related with the 
most common gauge groups in quantum field theory. The 
algebraic properties of this map and of the operators repre­
senting observables studied previously7 will be used in this 
paper. We will apply this multivectorial Cartan map to the 
Dirac equation to obtain the multivectorial Dirac equation, 
that is, one where the field representing the particle is a mul­
tivector [in ~ (1,3) space-time and a chosen gauge group], 
obtained through the application of the multivectorial Car­
tan map to the original Dirac spinor. The method is general 
and can be used for other formalism or equations. 

The present paper should also illustrate how it is possi­
ble to obtain dynamical equations for fields, fermionic or 
bosonic, within one common mathematical structure, name­
ly the Clifford algebra. 

Section II describes the multivectorial generalization of 
the Cartan map and its use to obtain a multivectorial form of 
the Dirac's equation. Section III discusses the particular 
case where the general multivectorial Dirac equation is pro­
jected onto its complex quatemionic part with SU (2) gauge 
group in the isotopic space. Finally, we will present some 
particular remarks about useful applications and properties 
related to elementary particles theories. 

II. THE APPLICATION OF THE MUL TIVECTORIAL 
CARTAN MAP TO THE DIRAC EQUATION 

It is possible to write the Dirac equation for a massive 
particle as the following system of equations:8

•
9 

i(uoD O + uiDi)Tj = mos, 

i(uoD o - UPi)S = moTj, 

(2.1) 

considering the Dirac bispinor tP = (s, Tj) (in chiral repre­
sentation) as a composite object, consisting of one Weyl 
spinor SEC 2 and a conjugate Weyl spinor TjEC 2

; where if 

n = GJ then Tj = ( ~;!) , 
ua = (l,O"Pauli)' a = 0,1,2,3; 

(D o,D ;);i = 1,2,3, are the components of the quadrimo­
ment operator and mo is the rest mass associated to tP ( n~ is 
the usual complex conjugate ofthe complex number 77;) and 
the summation convention is used. 

Following Reiflers we combine the system (2.1) in the 
following way: 

(2.2) 

where now the O"a = (l®uo, -l®ui ) are 4X4 matrices 
representing the scalar and the bivectors eoe; of space-time, 
tP = (~) is ~ Dirac spinor pair, 1f, is its spinor conjugate given 
by 1f, = ( - ~'1), ¢Ja = (O,O,O,m) is a mass quatemion,5,6 and 
the 4 X 4 matrices 7 a = (1,7;) connect the SU (2) generators 
of the "isotopic" space, 7; = 1-; 181 1. 

In Eq. (2.2) the (pa term chooses the 7 a generator in 
such a way that the Dirac mass can be defined through a 
mixing of the left and right chiralities in the correct propor­
tion. 

The original Cartan map 10 is a map 
M(77'77'):C2XC2-+~(3,O) ofWeyl spinors into the com­
plex quatemions. Here we will use the multivectorial gener­
alization of the Cartan map M", ( tP, tP' ) : C 4 X C 4 -+ 'G' (1,3 ) 
given by 

(2.3a) 
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which, if t/JTr aA ~€t// = A,u t/Jrr a€t/J' (this is an important 
result of the generalized Cartan map7 ), is equivalent for all 
{3 to 

M,u(t/J,t/J') = 4AwT3(€t/J't/JT)TT3' (2.3b) 

In this expression: 
(i) t/J,t/J'EC 4 are minimum left ideals of C(1,3) 1.2,3,11 

(this is the Clifford group associated with the A I •3 space­
time I2

-
14

) and € is a spinor metric 

o 
o 
-1 

o 

o 
-1 
o 
o ~) 

such that the ¢ = t/J bijection is true. t/JT is the t/J spinor trans­
pose. 

(ii) r aEC(J (1,3) with a = 0, ... ,15 is a 4 X 4 representa­
tion ofa basis set for the multivectors of space-time. 12.13 

(iii) Aw is the multivectorial representation for a given 
Lie group used as a gauge group. 14 

(iv) T3 = (~_01 ) is a 4X4 supermatrix, the 1 are 2X2 
unit matrices, denoting here a SU (2) isotopic direction. 

(v) The components of the multivectorial Cartan map 
are 

Mcp (t/J,t/J') = t/JTra(A", til) * = t/JrraA !€t/J', 

given that ¢;'* = €t/J'. 
Using (2.3) in the Dirac equation (2.2) we obtain 

iMw (t/J,uaDat/J) = - Mw (t/J,¢f1T{3¢;) (2.4) 

but as Ao = 1 then 

IMo (t/J,uaD at/J) = 4T3 (€D auat/Jt/JT) TT3 (2.5a) 

from (2. 3b) above and we can develop the quantity in paren­
thesis, simplifying 

iMo (t/J,D au a t/J) 
= H IlD oMo (t/J,t/J)uo + TID IMI (t/J,t/J)UI 

+ rD2M2 (t/J,t/J)U2 + rD3M3 (t/J,t/J)U3] 

= !~D{3Ma,(t/J,t/J)U{3,tj~r, (2.5b) 

{

I, if a = a' = {3 = {3 , 

o~/' = (with a,a' ,{3,{3' = 0,1,2,3 ) 
0, otherwise, 

where the differential operator acts on the multivector field 
M a ( t/J, t/J). The prefactors of the M a satisfy the following 
relation [from (2.3b)] M",(t/J,t/J') =A",Mo(t/J,t/J'), the Aw 
are matrices belonging to the chosen Lie gauge group. 

The right-hand side of (2.4) is such that 

Mo (t/J,(paTa¢;) = 4T3 (€</JaTa ¢;t/JT)TT3 (2.6) 

is equivalent to 

Mo (t/J,</JaT a¢;) 

then 

= </J°Mo (t/J,¢;) + </JIMo (t/J,¢;)TI + </J2Mo (t/J,¢;)T2 

+ </J3Mo (t/J,¢;)T3 

= Mo (t/J,¢;)</JaTa , 

M", (t/J,</JaT a¢;) = AwMo (t/J,¢;)</JaT a 
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to obtain .. 
Mw (t/J,</JaT a¢;) = Mw (t/J,¢;)</JaT a' (2.7) 

Consequently, the set of multivector Dirac equations 
( under a A", gauge group in isotopic space) can be written as 

(Aj2)~D{3Ma·(t/J,t/J)u{3'o~r = -M",(t/J,¢;)</JaTa , 
(2.8) 

in fact (2.8) defines a system of Dirac equations for each of 
the Aw isotopic directions of the gauge group chosen in an 
isotopic space,. If (j) = 0 or Aw = 1 then (2.8) reduces to 

~D{3Ma' (t/J,t/J)u{3,o~r = - 2Mo (t/J,¢;)</JaTa , (2.9) 

the reference multi vectorial Dirac equation. 
We introduced in a recent 15 paper the geometrical inter­

pretation of the generalized, Fierz identities as the Clifford 
product of multivectorial Cartan maps 

(2.10) 

where the elements of the minimum ideals of the multivector 
algebra are X,t/J,X',t/J'EC 4 and Mi(t/J,X)EC(1,3), Mj(t/J,t/J') 
= .t/JTA;€t/l, with A;=T3A[T3' Finally Mi(t/J,X) and 

Mj (t/J,X) belong to a chosen Lie group algebra. 
This can be used to transform the sets of equations (2.8) 

thus: take a particular A;, isotopic direction in Eq. (2.8) 

A;, TaD {3Ma, (t/J,t/J)U{3,O~r = - 2M;, (t/J,¢;)¢f1T{3' 

and mUltiply this equation by M;, (t/J,t/J) (A;, #A;, ) both gen­
erators of a Lie group 

{3 '{3' Mi2 (t/J,t/J)A;, ~D Ma, (t/J,t/J)u{3,o~{3 

= - 2M;, (t/J,t/J)Mi (t/J,¢;)¢f1T{3' (2.11) 

Using the generalized Fierz identities (2.10), then 
(2.11) can be written 

{3 '{3 , 
M;2 (t/J,t/J)A;, ~D Ma, (t/J,t/J)u{3,o~{3 

= - 2Mi, (t/J,¢;) Mi2 (t/J,t/J)¢f1T{3' (2.12) 

Repeating over all gauge group generators different 
from i2 , we obtain 

i2 

= - 2Mi, (t/J,¢;) II M;(t/J,t/J)¢f1T{3' (2.13) 
;=;" 

Then the use of the generalized Fierz identity rotates the 
original multivector Dirac equation (2.8) into another 
(2.12) containing the same information. 

III. A PARTICULAR CASE OF THE MUL TIVECTOR 
DIRAC EQUATION 

We will now obtain, guided by physical and geometrical 
considerations, a known particular example of the system of 
equations (2.8). This should illustrate the advantages ob­
tained with the use of a multi vectorial analysis. 

Introducing an SU (2) gauge group and a space-time cut 
(that is a quatemion basis for space-time u,.. = AoA,.., where 
the space-time vectors Y,.. are projected relative to a given Yo 
proper time), which singles out the temporal component of 
the momentum differential operator from the spatial compo-
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nents, then (2.8) changes to 

P + T;,f1Mo (t/I,D°t/l)O'o + P _ T;~~. (t/I,D Kt/I)O'K·6)'f' 

= -M;(t/I,~)¢f3Tp, (3.1) 

"K' {I, ifj=k=k'=/ 
here, ~K = (withj,k/,k' = 1,2,3), 

0, otherwise 

the T; are SU (2) generators, 

P + = (~ ~), P - = (~ ~) 
and D a is the covariant differential operator applied to the 
arguments of the spinors. 

The space-time cut allows the change [see (3.2) below] 
from Pauli matrices to Proca matrices [see (3.2), (ii) be­
low] of the proper Lorentz group matrix representation for 
the differential operator basis. The following procedure is 
then followed: the left-hand side term of (3.1) will be pro­
jected on the quaternion basis (0'o ,O'j ) such that we can sepa­
rate the time and space components of the differential opera­
tor. Then the generalized Fierz identities (2.10) 15 are 
applied to rearrange the temporal and spatial components 
(the new components are lineal functions of the previous 
ones) over the Proca representation for the differential oper­
ator basis. And, finally, the quaternion subalgebra of the 
multi vector Cartan map is projected. Doing this the equa­
tion is changed to 

TI± 1 [Bg (t/I,t/I)Pa + !B~(t/I,t/I)TjrPTjPb] 
X{p + T;~Mo(D°t/l,t/I)O'o 

. K "K'}(cf) 4= (l:) + P - T;r~. (t/I,D t/I)O'K·D'JK d TI 1 l:J 
- TI± 1 [(i12)B g (t/I,t/I)(¢f3TpM; (t/I,~» ] TI4= I' 

(3.2) 

where 
(i) TI± 1 and Tf 1 denote the operators that project the 

quaternion part of any multi vector placed between them,7 

that is, if we want to obtain the quaternion part of a given 
multivector A, we denote it as the sum 

TI± IATr'f 1 = T + AT _ + T _ AT + + TIATI + T1AT1, 

an explicit representation of the projectors is 

r 
0 0 

~} . 0 0 -1 
T+ =..!...-(T1 +iT2)0'2 = 

0 0 2 0 
0 0 0 

c 
0 

V' 
i-I 0 0 

TI = - (1 + T3 )0'2 = 
0 0 2 0 

0 0 0 

c 
0 0 

V' 
i . 0 0 0 

T = '2 (T1 - IT2 )0'2 = 0 
0 

-1 0 0 
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(

0 
i 0 

TI = - (1 - T3 )0'2 = 
2 0 

o 

o 
o 
o 
o 

o 
o 
o 
-1 

Here, O'a, a = 0,1,2,3, is a quaternion subalgebra represent­
ed by the space-time multivectors {t,iY23 ,iY31 ,iYI2} such 
that in chiral representation they have the matrix represen­
tation 

0). (O'pauli 
l' 0 

Then the Tp,/3 = 0,1,2,3, are SU(2) gauge group generators 
represented here by the multivectors {l,yo 'YI23 ,iys} such 
that in chiral representation they correspond to the super­
matrices 

(ii) Thequaternion basis (~,d) is the Pauli matrix rep­
resentation for the proper Lorentz group and C~o,}/) are the 
Proca matrix representation for the spin 1 proper Lorentz 
group given by 

~'~(~ 
0 0 

V' ~'~(~ 
0 

0 0 

0 0 

0 0 0 

~'~(~ 
0 0 

D ~'~(~ 
0 

0 0 0 
0 0 i 

-i 0 0 

(iii) In the left-hand side the term 

«i12)Bg (t/I,t/I)Pu + !B~(t/I,t/I)TjrPTjPb) 

0 

0 

0 
~ .), 
-I 

o 

~i ~) 
o O· 

o 0 

is a factor produced by the use of the generalized Fierz iden­
titylS and the new time-space components those that were 
defined when the quaternion basis was changed, using 

An interpretation of this factor is as a rotation operator ap­
plied on a basis set, it generates a new basis set up to a phase 
factor given by a scalar and a multivector reflected in aj axis 
(B g (t/I,t/I) = t/lTEt/I and B ~ (t/I,t/I) = t/lT r"pEt/lV 

In fact, we have used in (2.8) the SU (2) gauge group in 
a quaternion basis representation spin 1 of the proper Lor­
entz group (the components of this basis are rotated on the 
previous ones given by the Pauli spin 1/2 proper Lorentz 
group) for the differential operator and finally we projected 
thequaternion subalgebraoftheMa ,( t/I,t/I) multi vector Car­
tan map in the original equation. 

To analyze Eq. (3.2) we need to study each of its terms. 
Its left-hand side term can be written as 
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7t j [iB g (t/J,t/J)7;"nMo (D 0t/J,t/J) uorfJ 

+ !B ~ (t/J,t/J)7j "P7j7;"iMj' (¢,D Kt/J)U K' u" 'Oi;;-; 

B g (t/J,t/J)7;"iMj' (t/J,D Kt/J)U K·uK·{j~l'] 7~ j (~:). 
(3.5) 

because 7;,7j , and 7K satisfy the SU(2) Lie algebra. 
(3.3) 

where the Po and Pb projectors mix the (rfJ,cf) basis compo­
nents obtaining a new (~o,~;) basis set. The last expression 
can be changed to 

Due to (2.3) and B ~ (t/J,t/J)7j "P7K = B ~a 'T"T7K , where 
Bt = (t/JT 73 7J 7 a 73 Et/J), expression (3.5) can be written as 

B g (t/J,t/J)71± j 7;Mo (D °t/J,t/J)~o 

+ 7 1± j (Bg(t/J,t/J),(i/4)B~(t/J,t/J)7j"P7) 

. K J'K' +' [~k] X 7;r~, (D t/J,t/J){jJK 71 j ~o ' (3.4 ) 

which is equivalent to 

which is equivalent to 

B g (t/J,t/J)71± 1M; (D °t/J,t/J)7~ I ~o + B g (t/J,t/J)71± I 7;"iM/ (D Kt/J,t/J){j~l' 7~ I ~K 

+ !B J. (t/J,t/J)71± I 7 Kr~. (D Kt/J,t/J){j~l' 7~ I ~o + !B J. (t/J,t/J)71± 171 7k r~. (D Kt/J,t/J){j~l' 7~ I ~o 

- !B Z (t/J,t/J)7 r± 172 7k r~. (D Kt/J,t/J){j~/' <t- I ~o + !B J, (t/J,t/J)71± 17] 7k rM1 (D Kt/J,t/J){j~~ K' 7~ I ~o. 

Taking the transpose (3.7) and using (2.3), we obtain 

!B g (t/J,t/J)D a~a 7 1± IM;( t/J,t/J)7~ I + !~o(7t I B ~() (t/J,t/J)M i (Dt/J,t/J)7~ I) 
+ !~o (71± I B ~I (t/J,t/J)M i (Dt/J,t/J) 71 <t- I ) + !~o (71± I B ~2 (t/J,t/J)M ~ (Dt/J,t/J) 72 7~ I ) 

+ !~o (71± I B ~J (t/J,t/J)M i (Dt/J,t/J) 73 71+- I ). 

About this expression the following comments are of interest: 

(3.7) 

(3.8) 

(i) the (71± I M7~ I) operator which obtains the quaternion part of a multivector M is equal to its transpose because 

7: = - 7 _ ,7; = - 71, and (71) T = - 7 r • 

(ii) The Proca matrices are such that 

~6 = ~o,~; = - ~;, with i = 1,2,3. 

(iii) Using (2.3), it is possible to prove 

. K ./, r;:J'K' K r~. (D t/J,'f/ )UJK = M o (D t/J,t/J), for k = 1,2,3. 

Then, if 0 = (D 1,D 2,D 3) the previous expression is equivalent to 

"iM1 (DKt/J,t/J){j~~K' = Mo (Dt/J,t/J) 

and 

. K./, r;:J'K' 7;rM1 (D 'f/,t/J)UJK = 7;Mo (Dt/J,t/J) = M; (Dt/J,t/J). 

(iv) The 7; (i = 1,2,3) matrices satisfy the Lie algebra 7;7j = i7k' with iJ,k cyclic. 
The following properties 7 of the operators (7 1± 1'7 I+- I ): 

7 ± 7] = + 7 ±' 737 ± = ± 7 ± ' 

71 173 = ± 71 I' 7] 71 I = ± 71 I' 

727 ± = ± i71 l' 7 ± 72 = ± iTl l' 

7271 I = ± i7 +-, 71 172 = + i7 ± ' 

7171 I = 7 +-, 71 171 = 7 ± ' 

can be used to transform expression (3.8) into 
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!BgCI/J,I/J)DU'.i.u(T + M;CI/J,I/J)l' _ + l' _ M;CI/J,I/J)l' + + 1', M;C I/J,I/J) 1', + T1M;CI/J,I/J)T j ) 

+ !'.i.O(T + BJ.)M[(DI/J,I/J)T _ + l' _ BJ.)MTCDI/J,I/J)l' + + T,BJ.)M[(DI/J,I/J)T, + T1BJ.)M [(DI/J,I/J)T1) 

+ !'.i.O(T _BJ. CI/J,I/J)MTcDI/J,I/J)T j + l' + BJ. CI/J,I/J)MTcDI/J,I/J)T, + T,BJ. CI/J,I/J)M[(DI/J,I/J)T_ 

+ TjBJ. CI/J,I/J)M[(DI/J,I/J)T +) + (i/4)'.i.O(T,BJ,M[(DI/J,I/J)T _ - TjBJ,M[(DI/J,I/J)T + + l' _ BJ,M[(DI/J,I/J)T1 

- l' + BJ,MTCDI/J,I/J)1', ) + !'.i.o(T,BJ, CI/J,I/J)MTCDI/J,I/J)T, - T1BJ, C I/J,I/J)M [C DI/J,I/J) Tj 

+ l' _ BJ,M [CDI/J,I/J) l' + - l' + BJ, (I/J,I/J)M[(DI/J,I/J)T _). 

Due to C 2. 3) the multi vectorial Cartan map is lineal and symmetric4 

OMpCI/J,I/J) = Mp(OI/J,I/J) = Mp(I/J,OI/J), 

(3.9) 

where 0 is an operator C differential or not) over the multivector space while 0 is its equivalent on the spinor space. Thus, 

MJ(DI/J,I/J)MTcl/J,l/J) = 16T3ECDI/J)I/JTT3TJT3EI/JI/JTT3TJ, 

equivalently, 

M JCI/J,DI/J)M [CI/J,I/J) = 16T3EI/JDI/JTT3 TJT3EI/JI/JTT3 1'[. 

Here, we will use the first expression that is equivalent to 

M J(DI/J,I/J)M T( I/J,I/J) = 4C I/JTT3 TJT3EI/J)( 41'3 E(DI/J)I/JTT3 Tn = 4BJ.) (I/J,I/J)M [(DI/J,I/J). 

It is possible in general to show that 

MJCDI/J,I/J)TuM[(I/J,I/J) = (I/JTT3TJTaTJ EI/J)MTcDI/J,I/J) =BJ,MT(DI/J,I/J). 

Using (3.10) and C3.9) we obtain for (3.3) 

!Bg (I/J,I/J)D a'.i.a(T + M;(I/J,I/J)T _ + l' _ M;(I/J,I/J)T + + T,M;(I/J,I/J)T, + 1'1 M;CI/J,I/J) TJ 
+ !'.i.o(T + MJ(DI/J,I/J)M[(I/J,I/J)l' _ + l' _ MJ(DI/J,I/J)M[(I/J,I/J)T + + 1', M J(DI/J,I/J)M [(I/J,I/J)T, 

+ TjMJ(DI/J,I/J)M [(I/J,I/J)1'1 ) + !'.i.o(T + MJ(DI/J,I/J)T1M [(I/J,I/J)T, + l' _ MJCDI/J,I/J)T1 MT(I/J,I/J)T j 

+ 1', MJCDI/J,I/J) 1'1 M[CI/J,I/J)T _ + Tj MJ(DI/J,I/J) 1'1 M[(I/J,I/J)T +) + (i/4)'.i.o(T,MJCDI/J,I/J)T2M[(I/J,I/J)T_ 

- TjMJCDI/J,I/J)T2M[(I/J,I/J)T + + l' _ MJ(DI/J,I/J)T2M[(I/J,I/J)T j - l' + MjCDI/J,I/J)T2MT(I/J,I/J)T j ) 

+ !'.i.o(T,MJ(DI/J,I/J)T3MTCI/J,I/J)T, - TjMJCDI/J,I/J)T3 M Tcl/J,I/J)T1 
+ l' _ MjC DI/J,I/J) 1'3 M [(I/J,I/J) l' + - l' + Mj(DI/J,I/J)TJM[(I/J,I/J)T _), 

which is equivalent to writing C3.3) in the form 

!BgCI/J,I/J)Da'.i.uCT + M;CI/J,I/J)l' _ + l' _ M;(I/J,I/J)T + + T,M;(I/J,I/J)T, + TjM;CI/J,I/J)T j ) 

+ !'.i.o [T,MJCDI/J,I/J) (1 + 1'3 )M[T, + 1', Mj(DI/J,I/J)(TI + iT2 )M[(I/J,I/J)T _ 

+ TjMj(DI/J,I/J)(l- 1'3 )M[(I/J,I/J)Tj + TjMJ(DI/J,I/J)(TI - iT2 )M[(I/J,I/J)T + 

+ l' _ MJ(DI/J,I/J)(TI + iT2 )M[(I/J,I/J)Tj + l' _ MJ(DI/J,I/J) (1 + 1'3 )M[(I/J,I/J)T + 

+ l' + MJ(DI/J,I/J)(T1 - iT2 )MT(I/J,I/J)T, + l' + Mj(DI/J,I/J)(1- TJ )M[(I/J,I/J)T _ ]. 

Here the indexes iJ,k must be cyclic. 

(3.10) 

(3.11 ) 

(3.12) 

Using the properties of the operator (T,± 1 ,Tf j ), the 
expression (3.12) can be written as 

!Bg(I/J,I/J)Du'.i.aT,± jM;CI/J,I/J)T,+ 1 

- !'.i.o(T,± jMjCDI/J,I/J)T,+ j )(T,± jM[(I/J,I/J)T,+ j) 
(3.13 ) 

To continue the transformation of C 3.3) we now use an 
expression for the B a C I/J, I/J' ). In a recent 7 paper we proved 
that the Ba CI/J,I/J') = B~ CI/J,I/J')up quatemion map can be 
obtained as 

in a shorter notation. Given that the multi vectorial map is 
linear and symmetric we can now write (3.13) as 

!Bg(I/J,I/J)Da'.i.uT,± jM;CI/J,I/J)T( j 

2505 

- ![D'.i.o (T,± 1 Mj(I/J,I/J) 1',+ 1 )(T1± jMT(I/J,I/J)T1+ I)]' 
(3.14 ) 
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Ba CI/J,I/J') = - !(T,M?;CI/J,I/J')T, + TjM?;CI/J,I/J')T j 

+ T + M?;CI/J,I/J')T _ + l' _ M?;CI/J,I/J')l' + ), 

where B~CI/J,I/J') = I/JTifrsEI/J'; thus, this method projects 
the quatemion subalgebra of Ma C I/J,I/J')E'G' (1,3) as basis 
space C space-time symmetry) for the SU C 2) gauge group as 
isotopic space [1' P are the SU C 2) generators]. Consequent­
ly, we can identify 
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Ba (,p,,p) = - !<7",± I M ~ (,p,,p)7"~ I)' 

then (3.14) changes to 

- Bg (,p,,p)D a~aBi (,p,,p) - (D~oBj (,p,,p»·Bd,p,,p). 

On the other hand, Da~aBi(,p,,p) is equivalent to 
- iDaSaFi' where sa is an irreducible representation (in 

fact, it is the spin-l Proca representation) for the proper 
Lorentz group 

s'~G 
0 

~} S' ~(~ 
0 

~;} 1 0 
o 1 0 i 

s,~( ~ 0 

~} s'~G 
-i 

~) 0 0 
-/ 0 0 

Moreover, for the quaternion Ba (,p,,p) the no null sub­
space is given by }} = i[ B J (,p,,p),B;( ,p,,p),B J( ,p,,p)]. In 
the same way the (D~oBj (,p,,p»' Bk (,p,,p) term is equiva­
lent to - (D}})' Fk • Consequently we can write the expres­
sion (3.14) of (3.3) as 

-Bg(,p,,p)DaSaFi + (D}})'Fk, (3.15) 

which contains the F; multi vector fields on a 'i: ( 1,3) space­
time symmetry as basis space (if we would have used the 
quaternion space-time basis these fields would have been 
vector fields). 

The transpose of the (3.2) left-hand side term is (3.15), 
its right-hand side term is 

- 7",± I [(iBg (,p,,p)/2)¢>P7"pMi(,p,'¢!) ]7"~ I 

which is equivalent to 

( - iB g (,p,,p)/2)7",± I [¢>P7" pMi (,p,'¢!) ] 7",+ I 

or 

(3.16 ) 

(i/2)B g (,p,,p)7",± I [tP;Mo (,p,'¢!) + iE;In"tPm M" (t/J,'¢!)] 7",+ I' 
(3.17 ) 

as far as the component tP° is always null, and Eim" is the 
antisymmetric tensor. 

The transpose of (3.17) is 

(i12)Bg (,p,,p)7",± I [tP;M[;(,p,'¢!) + iEkm"tPmM~(,p,'¢!) ]7",+ I 

or 

(i/2)Bg(,p,,p)tP;7",± lM[;(,p,'¢!)7"~ I 

+ iEkm"tPm7",± lM;.(,p,'¢!)7"~ J (3.18) 

using Ba (,p,'¢!) = -17",± I M ~ (,p,'¢!)7"~ I' we obtain 

Ji = - iB g (,p,,p) [Bo (,p''¢!)tPi + iEkm"tPm B" (,p,'¢!) ]. 
(3.19 ) 

From all the transformations above, Eq. (3.2) can be 
finally written as 

D aSaF; + i( (D}}) . Fkl B g (,p,,p» 

= Bo (,p''¢!)tPi + iEkmntPmBn (,p,,¢!), (3.20) 

which is the equation that was studied by F. Reifier,4-6 ap­
plying it to electroweak interactions; we must remark that in 
our structure, the Ba (,p,X) map is the Ma (,p,X) projection 
in a quaternion space-time basis subalgebra of 'i: (1,3) as 
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sis space for the SU (2) gauge group used in an isotopic 
space. Here, (3.20) have been obtained changing the repre­
sentation of the differential operator (in order to go from 
spin 1/2 to spin 1 functions of the proper Lorentz group), 
the new components are a rearrangement of the old ones. 
This definition of a new basis in the differential operator 
produces the projection of B,( ,p,1/1) into F,{ 1/1,1/1) in a subal­
gebra of the quaternion algebra [which is a subalgebra of 
'i: (1,3)] only for the left-hand side term of (3.20» (right­
hand side does not have differential operators and, conse­
quently, it is written in all the quaternion algebra). 

IV. DISCUSSION 

(i) The extended Cartan map given in (2.3) 

M'P(,p,,p') = ,pTra( Ap,p'*) = ,pTraJ.pE,p' 

does not change when we transform the minimum ideals of 
~ (1,3), ,p and X (spinors, elements of C 4

) using infinitesi­
mal gauge rotations only if Hili = - wTE and 
raJ.po;w;T = o;w;TraJ.p (Wi is a gauge group generator and 
0i is its associated phase). In particular the B 'P (,p,,p') qua­
ternion map projected from the M'P ( ,p,,p') map satisfies the 
previous conditions when the SU(2) gauge group is used. 

The (2.3) map over the minimum ideals ,p,X is invariant 
under the Lorentz transformations if r~praJ.pE 
= - raJ.pEY ap with a,/3 = 0,1,2,3 ( raP is the multivector 

representation of the generators of the proper Lorentz 
group); besides, the CPT operator applied on the X,,p mini­
mum ideals transforms the extended Cartan map as 

M'P(CPT ,p(x,t),CPT X(x,t» 

= e- 11TM'P [,pC - x, - t),X( - x, - t)]. (4.1) 

Finally, we must remark that the multivector map 
M p ( ,p,X) [or the extended Cartan map M'P ( ,p,X)] is de­
fined over two Hilbert spaces given by the X and ,p minimum 
ideals that in this case correspond to Dirac solutions of a 
Dirac equation. 

(ii) The projection method used here to obtain the 
Ba (,p,,p') quaternion map from the Ma (,p,,p,') map shows 
that the quaternion projection of Ba (,p,,p') is in itself. The 
physical content of a Lagrangian that is a function of quater­
nion fields does not change with (quaternion) operations 
that preserve the algebra. This automorphism was studied 
by Birkhoff, von Newman,16 and Finkelstein l7

•
18 in their 

quaternionic quantum mechanics (QQM). Our structure is 
different than these works because their gauge transforma­
tion is presented as a particular case of a quaternion subalge­
bra projection [in general we projected ~ (1,3) to quater­
nions but it is always possible a quaternion-quaternion 
projection]. Moreover, we can include different physical si­
tuations in the same logical structure. On the other hand, in 
QQM the physical fields are considered as the components 
of the quaternionic fields. Here, we consider them as a 
Ma (,p,,p) multivector. (A gauge transformation in QQM 
rotate the physical fields of particles among themselves 
while in the second interpretation the multivector fields are 
transformed into themselves.) 19 As yet, the QQM cannot 
clearly originate a supersymmetric theory of fermionic and 
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bosonic fields. 
(iii) In a recent paperlS we showed that the Clifford 

product for Bj ( ,p,X) quaternion maps satisfies the following 
structure: 

BJ(,p,X)Bdx',,p') = C~FB~(,p,,p')BQ(X"X)' 

with CJKPQ = g'Pgl'Q + g'Qgl'P _ g'K~ _ ;cKPQ, whereg'K 
is the Lorentz's metric tensor; cKPQ is the full antisymmetric 
permutation tensor; ,p,,p', X, x'eC 4 are left minimum ideals 
of 'if (1,3). 

If,p = ,p' = X = X' and we use only the no null subspace, 
we obtain 

;Bg(,p,,p) = (F;xFj·Fk )/)., where). = IIF;II; iJ,k cyclic. 
(4.2) 

( 0) C) Hx - iEx Jx 
'" ~ H, - iE, • <I> ~ J, • and 

Hz -IEz Jz 

{ ( 0 
-1 0 

-v(-! 
0 -1 

. -1 0 0 0 0 
a' = 1, ~ 0 0 0 0 

0 i -; 0 

studied by Moses20 (see references therein). When we have 
two polarized electromagnetic waves in the Z direction (for 
F 1 ; Ey =Hx =0 and Ex =Hy while for F2 ; Hx = -Ey 
andEx = Hy = 0), this construction reminds us of that hav­
ing its origin in the photon neutrino duality, the old idea to 
construct photons from neutral massless Dirac fields (usual­
ly called neutrino pairs). 21 

(iv) The structure presented in this paper can be used to 
construct the Lagrangians. In general it is possible to find 
out all the combinations that do not change when we apply 
the multi vectorial Cartan map and use them to construct a 
Lagrangian with the Noether currents and dynamical equa­
tions wanted. This Lagrangian could include multi vector 
fields that are given by the gauge group algebra on the 
'if (1,3) space-time group. 

As a matter of fact, we can construct a Lagrangian using 
M a ( ,p,X) multi vector map [for example with SU (2) gauge 
group as isotopic symmetry]; then, if wanted, we could pro­
ject it into its quaternion subalgebra giving the Ba (,p,X) qua­
tern ion map. This allows the QQM with an additional con­
cept: the spontaneous symmetry breaking on the spacetime 
symmetry, similar to the well known Higgs mechanism on 
the isotopic space for the QQM. 19 

(v) When we proposed Eq. (2.2) we used the 
rr = (O,O,O,m) value to reproduce the electron Dirac equa­
tion, now if we assign a different value (following Reifler's 
analysis4-6) 4Ja = (O,m',O,O); then (2.2) changes to 

PU7a ;=m';, pa7a1J = -m'rj, (4.4) 

where ,p = (~) is the spinor associated to the new 4Ja. For 
m' -+ 0, the ( 4.4 ) system corresponds to a particle that will be 
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This expression has nine degrees of freedom and gives the ,p 
structure, using its bilineal forms [The Ma (,p,,p) map from 
C 4 XC 4 to 'if (1,3) is fourfold covering over Ba(,p,,p) for 
each isotopic direction with ten non-null extended Cartan 
maps.7 

] On the other hand, if we use a chiral representation 
for the 'if (1,3) multivectors and assign a particUlar value to 
its minimum ideal,p (spinor)2,9 such that represents a parti­
cle without Dirac mass, the ~ (i = 1,2 becauseF3 =0) fields 
are the same as those that represent the electromagnetic field 
written in a quaternion algebra: 

1 3 . a - -:- I a' -. ,p = 477<1> 
I j=O ax} 

with 

)( 0 

0 0 

-m· i 0 0 -i 

~ -~ 
0 

(4.3) 

0 0 

called neutrino. 
Consequently a chosen set 4Jf3 gives elements to associate 

it with an elementary particle, as follows we will use 
~ = 4Jf3 / m = (0,0,0,1) for the neutrino (it is not possible in 
this initial scheme to reflect the differences between fam­
ilies). As the ~ satisfy the SU(2) algebra when we assign a 
~ value to an elementary particle we are giving it a particu­
lar isotopic direction in the SU (2) gauge space; this is a way 
to assign mass alternative to the usual Higgs mechanism 
(then it is always necessary that 4Jo = 0). 

(iv) To study particle interactions we may, as usual, 
write the differential cross section, in the symbolic form 9 

(4.5) 

where M is the invariant amplitude that contains the signifi­
cant physical information and is giving by the Feynman 
rules associated to the interaction diagram, dQ is the Lor­
entz invariant phase space factor, and Fis the incident flux in 
the laboratory. In the following analysis we will only use M 
because the physics resides in it. 

In perturbation theory, in its lowest-order Feynman 
diagram with scalar propagators, the Feynman rules for the 
invariant amplitude M associated with a particular interac­
tion between elementary particles gives the following expres­
sion: 

(4.6) 
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B o 

A 

for the interaction diagram 

JP,(I) = ieue 1'!(1- yw)uA, 

J~2) = ieuDrv!( 1 - rsW)uB , 

g; is the Lorentz tensor metric, 

with u i as the Dirac bispinor associated to the i fermion. The 
W factor is null if the interaction is vectorial (QED) and one 
when there are vector and axial currents in the theory 
(electroweak interaction). Finally g;/ (p2 - m~) is the sca­
lar propagator with p the moment and m", the mass that is 
null if W = 0. This particular case relates the multivector 
Cartan map with interaction diagrams in QED and 
electroweak process. 

Using the multivector Cartan map, we propose the fol­
lowing expression for M under the previous conditions: 

2 

iM = ~ (1 + irs sen OAe ){1'1± j Mo (tP~ '¢e )1'~ I)V 
2 

X ~ (1 + irs sen 0 BD ) 
p2_m2 

X (1'1± j Mo (tP'n,¢D )1'~ I)' (4.7) 

In this expression the transition current associated to the A 
and B particles is obtained as the quaternion projection of 
the multivector map Mo (tP~ '¢B) written in two Hilbert 
spaces (given by the left minimum ideals associated to the A 
and B elementary particles) for different space-time posi­
tions. (We must remark that the multivector map does not 
have isotopic direction because in any of them the transition 

where sen 0du = 1, thinking that p2 < < < m2 and p2 

< < < m,2 (4.28) predicts sen Osu = 1 and m = ~tan Oem' 
=0.4837m'. 

In the previous paragraph we followed a particular in­
terpretation. On the contrary, it is possible to assume other 
ways, for example, we could have defined the ~ k quatemions 
associated to elementary particles elements (leptons and 
quarks) using particular invariant amplitudes [perhaps they 
would be different to (4.27)] and an m'/m relation fixed. 
Thus, we could have obtained a Cabibbo angle that was com­
pared with the experimental value. However, this procedure 

2508 J, Math. Phys" Vol. 31, No.1 0, October 1990 

current cannot be developed in a quatemion subalgebra.) 
Finally 0 AB is the angle produced by the ~k (A) and ~k (B) 
isotopic directions. We will assume as follows that ~k will be 
additive and will conserve during an interaction. Thus, 4>k 
can be interpreted as a tag that let us express the usual con­
servative quantum numbers; baryon numbers, lepton num­
ber, and electric charge, in several ways for each particle 
(there is not an only way to assign them for a particle). We 
can construct a method to give mass for the gauge bosons. As 
the ~k numbers are additive which are conserved for each 
Feynman vertex, it is possible to get a ~k value associated 
with gauge bosons. The gauge bosons mass could be defined 
as a function of its II~k II. (Using this method, the model 
predicts the photon and gluon null mass and for W + , 

W -;Z the no null mass.) 
For QED sen OAC = sen OBD = ° and mr = 0; then 

(4.27) with W = ° is equivalent to (4.26). If we use 
sen OAC = sen OBD = 1 and m",#O in (4.27). (w = 1), we 
get the common invariant amplitude M for the electroweak 
process. In a general electroweak process (for example 
e - + W + --+ v, U --+ W + + d and c --+ W + + s) the 
~k (W +) associa.ted is given by ~k (W +) = (0,1,0, - 1). 
Thus, it is possible to obtain additional conditions over the 
~k associated to elementary particles as a normalization re­
striction but we prefer to derive them from experimental 
facts, opposite to the Reifler and Morris work,4-6 because 
only the ~k quaternions for elementary particles produced 
for physical experiments can give us significant information. 
Then the (4.27) invariant amplitude extended for C 8 mini­
mum ideals in a SU (3) gauge symmetry is the only one 
which can explain the QCD model clearly. 

Finally, to find out that a particular process like 
K + -jt + + vI' and 11'+ --+jt + + vI' does not explain with 
only one particular family, we proposed a state rotation 
between d and s quarks in a 0 e Cabibbo angle. The relation of 
invariant amplitude for the f3 strange decay (s--+ u + e + v) 
and the f3 decay (d--+u + e + v) is defined as the tan Oe' 
assuming (4.27) as true: 

(4.8) 

cannot explain clearly the large quantity of suppositions in­
cluded and it is contrary to our ideas. In the Reifler and 
Morris6 vector model for electroweak interactions the ¢k 
quaternions (called Higgs in their papers) are given accord­
ing to the conserved numbers (electric charge, baryon num­
ber, and lepton number) definitions. Moreover, a Lagran­
gian (which has the common N oether currents and the usual 
movement Dirac equation) and an arbitrary transition ma­
trix (in our structure the invariant amplitude is given in 
function of the multivector Cartan map in a very simple con­
struction) allowing to obtain additional condition for these 
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~k quatemions. Obviously our structure is more general 
than this one. [It is always possible to project the quatemion 
subalgebra of 'It (1,3) for an extended Cartan map with 
SU(2) gauge group and reduce the arbitrary suppositions 
involved in the model. ] 

(vi) The differential operator written in (2.2) [which 
produced the (2.8) multivector equation and its (3.20) pro­
jection] can be given by 

(4.9) 

where v~ (3 = O,k are directly observable Yang-Mills po­
tentials. Equation (4.9) is a covariant derivative if 1f3 are Lie 
group generators. 

Taking the SU(2) particular case of (4.29) e and eo are 
the absolute values of electric and neutral charges and this 
expression must be equivalent to the usual Weinberg-Salam 
covariant derivative 

(4.10) 

where g and go are the coupling coefficients, w~ are the 
Yang-Mills potentials in the Weinberg-Salam model (no 
directly observable). 

The SU (2) generators 1 f3 and 1 'f3 are in different repre­
sentations and the Weinberg-Salam angle will give their re­
lation. Thus if 13 = - I; - t ~ and to = - 31; + 1 ~, 

eV~(t; + 1 ~) + eo Vg(313 - I~) = gW~t3' + go wgt~, 

due to 

w~ = vg cos Ow + V~ sen 0"" 

wg = - vg sen Ow + v~ cos Ow' 

Then 

tan Ow = ! cot Ow = go/g, 

sen2 Ow =!, and eo = e tan Oil" 

which are close to the experimental values.8
,9 

(vii) The final comment is about the objections one 
could make against using multi vectorial fields to describe 
fermionic and bosonic particles since the properties of the 
system are not apparent, but there are several ways to solve 
this problem. 

Witten22 has shown that there is a way around this 
problem. The idea was to add an abnormal term I to the 
SU (3) nonlinear (J"- model Lagrangian L = const 
XSd "U a" U *d 4x such that exp iI( U) produces a factor 
- 1 in the quantum mechanical action when U(x,t) repre­

sents a soliton that is rotated by an angle 21T when the time 1 
goes from - 00 to 00. Thus, it is possible to expect that a 
Lagrangian with multi vectorial fields can be quantized in a 
desired form adding abnormal terms as in the Witten proce­
dure. 

On the other hand, Bacry and Boon23 proposed a boson 
algebra and a symplectic Clifford algebra structure on 2n 
vector spaces where the canonical basis made of isotropic 
vectors, say {a, a2 , ... ,a l1 , at, at , ... , al1+} (n creation opera­
tors and n destruction operators) is its generator basis, This 
form is useful if we can introduce the statistics of physical 
fields and its canonical quantization because for a simple 
case,8 
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f 
d3k 

¢(x,t) = [(21T)32w
k

] 1/2 

X [a(k)i(ik'X - Wk'> + a + (k)e - i(k'x - Wkt)], 

.(4.11 ) 

where the statistics for the physical field <I>(x,t) is given by 
the commutation relations of the a(k) and a + (k) opera­
tors. When <I>(x,t) is a multivector field the operator a(k) 
and a + (k) are also multivectors of the same Clifford alge­
bra (symmetric or symplectic) which can be chosen. 

v. CONCLUSIONS 

We have shown the general procedure to obtain dynam­
ical equations where the field representing the particle is a 
mulfivector, using the multivectorial generalization of the 
Cartan map in 'It (1,3) space-time Clifford group and any 
Lie gauge group in an isotopic space. The algebraic proper­
ties of this map and the generalized Fierz identities were 
applied to obtain a multivectorial Dirac equation. This mul­
tivectorial field can be defined on any manifold (with or 
without spin structure). In the Dirac case, it represents a 
fermionic field. 

We obtained, as a particular case, the quatemion projec­
tion of the multi vectorial Dirac equation with SU(2) Lie 
gauge group in the isotopic space which was related to a well­
known equation for electroweak interactions. 5 The multi­
vectorial structure of this equation and some properties and 
limitations (for example, the origin of the Proca representa­
tion for the differential operator basis) were shown. 

Finally, we presented among others, the following re­
markable relations in some models of quantum field theory. 

(1) The transformation properties of the multivectorial 
Cartan map for gauge groups, Lorentz group, and CPT op­
erator applied over minimum ideals (interpreted as spinor 
spaces). 

(2) The relation of the quatemion projection method 
with gauge transformation in quatemionic quantum me­
chanics. I6-19 

(3) The photon-neutrino duality. 
(4) Some experimental facts in elementary particles in­

teractions using multi vectorial Cartan map properties (Ca­
bibbo and Weinberg-Salam angles, gauge boson masses for 
the first and second quarks families, etc.). 

(5) The boson and fermion Clifford algebras. 
Thus, our structure is more general than the earlier one 

reducing its arbitrary assumptions. 
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A systematic approach to the derivation of exact nondispersive packet solutions to equations 
modeling relativistic massive particles is introduced. It is based on a novel bidirectional 
representation used to synthesize localized Brittingham-like solutions to the wave and 
Maxwell's equations. The theory is applied first to the Klein-Gordon equation; the resulting 
nondispersive solutions can be used as de Broglie wave packets representing localized massive 
scalar particles. The resemblance of such solutions to previously reported nondispersive wave 
packets is discussed and certain subtle aspects of the latter, especially those arising in 
connection to the correct choice of dispersion relationships and the definition of group 
velocity, are clarified. The results obtained for the Klein-Gordon equation are also used to 
provide nondispersive solutions to the Dirac equation which models spin 1/2 massive 
fermions. 

I. INTRODUCTION 

A large body of work has been inspired recently by Brit­
tingham's focus wave mode (FWM) solutions I to Max­
well's equations. Such solutions are built up of a Gaussian 
envelope, traveling in one direction, multiplied by a plane 
wave traveling in the opposite direction. The FWMs have 
the appealing features that they undergo only local varia­
tions, they do not spread out as they propagate in free space, 
and they travel with the speed of light in straight lines. The 
vector FWMs were derived by Brittingham I in a heuristic 
way. More motivated derivations were carried out by Sez­
giner,2 Belanger,3 and Ziolkowski4 who obtained FWM so­
lutions to the scalar wave equation and used them as Hert­
zian potentials to determine the corresponding vector 
solutions to Maxwell's equations. Although the FWMs have 
an infinite total energy content, they still have a finite energy 
density, a property they share with sinusoidal plane-wave 
solutions. 

The popular use of plane waves to represent moving 
particles defies our intuitive notion of particles as localized 
solutions to field equations. Other, localized solutions, e.g., 
Gaussian pulses, tend to spread out as they propagate in free 
space. In contradistinction, the FWM solutions have the at­
tractive property of staying localized for all time; as a conse­
quence, they are more suitable for representing light parti­
cles (photons). The importance of this property is quite 
clear in view of the fact that particle localization is the only 
phenomenon that links us to the microphysical world. For 
example, a track left by a particle in a cloud chamber or a dot 
left by a photon on a photographic plate are just manifesta­
tions of the localization of particles, a concept that has been 
undermined in the current interpretation of quantum me­
chanics. 

These ideas concerning particle localization are not 
completely new; they reflect a position that was advocated 
by Einstein and de Broglie,5,6 among others. In their view, a 
particle is perceived as a high concentration of a field gov­
erned by a partial differential equation, e.g., Maxwell's equa­
tions, the Klein-Gordon equation, etc. This highly concen­
trated field, or "bunch field," must remain localized and 
must not spread out as the particle travels in space-time. In 
this picture, the bunch field is incorporated in an extended 
wave field, thus combining the wave and the corpuscular 
aspects of matter. As in the case of massless particles, this 
interpretation of the wave-particle duality should be con­
trasted with Bohr's complementarity principle, whereby a 
particle manifests itself either in the form of a wave or in the 
form of a corpuscle, with both characters never being ob­
served simultaneously. 

If the idea of the bunch field is adopted, a representation 
of a particle in the form of a wave packet is one possibility. 
Until recently, however, it was believed that linear field 
equations cannot support continuous nonsingular wave 
packets that do not spread in free motion. (This is not the 
case for the massless FWMs and the massive nondispersive 
wave packets derived by MacKinnon. 7

,8 ) The other possi­
bility is to use a "singularity solution" for representing the 
physical reality of a localized particle. Such a singular solu­
tion to a linear field equation is an approximation to a more 
general solution of a corresponding nonlinear equation. The 
nonlinearity has a larger effect near the vicinity of the singu­
larity, where it keeps the field amplitude large but finite. One 
of the first attempts to incorporate such ideas was de Brog­
lie's in connection with his theory of the "double solution.,,9 
Other attempts include Madelung's hydrodynamical mod­
ellO and de Broglie's "pilot wave" theory,9 both of which 
inspired Bohm",12 to develop the idea of the quantum po-
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tential and to use it to give a causal interpretation of quan­
tum mechanics. A common feature of these theories is that 
the particle kinematics can be derived from the information 
incorporated in the phase of a quantum mechanical wave 
function IJI = IlJIlei

¢, where both IIJII and l/J are real and the 
velocity of the particle can be given as 

u = (1/m)Vl/J, (1) 

a relationship known as the "guidance formula."9 More re­
cent developments, along the same lines, include the intro­
duction of solitons into field theories,13 through the study of 
fields modeled by nonlinear equations, e.g., the cubic Schro­
dinger equation, the cubic Klein-Gordon equation, the sine­
Gordon equation, etc. A rather broad class of such equations 
has been proposed for modeling localized particles. It is not 
very clear, however, whether a unique set of equations could 
be agreed upon to represent massive particles. 

It is our purpose in this exposition to investigate the 
possibility of using Brittingham-like linear structures to rep­
resent massive particles. There are two options that we 
would like to examine. The first one is to think of these non­
dispersive wave packets as classical billiard-like solutions. In 
this case the velocity of the particle is the same as the velocity 
of the wave packet's envelope. The other choice is to follow 
de Broglie and consider such solutions as quantum mechani­
cal objects whose kinematics can be derived from their 
phases as in Eq. (1). Since the original FWMs are solutions 
to the scalar wave equation or Maxwell's equations, they 
represent massless particles and their envelopes travel in free 
space with the speed oflight. In the case of a massive particle, 
one should find for the Klein-Gordon equation or the Dirac 
equation solutions analogous to the FWMs, but with their 
envelopes traveling at some group velocity Vg smaller than 
the speed oflight c. A previous attempt l4 was made to find 
localized solutions to the Klein-Gordon equation. These so­
lutions were approximate, with an envelope moving at a 
group velocity Vg very close to the speed of light c, or exact 
ones with an envelope traveling at the speed of light, a fea­
ture that makes them physically unattractive. A Brit­
tingham-like solution to the massive Dirac equation has nev­
er been published before. However, Brittingham-like 
solutions to the massless Dirac equation and the spinor wave 
equation have been derived by Hillion. 15,16 Again, all these 
solutions have dealt with massless fields and, consequently, 
they have envelopes that move in straight lines with the 
speed oflight. It is our aim in this paper to introduce a meth­
od for obtaining Brittingham-like solutions to massive fields, 
in particular, the massive scalar field modeled by the Klein­
Gordon equation and the massive spinor field modeled by 
the Dirac equation. The work is based on an embedding 
technique that has been utilized to derive a natural basis for 
the synthesis of Brittingham-like solutions. This novel basis 
has been termed the bidirectional representation 17 because it 
is a superposition of elementary solutions built up of a prod­
uct of two plane waves, one traveling to the left and the other 
to the right. Our plan is to give a brief introduction to the 
bidirectional representation in the next section and use it to 
derive the scalar FWMs. This method will be applied to the 
Klein-Gordon equation in Sec. III, where solutions analo-
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gous to the FWMs, but moving with a group velocity v g' will 
be derived. It will be shown that a special case of such solu­
tions is the nondispersive wave packet derived by MacKin­
non. 7

,8 A comparison of MacKinnon'S work to ours will be 
carried out in Sec. IV. Nondispersive localized solutions to 
the Dirac equation will be derived in Sec. V and a general 
discussion of the results will be given in Sec. VI. 

II. THE BIDIRECTIONAL REPRESENTATION 

The bidirectional representation 17 was originally devel­
oped in order to provide a natural basis for synthesizing Brit­
tingham-like solutions. In this section, we shall outline the 
salient features of this technique and use it to derive the sca­
larFWMs. 

Consider the general equation 

[a;+fi(-/V)]IJI(r,t) =0, rER\ t>O, (2) 

A 

where fi( - IV) is a positive, self-adjoint, possibly pseudo-
differential operator, which can be decomposed as follows: 

fie -IV) =A( -iaz ) + [fie -IV) -A( -iaz )] 

=A( -iaz ) +B( -/Vn-iaz )' (3) 
A 

Ihe manner in which the operators A ( - iaz ) and 
B( -/Vn -/Vzlarechosenprovidesagreatdealofflexibil­
ity;lhe operator A ( - iaz ) mayor may not be a natural part 
of fi ( - IV) and the choice of the preferred variable z is 
arbitrary. A splitting of the type given in (3) changes Eq. 
(2) to the form 

a ~IJI (r,t) 
+A( -iaz)lJI(r,t) +B( -/Vn-iaz)lJI(r,t) =0. 

(4) 

We introduce, next, the Fourier transform with respect to 
the transverse (with respect toz) variables, viz., 

1 1 - . lJI(r,t) = -- dK 1/1(K,z,t)e- n(.p. 

(21T)2 R 2 

The spectrum ip(K,Z,t) is governed by the equation 

a;ip(K,z,t) + A( - iaz)ip(K,Z,t) 

+ B( - K, - iaz )ip(K,Z,t) = O. 

In terms of new variables 

; = z - t sgn(a)a - IA I12(a), 

1] = z + t sgn({3){3 - IA I12({3) , 

an elementary solution to Eq. (6) is given by 

1/1. (z,t,{3,a) = e - ia{;({J,a)e + i{3Tf({3,a) , 

provided that the following constraint is satisfied: 

- [A(a) + A({3) + 2 sgn(a)A I12(a) sgn({3)A I12({3) 

(5) 

(6) 

(7a) 

(7b) 

(8) 

- A({3 - a)] + B(K,({3 - a» =K(a,{3,K) = O. (9) 

The elementary solution given in Eq. (8) consists of a prod­
uct of two plane waves traveling in opposite directions, with 
wave-number-dependent phase speeds equal to 
sgn(a)a-IA I12(a) and sgn({3){3 -IA 1/2({3), respectively. 
A general solution to Eq. (2) can be constructed from the 
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elementary solutions of the type given in (8) by a linear 
superposition; specifically, 

'I'(r,t)=_l_{ dKeiIC'pl dal d{3C(a,{3,K) 
(21T)2 JR' JR' JR' 
X e + ia~( a,z,/) e - if3.,,(f3,z,t) 8 [K (a,{3,K) ] . ( 10) 

A detailed analysis of this representation and its relation to a 
Fourier superposition can be found in Ref. 17, where it was 
applied to various classes of equations, e.g., the 3-D scalar 
wave equation, the 3-D Klein-Gordon equation, and the 
telegraph equation. As mentioned earlier, the resulting solu­
tions had envelopes moving with the speed oflight, a proper­
ty we would like to avoid in the next section. 

As an example, we shall apply the bidirectional repre­
sentation to the 3-D scalar wave equation, viz., 

a ~'I' (r,1) - c2V2'1'(r,1) = 0, (11) 

where fi( - IV) is now defined as 

fi( - IV) = - C
2V2

• (12) 
A- A-

We can choose the A ( - iaz ) and B( - IV T' - iaz ) opera-
tors as follows: 

A-. 2 2 
A(-Iaz )= -ca z , (l3a) 

( 13b) 

This decomposition results in the characteristic variables 

;=z-ct and 1/=z+ct, (14) 

and the constraint relationship 

K(a,{3,K) == - 4a{3 + Jf2 = o. (15) 

Specializing the representation given in Eq. (10), an azi­
muthally symmetric solution to the scalar wave equation can 
be written explicitly as 

'I' (r,t) 

= _1_ roo dK KJo (Kp) roo d{3 I'" da 8(a{3 _ ~) 
(21T)2 Jo Jo Jo 4 

x C(a,{3,K)e - ia(z - er)eif3(z + er) (16) 

or 

1 loo lao K 'I'(r,t) =-- dK d{3-Jo(Kp) 
(21T)2 0 a {3 

XC(~ {3K)e-iK2/4f3eif3" (17) 4{3 , , , 

upon carrying out the integration over a in Eq. (16), 

Let us choose the spectrum 

C(~/4{3,{3,K) = ([ii/2)ue - a'(f3- f3')'e - Q,h4f3. (18) 

Carrying out the integration over K and {3 in Eq. (17) and 
taking the limit as U--+ 00, we obtain the zeroth order FWM 
solution; 17 specifically, 

'I'(r,f) = [41T(a
l 

+i;)] -le -f3'p'/(U,+i!;)ei{3'". (19) 

It has been demonstrated by the authors 17 that for very 
small values of a I this function behaves like a localized pulse 
that moves in the positive z direction with speed c. Since a I is 
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not dimensionless, we can use the more stringent condition 
{3 'a I < 1. A good estimate of the waist of such a pulse 
is (a l /{3')1/2; as a consequence, the condition 
(a l /{3') 112 < lI{3' has to be satisfied. If{3' is assumed to be a 
characteristic wave number, with a corresponding wave­
length A. = 21T/{3', the condition given earlier becomes 
(a l /{3') 112 <A., and for 'I'(r,t) to represent a localized light 
pulse, its waist must be much less than the characteristic 
wavelength of an extended wave structure associated with it. 
If, on the other hand, {3'a l > 1, the plane-wave term 
expU{31/) takes over and 'I'(r,1) degenerates into a nonloca­
lized sinusoidal function traveling in the negative z direction. 

Solutions such as the one in Eq. (19) can be very inter­
esting when it comes to modeling the microphysical world; 
they are characterized, however, by infinite total energies. A 
superposition of FWMs, suggested by Ziolkowski,4 yields 
finite energy, highly localized pulses of unusual decay pat­
terns. These slow energy decay patterns have been con­
firmed experimentally,18 and it has been shown that specific 
pulses, e.g., the modified power spectrum (MPS) pulse, 19 

hold together for longer distances than Gaussian pulses. 

III. THE KLEIN-GORDON EQUATION 

In this section, we shall apply the bidirectional represen­
tation to the 3-D Klein-Gordon equation given by 

a ;'I'(r,t) - c2V2'1' (r,t) + ,u2c2'1' (r,t) = 0, (20) 

where,u = rna C/Ii, rno being the rest mass and Ii is Planck's 
constant divided by 21T. A comparison of this equation with 
( 2) shows that 

(21 ) 

In our previous work 14 the operator fi ( - IV) was split 
as follows: 

fi( -IV) =A( - iaz ) + B( -/Vn - iaz )' 

A(-iaz )= _c2a;, 
B( - IV n - iaz ) = - C2V~ + ,u2

C
2

• 

This decomposition led to the characteristic variables 

(22) 

(23a) 

(23b) 

; = z - ct, 1/ = z + ct, (24 ) 

and, upon superposition, to a wave packet with an envelope 
moving with the speed oflight, exactly as in the case of mass­
less particles. 

In the following, we propose to split the operator 
fi( - IV) in a more physical way so that we can obtain enve­
lopes that move with a group velocity smaller than c; specifi­
cally, 

fi( -IV) =A( -iaz ) +B( -/Vp-iaz )' (25) 

A( -iaz ) = _c2a; +,u2
C

2
, (26a) 

B( -/V p - iaz ) = - C2V~, (26b) 

This choice of the operators A and B gives rise to the charac­
teristic variables 

; = z - cf [sgn(a)/a] (a2 + ,u2) 112, 

TJ = Z + ct [sgn({3)/{3 ] ({3 2 + ,u2) 112, 

and the constraint relationship 
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K(a,{3,K) = K- - [J.l2 + 2a{3 + 2 sgn(a) (a2 + J.l2) 1/2 

xsgn({3)({32 + J.l2) 112] = O. (28) 

Following the recipe given in Sec. II, a general solution 
to Eq. (20) can be written as follows: 

'II(r,f) =_1_ ( dKe-i"'P ( da ( d{3 
(21T)2JR 2 JRl JR' 

x C(a,{3,K)8[K(a,{3,K) 1 

xexp[ - ia(z - cf sgn(a) (a2 + J.l2) 112/a)] 

X exp [i{3(z + Cf sgn({3) ({3 2 + J.l2) 112/{3)]. (29) 

Analogously to the FWMs, we choose the spectrum entering 
into (29) as 

C(a,{3,K) = C(a,K)8({3 - {3o)' (30) 

It follows, then, that 

'II (r,f) = G( p,z,f) 

X exp [i{3o(z + cf sgn({3o )({3 ~ + J.l2) 112/{30)]' 
(31) 

where 

G(p,z,f) 

xexp[ia(z - Cf sgn(a)(a2 + J.l2) liZ/a)]. (32) 

We can find explicit FWM-like solutions to Eq. (20) by 
choosing a spectrum C(a,K) and carrying out the integra­
tions in Eq. (32). This is a very tedious task, however, espe­
cially when dealing with a complicated constraint relation­
ship such as the one given in Eq. (28). Alternatively, we can 
find the differential equation governing G(p,z,t) by substi­
tuting (31) into the 3-D Klein-Gordon equation. If this pro­
cedure is implemented, we obtain 

i2{3o (az - vg- la, )G(p,z,f) + (a; - c - 2a;) 

xG(p,z,f) + V~G(p,Z,f) = 0, 

where Vg is a group velocity given by 

Vg = c{3o/sgn({3o) ({3 ~ + J.l2) 1/2. 

(33) 

(34) 

It should be noted that v g can be derived by differentiating 
the angular frequency characterizing the left-going plane 
wave with respect to the wave number {3o. 

Motivated by the ansatz leading to the FWMs in the 
case of the scalar wave equation and by the existence of the 
convection term (az - vg- la, )G(p,z,f) in Eq. (33), we seek 
solutions of the form 

G(p,z,t) =G(p,7), 

7 = y(z - vgt), 

y = (1 _ v;/cz) - 112. 

(35a) 

(35b) 

(35c) 

Equation (33) becomes, then, a hyperbolized Schrodinger­
like equation, viz., 

i4{3oyar G(p,7) + a;G(p,7) + V~G(p,7) = O. (36) 

It is now clear that v g is the group velocity associated with a 
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classical billiard-like particle represented by the enveloped 
ofG(p,7). In our previous work, 14 we obtained solutions to 
(36) for y~ 1, or, equivalently, for Vg =c. To obtain an exact 
solution to Eq. (36), we express G(p,7) in the form 

G(p,7) =g(p,7)e-12f30yr. (37) 

A substitution of (37) into (36) results in the Helmholtz 
equation: 

V~g(p,7) + a;g(p,7) + 4{3~rg(p,7) = O. (38) 

The steps leading to (38) are interesting by themselves 
since they reduce the 3-D Klein-Gordon equation, which is 
hyperbolic, to a 3-D Helmholtz equation, which is elliptic. 
More importantly, however, a solution to Eq. (38) repre­
sents an envelope that travels with a velocity Vg and retains 
its shape for all time. As a consequence, a large class of exact 
nondispersive solutions to the 3-D Klein-Gordon equation 
can be derived from exact solutions to the Helmholtz equa­
tion. One possible solution can be expressed in terms of the 
spherical Bessel functions, viz., 

g(p,7) = j/ (2{3oyR)P,(,( 7/R)cos(m¢), 

where R = ~ pZ + r, j/ is the spherical Bessel function of 
order I and P'(' is the associated Legendre function. Now, 
exact solutions to the Klein-Gordon equation can be written 
as follows: 

'II/m(r,t) =j/(2{3oyR)P,(,(rlR) 

(39) 

For azimuthally symmetric solutions (m = 0), the ze­
roth order mode is given by 

'1100 (r,t) = jo (2{3o yR)e - i2f30 yr /(3011. (40) 

Its amplitude decreases as p - 1 in the transverse direction 
and as 7 - 1 in the direction of propagation. This is a property 
shared by all even modes (l = even integer). On the other 
hand, odd modes are more localized in the transverse direc­
tion. To see this, consider the first-order mode, viz., 

'1101 (r,f) =jl (2{3oyR)(rlR)e- i2{30YTei{3oTI. (41) 

Forlarge arguments,jl (z) =sin(z - 1T/2)/z; consequently, 
'1101 (r,t) decays asp-2 in the transverse direction, but still 
decays as 7- I in the z direction. These decay properties indi­
cate that the solutions given in Eq. (39) have infinite total 
energy content, a feature they share with plane-wave solu­
tions and Brittingham's FWMs. In analogy to the FWMs, 
localized slowly decaying solutions to the Klein-Gordon 
equation, with a finite energy content, can be synthesized as 
a superposition of the wave packets given in Eq. (39). 

As long as 'II(r,f) is treated as a classical field, the kine­
matics of a particle represented by it can be derived from the 
energy and the momentum densities of a Klein-Gordon 
field, viz., 

H(r,t) = c - 2a, 'II (r,t)a, '11* (r,t) 

+ V'll (r,f) . V 'I! * (r,f) 
+ ,u2'1!(r,f)'I!*(r,t), 

P(r,f) = -c- 2 [a,'I!(r,t)V'I!*(r,l) 

+ a,'I!* (r,f) V'I! (r,l) ]. 
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As mentioned earlier, solutions of infinite energy content, 
such as those given in Eq. (39), can be superimposed to 
obtain finite energy ones. In this case, the integration of 
H(r,f) and P(r,t) over all space will give the energy and the 
momentum of the particle represented by such solutions. 
Another possibility is to search for nondispersive bump solu­
tions of finite energy densities. For a solution of this kind the 
central portion of the field has a larger energy content and 
small oscillations compared to the tails. The relatively large 
oscillations ofthe tails cancel out on the average when such a 
field interacts with a large scale measuring instrument. 
Space will appear to be empty except for the large amplitude, 
oscillation-free central portion. In this case, the energy and 
the momentum of the particle can be calculated by integrat­
ing the energy and momentum densities over the central part 
of the field. A crude example of what we mean is the integra­
tion of the one-dimensional function sin (x) / x over all values 
of x from - 00 to + 00. This will give a value of 1T which is 
approximately equal to the area under the first lobe of the 
function between its first two zeroes. In an interaction of 
such a field with another bump field (e.g., the FWM pulse), 
the interaction will be very large when the central parts of 
both fields overlap; at the same time the tails will be averaged 
out. In such a case the large amplitude central portions of the 
fields are the only parts that really contribute to the interac­
tion and can be measured. An interaction theory is needed to 
provide a more rigorous and complete discussion of this pos­
sibility; the development of such a theory is out of the scope 
of this work. 

Solutions describing non dispersive wave packets are not 
restricted to the form given in Eq. (39); as mentioned ear­
lier, any solution to Eq. (36) will give a wave packet that will 
keep its form as it travels in free space. A special case of these 
solutions has been derived by MacKinnon,7,8 who demon­
strated that a de Broglie wave packet can be formed by as­
suming that the phase of a particle's internal vibration is 
independent of the choice of a reference frame. MacKin­
non's solution is almost identical to the '1'00 mode, especially 
when the terms in the exponent are rearranged so that 

(42) 

Because of the close resemblance of the two solutions, it is of 
interest to compare more closely the methods leading to 
them. This comparison will be carried out in the next sec­
tion, where the difference between the interpretations of the 
solution in (39) as a classical wave function and as a quan­
tum mechanical wave packet will be investigated. A discus­
sion will also be provided of the dispersion relationships in­
volved and their effect on the kinematics of a free particle 
represented by a wave packet such as the one in Eq. (42). 

Before we proceed to the next section, it is worthwhile to 
point out that the de Broglie relationship between the group 
velocity Vg of the envelope and the phase velocity vph of the 
associated plane wave (i.e., vph Vg = e2

) is embodied auto­
matically in Eq. (42) by simply imposing the requirement 
that 'I' (r,t) should be a nonsingular continuous wave packet 
that does not disperse with time. It is quite interesting that 
the localization requirement alone can lead to such a rela­
tionship, without any reference to an "internal clock" of the 
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particle, or the need for the assumption that the phase of the 
internal clock of the particle be equal to the phase of the 
associated wave, two concepts utilized by de Broglie to de­
rive the relationship vph Vg = e2 in his attempt to maintain 
the invariance of the relationship me2 = hv for all frames of 
reference, The particle-wave velocity equation Vph Vg = e2 

has been considered20 to be a generalization of the more 
limited velocity relation Vg = Vph = e2

, which is true for 
massless particles only. Moreover, it has been argued by 
MacGregor20 that the relationship Vph Vg = e2 should be 
taken as a basic postulate of special relativity, replacing the 
popular postulate that the speed oflight in free space has the 
value e in all inertial frames. 

IV. NON DISPERSIVE WAVE PACKETS AND 
DISPERSION RELATIONSHIPS 

The similarity between MacKinnon's solution and the 
'1'00 mode is very clear when we recall that 
jo (x) = sin(x)/x. In order to examine these two results 
more carefully, we first write MacKinnon's 3-D wave pack­
et8 as 

'l'M(r,t) = [sin(kR)/kR ]/[,u(ko)r-k,,zl, (43) 

where 

k = /1, (44) 

R = ~p2 + 'f(z - Ut)2. (45) 

The parameter ko was defined by MacKinnon in the case of 
the I-D solution 7 as 

ko = Y/1(u!c). (46) 

In the 3-D case, it is only correct up to a numerical factor of 

Ii, as will be shown later. The frequency OJ (ko ) entering into 
Eq. (43) was defined as 

OJ(k1 ) - OJ(ko ) = u(k1 - k o ), (47) 

with the provision that 

akoOJ(ko ) = u and a ~,OJ(ko) = o. (48) 

These conditions were claimed by MacKinnon to be neces­
sary for the wave packet to retain its form for all time. The 
velocity u of the particle is derived from the derivative of 
OJ(ko ) with respect to ko' However, the explicit dependence 
of OJ(ko ) on ko is not very obvious, and the adequacy of the 
definition given by (47) is questionable. 

Our aim in this section is to clarify these issues through a 
detailed analysis of the properties of the solutions given in 
Eqs, (42) and (43). The main difference between the two 
solutions is that '1'00 has been treated, until now, as a classi­
cal nondispersive wave packet with an envelope that moves 
with a velocity Vg defined in Eq. (34). This is not, however, a 
unique velocity as will be shown in this section. The wave 
function 'I'M' on the other hand, is considered to be a quan­
tum mechanical entity moving with a velocity u derived 
from a dispersion relationship as in Eq, (48). In order to 
compare the two wave functions, we will consider '1'00' for 
the rest of this section, to be a quantum mechanical wave 
packet. In this case, the group velocity Vg might not be con­
sistent with the fact that the kinematics of a particle should 
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be derived from its phase factor. To check such an inconsis­
tency we can refer to the particle's energy and momentum 
relationships. As stated earlier, the energy and the momen­
tum can be calculated by taking the derivatives of the phase 
of IIJ 00 with respect to time and space, respectively, viz., 

E = fUJ,¢" p = - fzV¢'. (49) 

Using 1IJ00(r,t) in Eq. (42) together with definition of Vg 
given by Eq. (34), we obtain the following expressions for 
the energy and the z component of the momentum: 

c2 [l + V~/C2] 
E= m (50a) 

[l - V~/c2] 112 0 [l - V~/c2] , 

Vg [l + ~/c2] 
p= m 

Z [I _ v;/c2 ] 112 0 [1 _ v;/c2 ] 
(SOb) 

These are incorrect expressions unless we use an apparent 
rest mass 

[l + v;/c2
] 

Mo = mo [1 _ V~/c2] , 
(51) 

which is identical to the "apparent mass" introduced by de 
Broglie9 in order to guarantee the consistency of the equa­
tions of motion of particles represented by such wave pack­
ets. The apparent mass is defined as 

(52a) 

(52b) 

The quantity f/; in Eq. (52b) is defined through the relation­
ship IIJ (r,t) = f/;[R (r,t) V(z,t). To arrive at the definition of 
Mo given in (52), one should take into account that 

R = ~p2 + y-(z - Vgt)2 and thatpo is related to Vg through 
Eq. (34), from which one has 
P6 = ,u2(V;/c2)/(1 - V~/C2). 

The redefinition ofthe mass M o' as given in (51), pro­
duces the expected energy and momentum relations. The 
results are physically unattractive, however, because of the 
dependence of Mo on vg • On the other hand, MacKinnon8 

has indicated that his solution cannot suffer from such a 
problem because, for If/;I = sin(f/;R)/f/;R, it follows that 
8mo = ,ufz/ c and the apparent mass reduces to 

Mo = .,fimo. (53) 

To overcome the difficulty associated with the solution 
1IJ00 (r,t) obtained by utilizing the bidirectional representa­
tion, we can start with the ansatz 

lIJ(r,t) = G(p,z,t)/Po(z+ <c'IU)/), (54) 

where, now, the particle velocity, designated by u, is left 
undefined. Substitution of (54) into Eq. (20) gives a gener­
alization of the partial differential Eq. (33), viz., 

i2Po (az - u ~ la/ )G(p,z,t) + (a; - c ~ 2a;)G(p,z,t) 

+ V}G(p,z,t) + (f36Y~ 2(C2/U 2) - ,u2)G(p,Z,t) = 0, 
(55) 

where 

Y= (1_u2/c2)~1/2. 
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Motivated by the convection term on the left-hand side of 
Eq. (55), we can choose 

G(p,z,t) =g(p,1")e~i2P()YT, 1"= y(z- ut), (56) 

which reduces (55) into a Helmholtz equation; specifically, 

V}g(p,1") + a;g(p,1") + X2g(p,1") = 0, (57a) 

(57b) 

A solution to the Klein-Gordon equation can be written 
now as follows: 

lIJ(r,t) = [sin(xR)/xR ] 

xexp[ iPo (1 + U 2/c2 )y-(Z - (c2/u)t)]. 
(58) 

It should be noted that X is identical to MacKinnon's k. The 
value of u = u (Po) can be deduced from the algebraic rela­
tionship (57b). Instead, we introduce the change of vari­
ables 

(59) 

which yields, upon substitution into Eq. (57b), the follow­
ing expression for the velocity: 

(60) 

In the case of MacKinnon's wave packet, u was treated as a 
parameter independent of ko. However, such an assumption 
does not make sense because the relationship pz = fzko for 
the momentum implies that pz depends on ko, and one ex­
pects the velocity to change as the momentum varies. 

The definition of ko given in (59) changes the wave 
packet into the form 

lIJ(r,t) = [sin(xR)!xR ]/("'<k()/~ koz), (61) 

where 

(62) 

An explicit dispersion relationship for (J)(ko) can be found 
by combining Eqs. (60) and (62); specifically, 

(J) (ko ) = ± c~ k ~ + X2 + ,u 2 
• ( 63 ) 

The positive and negative signs correspond to positive and 
negative energies, respectively. It is tempting to think of X 
and ko as transverse and longitudinal wave numbers, respec­
tively. This is not the case, however, and for the wave packet 
to represent a quantum mechanical particle moving in free 
space, we need to introduce the notion of an apparent mass 
M o , as defined in Eq. (52). It is straightforward to show that 
Mo = (X2 + ,u2) 1/2fz/C, and using Eq. (63) we arrive at the 
familiar energy momentum relationship 

(64) 

where we have made use of the relationships p = fzko and 
E = w(ko ). 

If we choose X =,u, the velocity relationship reduces to 

(65) 

which resembles the group velocity of a I-D wave packet 
with an apparent mass Mo = .,fi,ufz/c. Furthermore, using 
Eq. (65), an expression for ko can be easily derived, viz., 
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ko = JiYjl(ulc), (66) 

which is the correct definition of ko for the 3-D wave packet. 
It should be pointed out that the velocity expression 

given in Eq. (60) satisfies neither ( 47) nor the second provi­
sion in Eq. (48), i.e., the conditions claimed by MacKinnon 
as necessary for the construction of nondispersive wave 
packets. The similarity between the definitions of u and Vg 

should, also, be noted. Beside the factor ofv2, which appears 
in the apparent mass, i.e., jl2--+2jl2 = (Mo/fzc)2, the main 
difference between the expressions (34) and (65) is that f3 0 

is replaced by ko. The velocity u, on the other hand, leads to 
the correct kinematics only because the momentum and en­
ergy operators are specified as in Eq. (49). If these operators 
are defined differently, we need a velocity different from u to 
get the correct kinematics. 

It can be deduced from the comparison carried out in 
this section that the velocity u and the wave numbers f30 or 
ko enter as parameters that can be defined freely within the 
limits set up by the dispersion condition (57b). The transfor­
mation (59) was introduced in order to demonstrate that 
one can arrive at MacKinnon's solution as a special case for 
the choiceofu andf3o. It is very important to emphasize this 
freedom and to point out that different choices can lead to 
various kinematics depending on the manner in which the 
quantum mechanical operators are specified. 

v. THE DIRAC EQUATION 

The exposition given in Sec. II might give one the 
impression that the bidirectional representation is only ap­
plicable to second-order equations that are quadratic in the 
time derivative. This is not the case, since it can be applied to 
the Schrodinger equation as well as the Dirac equation. In 
this section, the de Broglie wave packet derived in the case of 
a scalar Klein-Gordon field will be used to find nondisper­
sive wave packets for the vector fields representing massive 
spin 1/2 fermions. Such particles are naturally represented 
by the Dirac equation. It is well known, however, that fer­
mions can be represented rather satisfactorily by a spinorial 
form of the Klein-Gordon equation.21 

We begin with the second-order equation: 

(ie-la, + a-V)(ic-Ia, - a-V)fjJ(r,t) = jl2fjJ(r,t), (67) 

where (J' are Pauli matrices, viz., 

and fjJ(r,t) is a two-component spinor. Making use of the 
properties of the Pauli matrices it can be shown that Eq. 
(67) can be reduced to the two-component spinorial Klein­
Gordon equation: 

(c- 2a;-V2)fjJ(r,t) +jl2fjJ(r,t) =0. (69) 

To find a nondispersive packet solution representing a 
massive spin 1/2 field, we can choose a solution to Eq. (69) 
similar to that given in Eq. (61); namely, 

(70) 
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This spinor field can be used to derive solutions to the Dirac 
equation: 

( YJl ~ + jl)1JI D (r,t) = 0, 
aXJl 

(71) 

The definitions of the gamma matrices entering into this 
equation are given in Ref. 21; IJI D (r,t) is a four-component 
spinor defined as follows: 

IJI (r,t) = [r(r,t) + fjJL(r,t)] . (72) 
D r(r,t) - fjJL(r,t) 

The two-component spinors fjJL(r,t) and fjJR(r,t) are related 
to fjJ(r,t) given in Eq. (70) as follows: 

fjJL(r,t) = fjJ(r,t), (73a) 

(73b) 

Carrying out the operations indicated in (73b), we find that 

~D(·.t) ~ [~J'''-Y'. 
where 

1/11 = fjJa {{ 1 + ~ }VI (xR)r (z ;Rut) 

+ ( 1 - :c - ~ Yo (XR ) } 

+ ifjJbVI (XR ) (x - iy) 
jlR 

1/12 = ifjJaVI (XR ) (x ::y) - fjJb {{ 1 - ~)X 

X· ( R)";l (z - ut) 
il X r jlR 

- (1 - ;: + ; Yo (XR)} , 

1/13 = fjJa {{ 1 + ~ )VI (xR)r (z ;Rut) 

X - (1 + ;: + ~ Yo (XR)} 

+ ifjJbV'<XR ) (x - iy) 
jlR 

1/14 = ifjJaV'<XR ) (x :R
iY

) - fjJb {{ 1 - ~)X 

X· ( R)";l (z- ut) 
il Xr jlR 

+ (1 + ;: - ~ Yo (XR)} . 
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The four independent solutions to the Dirac equation 
can be directly obtained from Eq. (74) using the negative 
and positive energy values of w (ko ), in addition to choosing 
tPa and tPb so that two independent solutions foqb(r,t) can be 
obtained, e.g., tPa = 0, tPb = 1 and tPa = 1, tPb = 0. These so­
lutions seem to be quite complicated; nevertheless, they rep­
resent a field peaked around the origin that travels in a 
straight line in free space and does not disperse for all time. 
Despite the complicated form of the solutions, still some 
physical results can be obtained. For example, the four inde­
pendent solutions given in Eqs. (74) are not eigenspinors of 
the helicity operator ~z defined as 

(75) 

Moreover, if we choose tPa = 1 and tPb = 0, the solution giv­
en in (74) is still not an eigenstate. Weare mainly interested, 
however, in the large amplitude portion of the field around 
the center of the pulse (x = O,y = O,z = ut). In this portion, 
jl (XR) =0, whilejo (XR) = 1. Therefore, the components of 
the spinor given in Eq. (74) can be approximated around the 
center of the pulse as 

"'I = 1 - willC - kolll, "'2 =0, 

"'3 = 1 + willc + kolll, "'4 =0, 

and II'D (r,t) becomes an eigenspinor of the helicity operator 
with an eigenvalue + 1. The same argument can be repeated 
for tPa = ° and tPb = 1 in order to obtain an eigenspinor with 
an eigenvalue equal to - 1. Similarly, we can get two inde­
pendent eigenspinors for negative energies with eigenvalues 
+ 1 and - 1. 

VI. CONCLUSIONS 

The bidirectional representation has been used to derive 
localized, nondispersive solutions to the Klein-Gordon 
equation by reducing it to a Helmholtz equation with its z 
coordinate replaced by the translational variable 
7' = y(z - ut). The ansatz leading to such a reduction allows 
one to derive systematically a large class of nondispersive 
wave packets, representing massive particles, by making use 
of the known solutions to the Helmholtz equation. In seek­
ing solutions of this type the particle-wave velocity relation­
ship vph Vg = c2 follows automatically from the sole require­
ment of particle localization. The importance of this result 
need not be emphasized. It is quite intriguing, however, that 
in order to derive a nondispersive localized solution to the 
Klein-Gordon equation we arrive at a relationship that 
guarantees the Lorentz invariance of the formula hv = mc2 

and which can be used to generalize the postulates of spectial 
relativity. 20 

A special case of the solutions derived in connection 
with the Klein-Gordon equation was MacKinnon's nondis­
persive wave packet. A comparison of this packet to our 
results helped in clarifying some of the subtleties in MacKin­
non's solution; his parameters k, ko are now well defined and 
an explicit form of the dispersion relationship w (ko ) has 
been derived. The derivative of w(ko ) with respect to ko 
gives an expression of the velocity which does not satisfy Eq. 
( 47); furthermore, w (ko ) is a nonlinear function of ko, thus 
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violating MacKinnon's condition a ~, w(ko ) = 0. The de­
pendence of the velocity on ko is expected if one recalls the 
momentum relationship pz = liko; as the momentum of the 
particle increases, one expects the group velocity of the wave 
packet representing the particle to increase also. 

It has been shown that the apparent mass introduced by 
de Broglie has to be used in order to obtain the correct energy 
and momentum describing the motion of massive particles. 
For the specific wave packet given in Eq. (58) the apparent 
mass has the value fie - I (X2 + 1l2

) 112. Choosing X to be pro­
portional to Il through a numerical factor independent of v g' 

it follows that Mo is proportional to the rest mass mo. On the 
other hand, if X is chosen to depend on v g' the apparent mass 
Mo depends on the velocity of the particle, a property which 
is not very attractive. 

The results obtained for the case of the scalar massive 
Klein-Gordon fields were extended to the spinor massive 
fields governed by the Dirac equation giving de Broglie non­
dispersive wave packets representing free massive fermions. 
This particular application demonstrates that bidirectional 
solutions can also be derived for field equations character­
ized by first-order time derivatives. Similar solutions can be 
obtained for the Schrodinger equation; however, we prefer to 
publish these results separately because of their relevance to 
an interesting class of nondispersive solutions to the Schro­
dinger equation introduced by Berry and Balazs. 22 

In summary, localized, nonsingular, and nondispersive 
solutions have been derived to linear equations governing 
the motion of massive particles; specifically, the Klein-Gor­
don equation and the Dirac equation. Unlike soliton solu­
tions to nonlinear equations, these are solutions to linear 
equations that can explain the localization properties of par­
ticles, at least in free motion. Ifll'(r,t) is treated as a quan­
tum mechanical wave packet, the kinematics of a particle 
represented by such a field are derived from its phase. On the 
other hand, if we consider lI'(r,1) to be a classical field, the 
kinematics are derived from the energy and momentum den­
sities. A linear superposition can be used to construct finite 
energy, slowly spreading wave packets. As a consequence, 
an integration over all space of the field's energy and mo­
mentum densities will give the particle's energy and momen­
tum. Another possibility is to derive nonsingular bump field 
solutions (not neccessarily of finite total energy content) of 
a large amplitude at the center and much smaller amplitudes 
but high oscillations at the tails. During an interaction these 
tails are averaged out and only the central portion of the field 
can be felt. The kinematics of a particle are, thus, related to 
the momentum and energy content of the central field. Such 
localized bump solutions are incorporated in an extended 
wave field. Using this property, we have been able to justify 
the wave-particle dualism.23 We have also been able to pro­
vide a novel interpretation of Young's double slit experi­
ment. 24 
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The reasons that lead to the use of only linear representations of Lie algebras in quantum 
theory seem to permit antilinear representations of superalgebras. Such corepresentations of 
Clifford algebras are investigated and shown to lead to a two-component Dirac equation. It is 
shown that there exists a one-component corepresentation of the supertranslation algebra, but 
that this cannot be induced to a corepresentation of the super-Poincare algebra. 

I. INTRODUCTION 

According to Wigner's theorem,l Appendix to Chap. 
20, the symmetries of quantum mechanics should be de­
scribed by unitary or antiunitary representations of the rel­
evant symmetry group G. Since the squares of both unitary 
and antiunitary operators are unitary, any element in a Lie 
group of the form exp (tX) = exp (YX) 2 must be represented 
by a unitary operator. This, in turn, means that the elements 
of the Lie algebra must be represented by linear operators. 
For superalgebras g = go Ell g 1 there does not appear to be 
any similar global constraint on the behavior of elements in 
gl' opening the possibility that they might be represented by 
antilinear (conjugate linear) operators. We shall continue to 
insist that go is to be represented linearly by self-adjoint op­
erators, and this imposes some constraints on the possibili­
ties. If XEgl is represented linearly, and YEgl is represented 
antilinearly then on general grounds the superalgebra 
bracket [X,y] must be represented antilinearly. However, 
since [X,y] is in go it must be represented linearly, forcing it 
to vanish. For simplicity we shall examine in detail the sim­
plest case in which the whole of gl is represented antilinear­
ly, calling such a linear-antilinear representation of g a core­
presentation. 

In this paper we shall first investigate the corepresenta­
tions of Clifford algebras, showing that in some cases these 
may be of smaller dimension than the ordinary representa­
tions. We then apply this to derive an anti linear Dirac opera­
tor. Finally, we discuss some corepresentations of the super­
Poincare algebra; we had originally hoped that the use of 
corepresentations might reduce the size of the supersymme­
tric multiplets. It turns out that this is true when one consid­
ers only the supertranslations but not for a fully super-Poin­
care symmetric theory. 

II. CLIFFORD ALGEBRAS 

Let V be a real vector space with a nonsingular symmet­
ric bilinear form Q, and let 

g=REIlV 

be the superalgebra whose only nonzero brackets are 

[u,v] = 2Q(u,v) 

with U and v in g 1 = V. According to this definition go = R is 
central and so must be represented by elements in the center 
of the commuting (intertwining operator) algebra of any 
representation. 

Lemma 1: Any irreducible corepresentation must map 

the even part of the center of a superalgebra to real multiples 
of the identity. 

Proof By the general version of Schur's lemma the inter­
twining operators for a corepresentation form a real division 
algebra, so that they must be isomorphic to R, e, or the 
quaternions H (compare Ref. 2, Theorem C). The center of 
His R, as is the self-adjoint part ofe. (This last comment is 
not quite obvious, since we know only that the commuting 
algebra C is isomorphic to e, but do not initially know which 
elements are self-adjoint. However, by taking the adjoint of 
the intertwining relation we see that C is invariant under the 
star (*) operation. Since the star operator is an automor­
phism over the reals it must act on C ~ e either as the identi­
ty or as complex conjugation. However, if I is the element of 
C, which corresponds to iEe, then 

1I = - I < O<J *1, 

so thatl* =1=1 and * must act as conjugation. The self-adjoint 
elements are therefore the real multiples of the identity as 
asserted.) Since the even part of the center of the superalge­
bra must be represented by self-adjoint elements of the cen­
ter of the algebra of intertwining operators the result now 
follows. 

Corollary: Let y be an irreducible corepresentation of 
g = R Ell V. Then y defines an irreducible linear-antilinear 
representation of the Clifford algebra of V for a real multiple 
ofQ. 

Proof Since go = R is represented by real multiples of 
the identity there must exist a real number A such that 
y(x) = AX for all xEgo' But then the definition of the super­
algebra bracket gives 

[y(u),y(v)] + = y( [u,v]) = 2AQ(U,V). 

These are the defining relations for the Clifford algebra of 
the form AQ, although by definition the operators y( u) and 
y(v) here are antilinear. 

Remark' Unless A = 0, in which case the whole theory 
becomes rather trivial, we can always rescale to obtain 
JA J = 1. Henceforth, we shall assume that this has been 
done. When A = 1 we denote the corresponding Clifford al­
gebra by C( V,Q). For brevity we shall refer to a corepresen­
tation y of g whose restriction to go is the identity, as a core­
presentation of C( V,Q). If V = Rp+q with the 
pseudo-Euclidean form 

p p+q 

Q(u,v) = - I UjVj + I UjVj 
j~l j~p+l 

we shall write C p,q instead of C( V,Q). To distinguish the 
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Minkowski form on space-time when p = 1 and q = 3 we 
shall write 1/ instead of Q. 

Before proceeding with the general theory we note that 
the corepresentation theory of Clifford algebras clearly di­
verges from the representation theory in that there is a one­
dimensional corepresentation of the Clifford algebra CO.2 

whereas its smallest representation is two dimensional. This 
corepresentation acts on C by 

y(u) = y(u l ,u2 ) = (u l + iU2 )K, 

where K denotes the complex conjugation operator. This is 
because 

Y(U)2 = (u l + iU2 )K(U I + iU2 )K 

=(u l +iU2)(UI-iu2)~ 

= (u~ + u~). 
Before stating the main theorem of this section we recall 

that a representation is said to be real if there is an antilinear 
intertwining operator J satisfying P = 1, and is said to be 
quaternionic if there is such an antilinear intertwining opera­
tor satisfying J 2 = - 1. 

Theorem 1: When q;;.l there is a one-one correspon­
dence between corepresentations of C P.q and real representa­
tions of C p.q - I. Similarly, when p;;.1 there is a one-one cor­
respondence between corepresentations of C P.q and 
quatemionic representations of C q.P - I. 

Proof: We shall derive only the second of the two corre­
spondences, as the first follows in a similar but slightly 
simpler way. Let el , e2, ... ,ep + q denote the usual basis of 
RP+ q, where e l = (1,0, ... ,0), etc. Given a corepresentation 
y of cp,q we set J = y(e l ), and 

f3j = iy(ej + I )y(e l ), 

for j = 1 , ... ,p + q - 1. It is easy to check that each f3j is lin­
ear. Moreover, we have 

[f3j ,f3k] + = - (y(ej + I )y(e l )y(ek+ I) 

+ y(ek+ I )y(el )y(ej+ I »y(el ), 

which can be rearranged to give 

([y(ej+ I ),y(ek+ I)] +)y(el )2 = - 2Q(ej + pek + I)' 

so that the f3j satisfy the relations for a representation of 
C q,p - I. Moreover, J is antilinear, has square 

y(e l )2 = - 1, 

and satisfies 

Jf3j = y(el )iy(ej + I )y(e l ) = iy(ej + I )y(e l )2 =f3j J , 

so that J defines a quatemionic structure on the representa­
tion space. Conversely, given a representation of the Clifford 
algebra C q,p - I with a quatemionic structure J we may set 
y(e l ) = J and y(ej ) = - if3j _ I J, forj> 1 to get a corepre­
sentation of C p,q. 

Remark: In general, the irreducible corepresentations of 
C P.q will correspond to reducible representations of C p,q - I 

and C q.P - I since the irreducible representations of these 
lower dimensional Clifford algebras will lack the necessary 
real or quatemionic structure. In fact, by reference to stan­
dard results on the representation theory of Clifford algebras 
(e.g., Refs. 3 and 4) we arrive at the following conclusions. 
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Corollary A: The irreducible corepresentations of C P.q 

correspond to irreducible representations of C P.q - I and 
C q,p - I if and only if q - p is congruent to 1, 2, or 3 mod 8. 

Proof: The irreducible representations of C r,S have a real 
structure if and only if s - r=. 0,1,2 mod 8, and have a qua­
temionic structure if and only if r - s=.2,3,4 mod 8. Thus 
the irreducibles of Cp,q-I have a real structure precisely 
when q - p=.I ,2,3 mod 8, and the other case follows similar­
ly. (The fact that the two cases yield the same condition on p 
and q provides a check that no mistake has been made in the 
calculations. ) 

Corollary B: The irreducible corepresentations of C p,q 

have lower dimension than the irreducible representations if 
and only if q - p=2 mod 8. 

Proof: The irreducible representations of Cp,q-I have 
lower dimension than those of C p,q if and only if q + P is 
even, or equivalently q - p is even. Combining this with the 
previous result yields the stated conclusion. The actual di­
mension of the irreducible corepresentations is half that of 
the irreducible representations. 

III. THE ANTILINEAR DIRAC OPERATOR 

The simplest example of a Clifford algebra satisfying the 
conditions of Corollary B is CO,2, which therefore has a one­
dimensional corepresentation. This is, of course, the core­
presentation which we gave at the beginning of Sec. II. 

The conditions of the corollary also cover the Clifford 
algebra C 1.3 associated to Minkowski space, which therefore 
has a two-dimensional corepresentation. (Actually there are 
two such corepresentations of opposite helicities corre­
sponding to the two inequivalent irreducible representations 
of C O,J.) Constructing this by the procedures of Theorem 1 
we obtain 

( 
V2 + iV I i(vo - VJ ») 

y(v) =. . K, 
- l(Vo + v} ) v2 - lUI 

where K is complex conjugation and, to accord with the usual 
conventions, we have written v = (vo ,VI ,V2 ,VJ ). It must be 
noted that the related Clifford algebra C J, I does not have 
such a two-dimensional corepresentation. 

One can use this corepresentation to construct an anti­
linear Dirac operator D = y( ao ,a l ,a2 ,a3 ). In the corre­
sponding two-component Dirac equation 

D¢ = f-l¢, 

the left-hand side is conjugate linear in ¢ while the right­
hand side is linear, so that the solution space is only a real 
and not a complex vector space. Nonetheless, applying D a 
second time yields the Klein-Gordon equation for a particle 
of mass III l-file: 

( - a0
2 + al 2 + a2

2 + a/)¢ 
= D 2¢ = D(f-l¢} = jiD¢ = 1f-l1 2¢. 

It is noteworthy that one can obtain the equations only of 
massive and massless particles but not of imaginary mass 
tachyons. 

Our equation is certainly translation invariant, and we 
shall show later that it is also invariant under Lorentz tran-

K. C. Hannabuss and W. R. Weiss 2521 



                                                                                                                                    

formations, so that despite its strangeness it does represent a 
genuine relativistic wave equation. 

To get more feel for its significance we rewrite it in terms 
of the Fourier transform 

where 'TJ denotes the Lorentz-invariant bilinear form used to 
define C 1,3. One easily checks that the transform of the con­
jugate of t/J is 

(Y Kt/J)(p) = (Y t/J)( - p), 

so that the antilinear Dirac equation transforms to 

r(p)(Y t/J)( - p) = p(Y t/J)(p). 

For massless particles, when p = 0 the antilinearity can be 
removed by conjugation and the equation reduces to the usu­
al Weyl equation. Otherwise the corresponding Klein-Gor­
don equation ensures that Y t/J is supported on the two­
sheeted mass hyperboloid 'TJ (p,p) = - Ip 12, so that Y t/J can 
be chosen arbitrarily on one sheet of the hyperboloid and the 
Dirac equation then determines its value on the other sheet. 
This shows that the equation does have nontrivial solutions, 
and indicates that its antilinearity is basically linked to the 
fact that time reversal is represented antilinearly. 

We now return to the question of Lorentz invariance. To 
this end we must first describe the spin representation of the 
pseudo-orthogonal groups in this setting. We exploit the 
Freudenthal-Eckmann approach: The identity 

r(ej)r(v) = 2Q(ej ,v) - r(v)r(ej ) 

= r(2 Q(ej,V)ej - v)r(ej ), 
Q(ej>ej ) 

still holds, and shows that r( ej ) implements the reflection in 
the hyperplane normal to ej • Every element A of the proper 
pseudo-orthogonal group is the product of an even number 
of such reflections and so represented by a linear operator 
rCA). By construction, this spin representation r satisfies 

r(A)r(v)r(A) - 1= r(Av). 

When q + p is even, the hyperplane reflections have determi­
nant - 1 and so are not proper transformations. By adjoin­
ing them we can extend r to a corepresentation of the whole 
pseudo-orthogonal group. (When q + p is odd the hyper­
plane reflections are proper transformations, so that there 
are both linear and antilinear transformations implementing 
these elements.) 

If one follows the above constructions through for the 
Lorentz group then one obtains its usual projective represen­
tation as SL(2,C). We may then define a representation U of 
the Poincare group on space-time wave functions by 

(U(A,a)t/J)(x) = r(A)t/J(A -I(X - a», 

where A is a Lorentz transformation and a a space-time 
translation. We can also Fourier transform U to act on mo­
mentum space wave functions: 

(YU(A,a)t/J)(p) = ei'1(p,a lr(A) (Y t/J) (A - Ip ). 

Since the antilinear Dirac equation is clearly translation-in­
variant we need only check its Lorentz invariance and this 
follows by direct calculation: 
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r(p)(YU(A)t/J)( - p) 

= r(p)r(A) (Y t/J) ( - A - Ip) 

= r(A)r(A -Ip ) (Y t/J) ( - A - Ip) 

= r(A)p(Y t/J) (A -Ip ) = p(YU(A)t/J)(p). 

In fact, we may obtain a much more precise description 
of the behavior of the solutions of our equation under the 
action of the Poincare group. 

Theorem 2: The representation U of the Poincare group 
on solutions of the antilinear Dirac equation is equivalent to 
the irreducible representation with mass IJlllilc and spin!. 

Proof For each p in the positive mass hyperboloid 
(Po> 0) we choose a Lorentz transformation A (p) such that 
A(p) 'eo = p. For suchp we now define the transformation 
T from the solution space of the antilinear Dirac equation to 
(complex-valued) functions on the positive mass hyperbo­
loid by 

(Tt/J)(p) = r(A(p» -I(y t/J)(p). 

It is easy to calculate that 

(TU(A,a)t/J)(p) = ei'1(p,alr(A(p) - IAA(A - Ip» 

X(Tt/J)(A-Ip). 

The right-hand side is the standard Wigner form of the irre­
ducible representation,S Sec. 6 C. 

Conversely, given a function ifJ on the positive mass hy­
perboloid we can define a solution of the antilinear Dirac 
equation by setting 

(T -lifJ)(p) 

{ 
r(A(p»ifJ(p), 

- p-IDr(A(p»ifJ(-p), when Po <0. 

when Po >0, 

Remark: It should be noted that despite our earlier com­
ments about the solutions of the Dirac equation forming 
only a linear space, we have now proved the equivalence to a 
complex representation. The resolution of this paradox lies 
in the fact that the transformation T and its inverse are only 
real linear. We can, however, use them to carry back the 
complex structure on the irreducible representation space, 
setting I = T - I iT. In fact, I is the standard complex struc­
ture of quantum field theory, which multiplies by ± i ac­
cording to whether the energy is positive or negative. This 
means that the free-field theory can easily be constructed in 
the usual way. The standard Fock space theory will contain 
only electrons, but by going to other quasifree states such as 
the KMS state at a nonzero temperature, a theory which 
includes positrons can be constructed. They arise in much 
the same way that holes appear in solid-state theory. The 
complex structure I commutes with the Dirac operator, but 
not with the position operators, which makes the interac­
tions of the antilinear Dirac electrons with other fields rather 
subtle. They will be discussed in a separate paper.6 

IV. THE SUPER-POINCARE ALGEBRA 

The Clifford algebras form a prototype for the more 
general situation in which the even part of a superalgebra go 
is central. 

Theorem 3: Let p be an irreducible corepresentation of 
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the superalgebra g whose even subalgebra go is central, and 
define the bilinear form Qp (u,v) = ~ ( [u,v]) on g). Then 
the restriction of p to g) factorizes through the Clifford alge­
bra defined by Qp. 

Proof: By Lemma I we know that p maps go to multiples 
of the identity, so that Qp is a real valued bilinear form, 
which is, moreover, clearly symmetric. We also have for all U 

and v ing) 

[p(u),p(v)] + =p([u,v]) = 2Qp(u,v), 

from which the assertion of the theorem follows immediate­
ly. 

Remark: Of course, the form Qp is usually degenerate, 
and elements in the radical must map to 0, since they are self­
adjoint and satisfy 

p(U)2 = Qp (u,u). 

An important example of this occurs when g is the su­
pertranslation subalgebra of the super-Poincare algebra. 7 In 
this case go ~R4 is the Abelian Lie algebra ofthe space-time 
translations, and g) consists of the (real) Majorana spinors. 
More precisely, if we let 1] denote the Lorentz invariant bilin­
ear form 

1](x,y) = - XoYo + X1YI + X2Y2 + X3Y3' 

then the corresponding Clifford algebra C 1.3 has a four-di­
mensional real representation on the space of Major ana spin­
ors. The space ofspinors has a Lorentz-invariant symplectic 
form c with respect to which the generators of the Clifford 
algebra act skew adjointly. [In conventional notation 
c(u,v) = - u'yov.] We then define the superbracket [u,v] 
of two elements u and v in g 1 to be the unique element of go 
satisfying 

1]( [u,v],y) = c(u,y(y) v), 

for all)'Ego . As already hinted, go is taken to be central in g. 
We already know that the restriction to go of an irredu­

cible corepresentation must just be a real-valued linear func­
tional on go. It must, therefore, have the form 

pp(x) = 1](x,p), 

for some PEf50 . We are, therefore, led to the problem of find­
ing the corepresentations of the Clifford algebra defined by 
the form 

Pp ([u,v]) = 1]([u,v],p) = c(U,y(p) v). 

This form has rank 4 when pis timelike and rank 2 when pis 
light like (null). In both cases it is positive semidefinite. 
Since, as we have seen in the preceding section, the Clifford 
algebra C 0.2 has a one-dimensional irreducible corepresenta­
tion it is possible to find a one-dimensional light-like core­
presentation of the supertranslation algebra. At first sight 
this promises to reduce the size of the multiplets needed in a 
relativistic supersymmetric theory, but unfortunately this 
advantage is lost as soon as one builds in the effect of the 
Lorentz transformations. 

The Lorentz group L = SL(2,C) acts on both the even 
and odd parts of g, and since both 1] and care Lorentz­
invariant it preserves the superbracket. We may, therefore, 
form the semidirect product of the Lorentz Lie algebra with 
g to obtain the super-Poincare algebra. The obvious strategy 
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for constructing corepresentations is to induce them by com­
bining the method for inducing corepresentations of groups 
described in Ref. 2 with some form of superalgebra inducing 
such as that given in Ref. 7. 

The little group Lo that stabilizes the lightlike vector 
P = (1,0,0, I) is the upper triangular subgroup of matrices of 
the form 

e~o e~iO)' 
for OER and zEC. The action of this element on the two­
dimensional space whose Clifford algebra appears is by rota­
tion through (). Recalling the discussion of the spin represen­
tation in Sec. III we easily see that this is implemented on the 
one-dimensional corepresentation of CO.2 by multiplication 
by exp (i() /2), for 

ei0 /2(u 1 + iU2 )Ke - iO/2 = eiO/2(uI + iU2 )e
iO /2K 

=eiO(u1 +iU2 )K. 

Now, ~exp (i() /2) is a projective representation of L o' 
whose multiplier (T is ± 1 valued. In order to carry out the 
induction we need to extend (T to a multiplier on the whole of 
SL(2,C). Moreover, to be compatible with the antilinear 
structure we require it to be real valued. Since (T must also be 
unitary, this forces it to be ± I valued. On the other hand we 
know that all multipliers are trivial on SL(2,C), so that for 
some function A we have 

(T(X,y) = A(X)A(Y)/A(XY), 

for all x,yESL(2,C). Since (T takes only the values ± 1 we 
may square this identity to get 

A(xy)2 = A(X)2A(y)2, 

showing that A 2 is a character. Since the only one-dimen­
sional representation ofSL(2,C) is trivial, this means that A 
is ± I valued. This, however, is inconsistent with the known 
behavior on the little group, where exp (i() /2) also trivializes 
(T. This means that A can differ from exp( iB /2) on Lo only by 
a character and it is easy to see that no such characters exist. 

To avoid this problem one must start with a larger core­
presentation of the supertranslations, but this forfeits the 
advantage of being able to reduce the size of the supersym­
metric multiplets. 

Of course, the arguments that we have used are peculiar 
to the super-Poincare group, and do not necessarily hold in 
other cases. For example, the Euclidean group in two dimen­
sions has a supersymmetric extension similar to the super­
Poincare group. In this case the little groups of nontrivial 
irreducible corepresentations of the supertranslation subal­
gebra are trivial, so that there are no obstacles to the induc­
ing procedure. 
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The electroweak gauge group arises naturally in a theory that uses an antilinear instead of a 
linear Dirac operator. 

I. INTRODUCTION 

In this paper we shall show that the standard Weinberg­
Salam theory ofthe electroweak interactions, 1-3 fits natural­
ly into a framework in which one starts with a Dirac opera­
tor which is antilinear rather than linear. In particular, the 
SU(2) gauge group appears quite naturally, as a group of 
intertwining operators. 

Antilinear Dirac operators were considered in Ref. 4, to 
which this paper is a sequel. There it was shown that the 
Clifford algebra C 1.3 of the space R4 with the Minkowski 
inner product 

1/(x,y) = - xoYo + XIYI + X2Y2 + X3Y3 

has a corepresentation on a two-dimensional space V2 , with 
the generators represented by the antilinear operators 

( 
v2+ivl i(VO-V3») 

rava = rev) = .( +) . K, - I Vo V3 V2 - IVI 

where K is complex conjugation. In terms of the usual Pauli 
matrices and 

a± (v) = (vo ±vlal ±v2a2 ±v3a3), 

we may write 

rev) = - a _ (v)a2K. 

With the aid of these antilinear operators it was possible 
to construct a two-component massive Dirac equation: 

DtP =f.1-tP, 

where D = r(ao ,al ,a2 ,a3 ). For nonzero f.1- this equation was 
found to pick out a single irreducible representation of the 
Poincare group with spin! and mass 1f.1-I/JJ c, while for zero f.1-
one recovers the Weyl equation. Two features of this analysis 
suggest that it might well provide a convenient context for 
discussion of the electroweak forces: First, the electron and 
neutrino are described by wave functions with the same 
number of components, and, second, the resulting particle 
mass depends only on 1f.1-1, so that the theory carries a physi­
cally redundant phase strongly suggestive of a gauge symme­
try. 

Any change in the phase of f.1- will cause a compensating 
phase change in tP. For definiteness suppose that tP is multi­
plied by exp(iG). Then the antilinearity of the Dirac opera­
tor means that 

DeiGtP = e - iGDtP = e - iGf.1-tP = e - 2iGf.1-(eiGtP). 

Inotherwordsf.1-haschangedbyafactorofexp( - 2iG). To 
obtain a gauge theory we allow G (and, therefore, also f.1-) to 
be a function on space-time, and introduce a U( 1) valued 
connection V. We now adjust the notation and write D for 
the operator reV). In the equation 

DtP = f.1-tP, 

f.1- now represents a field, which, from its gauge dependence, 
has a U( 1) charge - 2 times that of tP. 

We shall not pursue this approach further because it 
turns out that with a small modification it can be made to 
include the weak force as well. This will be explained in the 
next section. We shall then classify the Lorentz invariant 
forms and show that these are just the usual currents and 
interaction terms, enabling us to reconstruct the Lagrangian 
density of the standard model. 

We shall follow the physicists' convention of denoting 
complex conjugation by an asterisk and Hermitian conju­
gates or adjoints by a dagger. The superscript T will denote a 
transpose. 

II. THE ELECTROWEAK GAUGE GROUP 

In practice it is now more usual to take 

-1/(x,y) =XoYo -XIYI -X2Y2 -X3Y3, 

as the Lorentz invariant form on Minkowski space rather 
than 1/. The effect of this on the corepresentation theory is 
quite remarkable. According to the criterion established in 
Ref. 4, Corollary B to Theorem 1 the irreducible corepresen­
tations of the Clifford algebra C 3

•
1 have the same dimension 

as the irreducible representations, that is 4. Indeed, one may 
take the block form 

_ (0 
rev) = 

- rev) 
rev») 
o ' 

as a typical generator, with v in R4. In similar block form the 
Lorentz transformation A may be represented by 

rCA) = (noA) 0) 
rCA) , 

where r denotes the natural representation of the Lorentz 
transformations as elements of SL(2,C), (cf. Ref. 4, Sec. 
III). 

For many purposes it is more convenient to consider the 
four-dimensional corepresentation space as the tensor prod­
uct of 2 two-dimensional spaces: 

V4 =JY® V2 • 

The space V2 is the corepresentation space for the Clifford 
algebra of 1/ used in the first section. Introducing the matrix 
T = - ia]. we than have rev) = TK ® rev). The Lorentz ac­
tion takes the form 

rCA) = 1 ® rCA), 

By way of compensation for having to double the dimen­
sion there are now more intertwining operators. In fact, 
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since these necessarily commute with the Lorentz transfor­
mations they must take the form <I> ® 1. The intertwining 
property then means that r<I>*7 = <I> which means that 

<1>= (_ab * :*), 
for suitable complex numbers a and b. The algebra of such 
operators is isomorphic to the quatemions. Moreover, the 
unit quatemions, which are those satisfying [a [2 + [b [2 = 1, 
form the group SU (2). Indeed the corresponding intertwin­
ing matrices give the direct sum of two copies of the natural 
representation of SU (2). 

It is not easy to construct a Dirac operator, 

- (0 D = y(V) = 
- y(V) 

= 7K®D. 

However, if we simply replace D by 15 in the Dirac equation 
then the reversed sign of 1] leads to imaginary mass tachyon 
solutions. Fortunately, the intertwining operators provide a 
way out, for we can choose any intertwining operator 1 
whose square is - 1 and then take as the new Dirac operator 
115. One particularly convenient choice is to take 
1 = - 7 ® 1 since then we have 15 = K ® D. The correspond­
ing Dirac equation 

15'1' = f." 'I' , 
in which 'I' is now a four-component spinor, clearly breaks 
into the direct sum of two of the previous two component 
equations. 

The new feature that emerges, however, is that we are 
free to multiply the operator 1 by any unit quatemion. This 
provides a natural setting for the appearance of SU (2) as a 
gauge group for the theory, and means that we must also 
regard V as a U(1) X SU (2) connection. To conform with 
standard conventions we define compatible actions of an ele­
ment UEU( 1) by letting it multiply by U on V4 and Jf', and 
by U - 2 on V2 • We shall henceforth assume that the appro­
priate connections are used in the definitions of D and D. 
(The relationship 15 = K ® D will then fail since D and 15 will 
involve different connections.) 

III. INVARIANT FORMS 

In order to obtain Lagrangian density functions we need 
to construct gauge and Lorentz invariant functions of the 
wave functions. We start by considering the case of the two­
dimensional spinors tIt. 

Since the Lorentz group SL(2,C) does not act unitarily 
on spinors it is easy to see that there are no invariant sesqui­
linear forms, that is expressions of the form t/t*Gt/t. On the 
other hand there is an invariant skew symmetric bilinear 
form derived from the exterior product on V2 =C2

: 

E(¢,t/t) = ¢.t/t2 - ¢2t/t., 

and, up to multiples, E is the only invariant bilinear form. It is 
easy to check that for any vector v in R4 we have 

E(¢,y(V)t/t) + E(t/t,y(V)¢»* = o. 
This means that E(t/t,y(v)t/t) is imaginary. In terms of 
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7 = - ia2 we may write 

and 

E(¢,y(v)t/t) = - ¢T7a_(v)a2Kt/t 

= i¢ T a + ( v) T t/t* 

= it/tta + (v)¢. 

On substituting V for v and using Leibniz' rule we similarly 
obtain 

E(t/t,Dt/t) = -it/tta+ (V)t/t+iaa(t/ttaat/t). 

Apart from the unimportant divergence term this is just the 
formula for the right-handed part of the standard Dirac cur­
rent. 

Our next task is to identify the invariant forms on V4 • It 
is clear from the preceding analysis in V2 that there are no 
Lorentzian invariant sesquilinear forms, and that any invar­
iant bilinear form can be written as B ® E, where B is a bilin­
ear form on Jf'. The only SU(2)-invariant form on Jf' is 
again E so that adding the requirement of SU (2) gauge in­
variance reduces the possibilities to just scalar multiples of 
s = E ® E. Since each E is skew symmetric the bilinear form s 
is symmetric. Moreover, since 7 is easily seen to be symmet­
ric with respect to E it follows that y(v) is conjugate skew 
symmetric with respect to s for any space-time vector v, that 
is 

s(<I>,y(v)'I') + s('I',y(v) <1»* = O. 

Following the same procedure as in two dimensions we 
have 

and 

s(<I>,y(v)'I') = <l>T(7®7)(7K®a _ (v)a2 K)'I' 

=i<l>T(I®a2 a_ (v)a2 )'1'*· 

In terms of the charge conjugates 

'l'e = (a3 ® 7)'1'*, 

and <I> e' this may be written as 

s(<I>,y(v)'I') = i<l>;(1 ® a _ (v»'P e • 

Replacing v by V we obtain 

s('I',D'I') = i'l'~(1 ®a _ (V»'I'e' 

Regarded as a function of I = 'I' e this is the formula for the 
lepton current ofa left-handed SU(2) doublet. 

IV. THE ELECTROWEAK UNIFICATION 

The full theory will contain fields of both kinds: t/t in V2 

and 'I' in V4 • These are linked by means of a Lorentz invar­
iant imbedding of V2 into V4 • We have already seen that 
such imbeddings exist and indeed, since V4 = Jf' ® V2 , they 
are obtained by taking the tensor product with elements of 
Jf'. We therefore introduce the Jf'-valued field ¢. 

The natural coupling between such fields is given by 
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s(,p ® rp,lJI) = (,pT ® rpTH'r® r)1JI 

= (,pT®rpT)(r®r)(O'J ®r)lJI~ 

-IJI!(O'J ®r)(r®r)(,p®rp) 

-IJI!(O'I ®I)(,p®rp). 

The helicity representation of the ordinary Dirac matrix 
"Yo" is 0'1 ® I, so that this is the standard interaction term. 

Pulling the pieces together we see that the leptonic and 
Higgs part of the standard model Lagrangian may be ex­
pressed as 

!i" = s(IJI,DIJI) - E(rp,Drp) + (m e /f3) 

X(s(IJI,,p®rp) +s(IJI,,p®rp)*) 

+ 7f(V,p*,V,p) -A(,p*,p - f32)2, 

where f3 and A are positive constants. The standard gauge 
curvature and 't Hooft terms may be added to this and the 
symmetry broken in the usual way to recover the standard 
model. 

v. CONCLUDING REMARKS 

At the expense of moving to a higher dimension it is 
always possible to linearize an antilinear mapping. If we de­
fine Vg = V4 Ell Vt, where Vt denotes the complex conju­
gate space, then the Clifford elements act linearly by map­
ping V4 to Vt and vice versa. This linear representation of 
the Clifford algebra breaks up as the direct sum of two copies 
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of the standard irreducible W, so that one may write 
Vg =)J't" ® W. The SU (2) action is on )J't" mixing the two 
copies of W, so that in the standard linear theory of the Dirac 
equation where one works onjust one of the irreducible sum­
mands it is not directly visible. However, just as the action of 
the Clifford algebra on Vg is the linearization of a nonlinear 
action on V4 , so that SU(2) action is the linearization of a 
nonlinear action on W. It is, in fact, well known that the 
irreducible linear representation of the Clifford algebra of 
- 7f is "quaternionic." However, the action of the quater-

nions on the representation space is only real linear and not 
complex linear. 

The space Vg is large enough to encompass both the 
standard linear Dirac theory and this new variant. The neu­
trino and both helicity states of the electron find a place in it. 
It also inherits from the linear Clifford irreducibles an action 
of the full conformal group, SU(2,2) rather than just the 
Lorentz group. This suggests that it might be preferable to 
work with a theory at this level and break the conformal and 
weak gauge symmetry at the same time. We hope to return to 
this in a future paper. 

1 S. L. Glashow, Nucl. Phys. 22, 579 (1961). 
'A. Salam, in Elementary Particle Theory, edited by N. Svartholm (Almq­
vist, Stockholm, 1968). 

'5. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). 
<K. C. Hannabussand W. R. WeissJ. Math Phys. 31, 2519 (1990). 
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Nonlinear superequations. for which the general solution can be expressed algebraically in 
terms of a finite number of particular solutions. are obtained. They are based on the 
orthosymplectic supergroup OSP(m,2n) and its action on a homogeneous superspace. 
Superposition formulas are discussed for the cases m = 1, n arbitrary, and m = 2. n = 1. For 
OSP(2,2) the number of particular solutions needed to reconstruct the general solution 
depends on the dimension of the underlying Grassmann algebra, whereas for OSP( 1,2n) it 
does not. 

I. INTRODUCTION 

A system of ordinary differential equations (ODEs) is 
said to allow a superposition formula, if its general solution 
y(t) can be expressed as a function of a finite number of 
particular solutions y) ..... y m and a sufficient number of arbi­
trary constants c) , .... cn : 

y(t) = F(YI (t), .. ·.Y m (t),c 1 , .... clI )· (1.1 ) 

Lie 1 has shown that the necessary and sufficient condi­
tion for such a superposition formula to exist is that the 
ODEs have the form 

r 

y(t) = L Zk (t)Sk (y), ( 1.2) 
k~1 

where the vector functions Sk (y) are restricted by the condi­
tion that the differential operators. 

n a 
X k = L 5~(Y) -, (1.3) 

I'~I ayl' 

should generate a finite-dimensional Lie algebra L. 
It has been shown2 that a system of such equations can 

be associated with every homogeneous space M -G /Go, 

where G is any finite-dimensional Lie group and Go is any 
closed continuous subgroup of G. The Lie algebra (1.3) of 
Lie's theorem is the algebra associated with G and Lo CL, 
associated with Go, is the algebra of vector fields vanishing at 
some point (the origin) of M. Special attention was devoted 
to indecomposable systems of equations, from which no 
proper subsystem can be split off, having a superposition 
formula of its own. Indecomposable systems of equations 
were shown to correspond to transitive primitive actions of 
G on M. The indecomposable systems of ODEs with super­
position formulas were classified. 2 making use of the known 
classification of transitive primitive Lie algebras. 3-6 

A systematic study of indecomposable systems of ODEs 
with superposition formulas was undertaken in a series of 
recent articles. 7

-
12 We refer to the original articles for all 

details and implications. Such important equations as the 
matrix Riccati equation belong to this category. 

As a direct motivation for the study of nonlinear super­
position formulas let us just mention that these formulas. 
when they exist, are of great help in solving the equations 
and in establishing the properties of their sets of solutions. 
Moreover, equations with superposition formulas also have 
the Painleve property (their solutions have no movable sin­
gularities, other than poles). In this context, group theory 
can be directly used to determine, whether a system of ODEs 
is integrable. or not. In a broader context, nonlinear ODEs 
with superposition formulas are related to completely inte­
grable dynamical systems, where they occur as Backlund 
transformations. 13, 14 

The concept of nonlinear ODEs with superposition for­
mulas has recently been extended to nonlinear "superequa­
tions, .. 15 involving even and odd Grassmann variables l6 as 
dependent variables and the ordinary variable t as the inde­
pendent variable. The so-called "super-Riccati equations" 1 5 

belong to such a category. The theory of such equations is 
based on Lie superalgebras. 17 the superposition formulas be­
ing obtained from the action of the corresponding Lie super­
groups on homogeneous supermanifolds. 18 

Such superequations and their solutions are of interest 
for two complementary reasons. The first is that such equa­
tions occur in supersymmetrical physical theories, devel­
oped in a variety of different areas of physics. 19-22 Tools to 
solve superequations are hence needed and superposition 
formulas, if nothing else. reduce the problem of finding all 
solutions, to that of finding a finite number of particular 
ones. The second reason is that superequations can be used 
to represent in a compact form large (actually arbitrarily 
large) systems of ordinary equations. Indeed, once the di­
mension N of the underlying Grassmann algebra is specified 
and a basis 0 1 ,02 ••••• 0 N is chosen. each even or odd Grass­
mann variable can be expanded in terms of products of 0;. 

2528 J. Math. Phys. 31 (10), October 1990 0022-2488/90/102528-07$03.00 @ 1990 American Institute of Physics 2528 



                                                                                                                                    

The superequations then reduce to usual ODEs for the ex­
pansion coefficients. The superposition formula for the su­
perequation goes over into one for the usual ODEs. It will 
coincide with a formula that could be obtained directly from 
the action of some ordinary Lie group on an ordinary mani­
fold. The "super" version will in general be much more com­
pact. This approach is similar to the one advocated by Fa­
tyga et al.,23 who combined systems of nonlinear partial 
differential equations originating in fluid dynamics, into one 
Grassmann valued partial differential equation. 

Our previous article I 5 on superequations was restricted 
to considerations based on the orthosymplectic Lie super­
group OSP( 1,2). In the present article, we first derive non­
linear superequations related to the action of the supergroup 
OSP (m,2n) on a homogeneous superspace for m and n arbi­
trary (Sec. II). In Sec. III, we obtain the superposition for­
mulas for OSP( 1,2n), with n arbitrary. For n = 1, we need 
three particular solutions to form a fundamental set as is 
already known l5 but for n>2 we need four, these results 
being independent of the dimension of the underlying Grass­
mann algebra. In Sec. IV we analyze the superposition for­
mula for the special case of OSP (2,2). In this case it turns 
out that the number of particular solutions needed to obtain 
a superposition formula does depend on N, where N is the 
number of generators of the Grassmann algebra. We con­
clude in Sec. V. 

II. SUPEREQUATIONS BASED ON THE OSP(m,2n) 
SUPERGROUP 

In this section we first sum up some basic results on the 
Lie supergroup OSP (m,2n) and its superalgebra 
osp (m,2n). We then derive the nonlinear superequations re­
lated to the action ofOSP(m,2n) on a homogeneous super­
space. Finally, we show that these equations allow a super­
position formula. 

A. The supergroup OSP(m,2n) and its action on the 
superspace 

Let us work with 0 0 , a = 1, ... ,N, a set of generators of a 
Grassmann algebra A N !6.18 They satisfy 0 0 0 b + 0 b 0 a 

= 0, o,h = 1, ... ,N. The elements 1,00 , 0 a 0 b , ... , where the 
indices in each product are all different, form a (2 N dimen­
sional) basis of AN' The elements of AN will be called super­
numbers and admit a decomposition into even and odd 
parts. They can be written, respectively, 

[NI2J 

X = 00 + ~ OJ ... j 0 j •• ·0j , ,£.. 1 2r I 2r 
(2.1 ) 

r= 1 

[(N-IJI2J 

0= L hj , .. 'j2,+' 0 j , ••• E>j"+ " 
(2.2) 

r=O 

ikE{I, ... ,N},il <i2 < ... <i2r + P 

where °0 , OJ ... j • h j ••• j EF'= R or C and 00 is called the 
1 2r I 2r -I- 1 

body of the supernumber. We shall denote throughout the 
even (odd) supernumbers by Latin (Greek) letters. Note 
that the product of two odd supernumbers gives an even 
supernumber while the product of an even with an odd su­
pernumber gives an odd supernumber. An even super­
number has a mUltiplicative inverse if its body is not zero. 
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Since the odd supernumbers and the even supernumbers, 
which are products of odd ones have no body, they are not 
invertible. 

We describe now the well-known properties l7 of the 
simple superalgebra osp (m,2n) and of the corresponding 
supergroup OSP(m,2n). They can be realized as the set of 
(m + 2n) X (m + 2n) matrices that satisfy, respectively, 

MSTH+ HM= 0, YSTHY =H, 

° 
° (2.3 ) 

where the superscript ST denotes the "supertransposi­
tion.,,17 Explicitly, we have 

C' ILl 
p, ) 

M= ILJ T c A , 

-ILl -D _C T 

M I
T= -MI , AT=A, DT=D 

and 

~~(:i 
r l r,) 
Gil G12 , 

AT G2• G22 2 

where 

GTG-A.AJ +A2Af=im' 

rfr. +G;'G2• -GJ.G •• =0, 

rJr2 + G"[;G22 - GJ;G12 =0, 

rfr2 +G;'G22 -GJ.G12 =In, 

G Tr. - A. G21 + A2 G. I = 0, 

G Tr2 -A.G22 +A2 G12 =0. 

(2.4) 

(2.5a) 

(2.5b) 

In Eqs. (2.4) and (2.5) the elements of M., G, A, C, D, Gij 
(iJ = 1,2) are even supernumbers while the elements oflL., 
IL2' r. , r 2' A I , A2 are odd supernumbers. Also, M. and G 
are mXm matrices, A, C, D, Gij are nXn matrices and final­
ly IL I , IL2' r. , r 2' A. , A2 are m X n matrices. The dimension 
d ofOSP(m,2n) is given by 

(
m (m - 1) 2 2 2) d=. (d6 ,dr. ) = 2 + n + n, mn , 

where d", (dr,) is the number of even (odd) independent 
entries. 

The supergroup OSP(m,2n) acts linearly on the super­
space1S formed, in particular, by supervectors of the type 
X T = (s T X f X J> T. The even part X", contains a 2n-di­
mensional even vector (X f X D T while the odd part X r' 
contains an m-dimensional odd vector S. The supernorm of 
X coincides in this case with the norm, i.e., we have 

XSTHX=.XTHX=STS+Xfx2 -XJX.. (2.6) 
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B. The nonlinear superequations 

The nonlinear ODEs based on a Lie supergroup can be 
constructed using the usual procedure for Lie groups.2 In­
deed, let us first consider a maximal subsupergroup GOof 
OSP (m,2n) leaving, for example, the n-dimensional super­
vector space of the type (0 0 yT) T invariant. We are then 
concerned with supervectors with supernorm equal to zero, 
as follows directly from (2.6). This subsupergroup GO is of 
dimension 

and is described by matrices of the form 

r l 

[10 =( ~ 
- GllTfG 

~ ), 
GilT 

(2.7) 

with 

GTG=Im , G~G21 -GJ;GII +rfrl =0. (2.8) 

Secondly, we need to construct a realization of the ho­
mogeneous superspace M == OSP (m,2n) / GOof dimension 

d - dO = (n(n + l)/2,nm). 

We will use both homogeneous and affine coordinates on M 
which are, respectively, 

U~m and w~m~(f~=',). de' y#o 

(2.9) 

The homogeneous coordinates U are formed by an (m X n)­

odd supervector 5 and two (n X n) -even matrices X and Y. 
They satisfy the isotropy condition 

USTHU= STS +XTy - yTX = O. (2.10) 

There is a redundancy in such coordinates since U and UK, 
where K is an (nXn)-even nonsingular matrix, represent 
the same point. In order to avoid this redundancy we intro­
duce the affine coordinates W (in the neighborhood of the 
origin we have det Y # 0). The isotropy condition (2.10) 
thus becomes 

(2.11 ) 

so that the antisymmetric part of the matrix Z is not indepen­
dent. The coordinates on Mare then identified with the com­
ponents of the two matrices Zs==!(Z + Z T) and 1]. 

Finally we can write the nonlinear ODEs corresponding 
to the action ofOSP(m,2n) on M. In homogeneous coordi­
nates we have a set of linear equations 

U=MU, 
. dU 
U=-, 

dt 
(2.12 ) 

with the nonlinear constraint (2.10) and the redundancy 
U ~ UK. In affine coordinates, we eliminate the redundancy 
and use the constraint (2.11) to find the nonlinear supere­
quations. These are given by 

iJ = P2 + PIZS + 1](DZ s + C T
) 

(2.13a) 
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z S = A + ! (pr 1] - 1]Tp2 ) 

+ j,1]T(1]pf + PI1]T + 1] D7]T)1] 

+ ZS(C T + !pf1]) + (C - !1]Tpl )Zs + ZS DZ s. 

(2.13b) 

The nonlinearities of (2.13) are quadratic in Z S but up to 
quartic in 1]. The quantities Po M I , A, C, D are given func­
tions of t. 

c. Existence of a superposition formula 

The action of OSP (m,2n) on the homogeneous space M 
is given in affine coordinates by 

7](t) = (G7]o + rlzo + r 2 )(Ar7]o + G21 Z0 + G22 ) -I, 
(2.14a) 

Z(t) = (Af7]o + Gil Zo + G12 ) 

X(Ar7]0+G2IZ0+G22)-I. (2.14b) 

A superposition formula for Eqs. (2.13) will have the form 
(2.14), where (7](t),Z(t» is a general solution and (7]0 ,Zo ) 
are arbitrary constant matrices related to the initial condi­
tions [both are constrained by (2.11)]. The matrix func­
tions G(t), Gij(t), ri(t), Ai(t) (i,j= 1,2) will be deter­
mined in terms. of a fixed finite number m of particular 
solutions. 

The reconstruction of [1 (t) follows the same procedure 
as in the case of Lie groups. 7-12 Indeed, we take the m partic­
ular solutions Uk (t) (k = 1, ... ,m) in homogeneous coordi­
nates (assumed to be known with the ambiguity inherent in 
the redundancy U - UK) and write 

Udt) = [1 (t) UdO), for k = 1,2, ... ,m. (2.15) 

We then solve this set of equations for the matrix elements of 
[1 (t). This set will determine [1 (t) uniquely if 
{UI (t), ... ,Um (t)} is a fundamental set of solutions, i.e., if 
the joint stabilizer in OSP(m,2n) of the m initial condition 
matrices UI (O),,,,,Um (0) is just the identity transforma­
tion. 

We have to be more precise about the meaning of an 
identity transformation in the case of a supergroup element 
acting on a supervector space. Indeed, since we act on super­
vectors of the form (2.9), the group element [1 (0) acting as 
the identity transformation on Uk (0) has the form 

[1 (0) = e; I~J + (1 + (- 1)'(~ ~)(DI 0)), 
(2.16 ) 

where B is an (m X m)-antisymmetric matrix, i.e., [1 (0) is 
the identity if N is odd while there is an additional element if 
N is even that acts trivially on the entire superspace. 

In the following sections, we restrict ourselves to the 
nonlinear superposition formulas corresponding to the spe­
cific cases ofOSP(1,2n) and OSP(2,2). 

III. SUPERPOSITION FORMULA FOR THE EQUATIONS 
BASED ON OSP(1,2n) 

The supergroup OSP(1,2n) is of dimension 
d = (n(2n + 1 ),2n) and the homogeneous space 
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OSP(l,2n)IGOis then of dimension (n(n + l)/2,n). In Eq. 
(2.13),1], III ,1l2 are (1 X n)-odd supervectors and MI = O. 
In theformula (2.14), r I' r 2, AI, and Az are also (1 X n)­
oddsupervectors while G=gisa (1 X 1 )-even matrix, i.e., an 
even supemumber. 

In order to show clearly how the procedure of recon­
struction of the group element ;§ (t) EOSP ( 1 ,2n) entering in 
the formula (2.14) works, it is useful to first consider the 
case n = 1 and then generalize to arbitrary n. 

A. Reconstruction of the supergroup element for n= 1 

We proved in Ref. 15 that a fundamental set of three 
solutions is needed to be able to write the general solution of 
Eq. (2.13) in the OSP( 1,2) context. The reconstruction was 
realized by specifying the number of generators of the Grass­
mann algebra under consideration. Here, we add a new re­
sult, namely a reconstruction that is independent of the num­
ber of generators of the Grassmann algebra and is performed 
in all generality. 

1. Fundamental set of solutions 

Let us recall the theorem that gives the number and the 
form of the independent solutions. 

Theorem: A fundamental set of solutions of the "super­
Riccati equations" (2.13) consists of three solutions 
W; = (1];,z;) (i = 1,2,3) with initial conditions satisfying 

1]; (O)1]k (0) +Zk(O) -z;(O) 

= (1 - D;k )A;k' i,k = 1,2,3, 

1]1 (0)(Z2 (0) - Z3 (0» + 1]2 (0)(Z3 (0) - Z2 (0» 

+ 1]3 (O)(ZI (0) - Z2 (0» = B0, (3.1) 

whereA ik and B are arbitrary even invertible elements of the 
Grassmann algebra and 0 is an arbitrary odd element. 

Note that this means in particular that, in homogeneous 
coordinates, three initial vectors U; (0) corresponding to Wi 
can be transformed into 

u, (0) ~ G) , u, (0) ~ (D , u, (0) ~ (;). (3.2) 

where x and yare invertible. The proof of the theorem is 
given in Ref. 15 and it consists essentially in showing that the 
subsupergroup ofOSP(l,2) leaving all three vectors (3.2) 
invariant is the identity group. 

2. Reconstruction 

The reconstruction procedure is almost the same as the 
one given in our previous article. 15 In fact it differs only in 
the last step and leads to the determination of all the group 
elements independently of the number of Grassmann genera­
tors. 

Indeed, making use of the orthogonality conditions and 
the first two particular solutions, we see that only one entry 
remains unknown. This means that the knowledge of the 
even part of the third solution is sufficient to obtain the re­
maining unknown. 

Explicitly, we proceed as follows. First, using the two 
solutions WI and Wz we find [r; = Yo Ai = Ai and 
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Gij = gij' iJ = 1,2 in (2.5a) J 
YI = zz- 11]2g11 , Y2 = 1]1 gZ2' 

g12 = Zlg22 , g21 = zz- Igll · (3.3 ) 

Among the orthogonality conditions (2.5b), we find four 
nontrivial equations, i.e., 

g2 - 2AIA2 = 1, (3.4a) 

gllgzz - g21g12 + YI Yz = 1, (3.4b) 

gYI -AIg21 +A2g 11 =0, (3.4c) 

gY2 - AIg22 + A2g 12 = O. (3.4d) 

The relations (3.4c) and (3.4d) together with (3.3) lead to 
the determination of Al and A2 up to the factor g, i.e., 

AI = g(ZI1]2 - Z21]1 HZI - Z2) - I, 

A2 =g(1]2 -1]I)(ZI -Z2)-I. (3.5 ) 

Equation (3.4a) gives 

g = [(ZI - Zz )(ZI - Zz + 21]z1]1 ) -I] 1/2. (3.6) 

The plus sign has been fixed in the square root using the fact 
that g(O) = 1 and g(t) is a continuous function of t. Equa­
tion (3.4b) gives g22 in terms of gil' i.e., 

g22 = Z2 (Z2 - ZI -1]11]2) -lglll. (3.7) 

At this stage, everything is known in terms of gil' We use the 
third solution W3 and in particular the equation 

Z3 = (AI0+gIIX+gI2Y)(A20+g2IX+g22y)-1 (3.8) 

to determine gIl' Equation (3.8) is a quadratic equation for 
gil and the unicity of the solution is again assured by the 
continuity of gIl and the factthatgll (0) = 1. We have, fin­
ally 

(AI - A2 2 3 )0 
gll =------

2xz2- 1(23 - 22 ) 

[ 
y~ (2J - ZI ) ] 1/2 + (3.9) 

X(Z3 - 2 2 ) (ZI - Z2 + 1]11]2 ) , 

where AI andA2 are given by (3.5) with (3.6). 

B. Reconstruction of the supergroup element for n;;. 2 

We have the set (2.13) of n equations in the odd vari­
ables 1] and n (n + 1) /2 equations in the even variables Z s. 
We want to show that in this case/our particular solutions 
are needed to write the general solution, independently of 
the number of Grassmann generators. 

1. Fundamental set of solutions 

We choose a convenient fundamental set of solutions by 
fixing the homogeneous coordinates of four initial condi­
tions as 

(3.10) 
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being a fixed odd Grassmann number and the a;'s ordinary 
numbers. 

We proceed to show that the joint isotropy group of 
these four initial conditions is the identity group. Imposing 
f1 U; (0) ~ U; (0) for i = 1 and 2 and using the orthosym­
plecticity conditions (2.5b) we find that the isotropy group 
G12 of the first two solutions is realized by block diagonal 
matrices 

f1 0 = diag(g.GII.G II T). (3.11 ) 

Requiring f1 0 U3 (0) ~ UJ (0) we obtain 

G 11 G;I = I. (3.12) 

i.e .• GEO(n.F). Finally the stabilization of the vector U4 (0) 
implies 

(3.13 ) 

Note that we are working with a matrix Gil which is formed 
by even supernumbers. In general. we have 

[NI2[ 

Gil = (G 11 )o + L (G 11 );, .. ;,,0;, .. '0;" .• (3.14) 
r= I 

where (Gil )0' (Gil); ... ; are (nXn)-matrices with usual , " 
numbers as elements. The orthogonality of Gil and the con-
ditions (3.13) imply that (G 11 )o = EI and g = E with 
E = ± 1. while the other matrices (G 11 ) ;,' ';" are antisym­
metric and commute with the diagonal matrixX. so that they 
must be equal to zero. We have thus shown that the simulta­
neous isotropy group of the/our solutions U; is the identity 
group. 

2. Reconstruction 

The superposition formula is as usual given by Eq. 
(2.14). with the supergroup elements to be expressed in 
terms of the four solutions 

(
1/;(t)) . 

W; (t) = Zj (t) I = 1 •...• 4. (3. 15) 

with initial conditions corresponding to (3.10). Using the 
first two solutions and the orthosymplecticity conditions. we 
obtain 

r l = 1/2Z 2- IG11' r 2 = 1/1 G22 • G12 = ZI G22 • G21 = Z 2- IG11 • 

Al =g(1/1 -1/2 Z 2- IZI)(Z2 -ZI)-IZ2• A2 =g(1/1 -1/z)(Zz -ZI)-I, 

g= [1 - (1/1 -1/zZ Z-IZI )(ZZ - ZI) -IZZ (Z2 - ZI )T(1/1 _1/Z)T 

+ (1/1 -1/z) (Zz - ZI) -IZ f(Z2 - ZI) - T(1/1 -1/2 Z 2- IZI) T] -112. 

G22 =(Z2 -ZI +1/f1/I)ZfG 1I
T

. (3.16) 

With the solutions W3 (t) and W 4 (t) we also get two equations from the even part of the conditions f1 Wa (t) = Wa (t) 

(a = 3.4). namely. 

G11 G"{; =Z2(ZZ -Z3)-I(Z3 -ZI)(Z2 -ZI +1/f1/I)-IZf=.NI (t). (3.17a) 

G11 XG"{; =Z2(Z2 -Z4)-I(Z4 -ZI)(Z2 -ZI +1/f1/I)-IZf +gZZ(Z2 -Z4)-1 

X [Z4(Z2 - ZI) - T(1/1 -1/2)T - Zf(Z2 - ZI) - T(1/1 -1/2Z 2-IZ1 )]aG"{; =.N2 (t) + N3 (t)gG"{;. 
(3.17b) 

Equations (3.17) determine Gil and g completely in terms 
of the known quantities N I • N 2 • and N J (up to a common 
sign that we choose to be such that g(O) = 1). Indeed if we 
develop G 11 (t). g(t). and Nj(t) in (3.17) in terms of the 
Grassmann basis. as in (2.1) and (2.2). we find that the 
body of Gil is expressed in terms of the eigenvectors and 
eigenvalues of the bodies of NI and N 2 • The further coeffi­
cients in the expansion of G11 (t) are then obtained by suc­
cessively solving a system of linear algebraic equations. 

IV. SUPERPOSITION FORMULA FOR THE EQUATIONS 
BASED ON OSP(2,2) 

The supergroup OSP(2.2) is of dimension d = (4,4). 
The homogeneous space OSP(2.2)IG o is of dimension 
( 1.2) and thus leads to a system (2.13) of one even and two 
odd ODEs which admits a superposition formula (2.14). 

A. Fundamental set of solutions 

Let us. with no loss of generality. choose the first solu­
tion UI in homogeneous coordinates such that its initial val­
ue is 
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UI (0) = (0 0 1)T. (4.1 ) 

Thus the condition [1 UI (0) - UI (0) implies that 
f1 = [10 =. (2.7). The constraints (2.8) reduce in this case 
to the orthogonality of G since the matrices G ij are one di­
mensional. Following the same reasoning as before we can 
choose a second solution U2 such that 

U2 (0) = (0 I O)T. (4.2) 

By imposing f1 0 U2 (0) - U2 (0) we find the matrix 

[1b =(~ g~, ~,) with GG T =1. (4.3) 

o 0 gil 

Thus the isotropy group of the two sets of initial values 
(4.1) and (4.2) is represented by block diagonal matrices 
(4.3). To reduce the isotropy group further. we must resort 
to supplementary solutions with a different type of initial 
conditions. 

Let us choose a solution Vsuch that V(O) is an arbitrary 
supervector 
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V(O) = (/3xy) T, (4.4) 

with /3 a nonzero ( 1 X 2) -odd supervector and x, y invertible 
even supernumbers. The condition Y ~ V(O) ~ V(O) implies 
that gil = gill, that is gil = E with E = ± 1. Moreover, we 
have to satisfy 

(G - d)/3 T = O. (4.5) 

In general, one equation of the type (4.5) does not imply 
G = d. To proceed further we specify the number N of gen­
erators in the Grassmann algebra AN' 

For N = J, G is an orthogonal matrix formed by 
numbers and /3 is an odd vector: /3 = B0, where BEF 1 x Z 

(F = R or C) is a numerical vector. Since G is orthogonal 
and B is not zero, Eq. (4.5) implies that G = d. Thus three 
solutions are sufficient to stabilize to the identity transfor­
mation. 

For N=2, we have 

G= (G)o + (G)12010Z' /3=B I 0 1 +B2 0 2 • (4.6) 

The orthogonality of G implies 

(G)6"(G)o = J, (G)6"(G)12 + (G)iz (G)o = 0 (4.7) 

and Eq. (4.5) becomes 

«G)o - d)B: = 0, i = 1,2. (4.8) 

From the orthogonality of (G)o, we find (G)o = d and 
then (G) i2 = - (G) 12' Finally, f'§ ~ == (4.3) takes the form 
(2.16). Here again three solutions are sufficient to stabilize 
to the identity transformation. 

For N=3, we can write 
3 

G = (G)o + I (G)ik 0 i0 k' 
i.k= I 

3 

/3= I Bi0 i + B 123 0 10 20 3· (4.9) 
;= 1 

The orthogonality conditions are 

(G)6"( G)o = J, (4.10a) 

(G)"{;(G)ik + (G)I (G)o = 0, Vi,k = 1,2,3. (4. lOb) 

Equation (4.5) thus becomes 

Go = EJ, 

(G)12 B [ + (G)23 B i + (G)3I B i = 0, 

(4.lla) 

(4.11b) 

with the (G) ik EF 2 
X 2 anti symmetric matrices characterized 

by the entries aik • Equation (4.11 b) represents a set of two 
equations for a 12' a 13' and a23 . In order to force all the quan­
tities a ik to be equal to zero, we need further equations and 
hence need two solutions V(l) and V (2) of the type (4.4) 
with (Bj)(a) = (u/a),v/ a», i= 1,2,3, a = 1,2. The aik's 
have to then satisfy the set of equations 

(

U\I) Uil) U~l)) 

:;:: :;:: :!:: G} 0, 
(2) V

2
(2) (2) 12 

V, V3 

( 4.12) 

which implies a ik = 0, Vi,k if and only if three of the four 
vectors U(a>, Veal are linearly independent. Finally, in this 
case, jour solutions are required to stabilize to the identity. 
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For N = 4, we have 

G= (G)o + I (G)ik 0 i0 k + G123401020304, 
i< k 

iJ.k 
;..-jr-J.. 

The orthogonality of G implies that we have 

(G)6"(G)o = J, 

(G)6'(G)ik + (G)I (G)o = 0, 

(G)6'(G)1234 + (G}iz34 (G)o + (G)iz(Gh4 

+ (G)[4 (G)12 + (G);4 (G)23 + (G)i3 (G)14 

- (G) r; ( G) 24 - (G) ~ ( G) 13 = O. 

Thus Eq. (4.5) becomes 

(G)o = d, 

(G)12 B [ + (G)23 B i - (G)13 B i = 0, 

(G)11BJ + (G}z4Bi - (G)14Bi =0, 

(G)13BJ + (Gh4B; - (G)14B[ =0, 

(G)Z3 B J + (G)34 B i - (G)Z4 B [= 0, 

(4.13) 

(4.14a) 

(4.14b) 

(4.14c) 

( 4.15a) 

(4.15b) 

with the (2 X 2) -antisymmetric matrices (G) ik character­
ized by the numbers a ik • In principle, we get an overdeter­
mined system (4.15b) of eight equations for six unknowns. 
But it is easy to show that the system is at most of rank 5. 
Since we have to prove that aU the aik 's and then the (G) ik 's 
are zero, we must consider two different solutions ofthe type 
(4.4) which we call VO) and V (2). We now obtain a system 
of 16 equations where the entries of the B }a) (i = 1, ... ,4; 
a = 1,2) can be chosen so that it is ofrank 6. 

Note that all the (G) ik 's being equal to zero, we have the 
additional condition (G) 0.34 = - (G) '234 following from 
(4.14c). We thus find the form (2.16) for ~ ~ == (4.3) and 
jour solutions have been required to reduce the stabilizer to 
the identity transformation. 

From these examples, it is quite clear that the number of 
particular solutions increases with N. We see that for 
N = 1,2, we need to have (2 + 1) solutions (2 of type Vand 
1 of type V) while for N = 3,4, we have (2 + 2) solutions. 
We conjecture that the number of particular solutions re­
quired to stabilize to the identity transformation is equal to 
2 + [(N + 1 )/2] when we work in a Grassmann algebra 

AN' 

B. Reconstruction 

The reconstruction of the group element 
~ (t)EOSP(2/2) follows exactly along the lines described in 
Sec. IV A. Indeed, the first two particular solutions VI and 
V2 , with initial conditions (4.1) and (4.2), respectively, and 
the orthogonality conditions give the following expressions: 

gn = Z2 [Z2 - ZI + 1Ji1JI] -'gill, 

gl2 =ZI Z2[Z2 -ZI +1Ji1JI]-'g'I" 
g2' = Z2- 'gil, 

r l =Z2-
1
1J2gl" 

r z =Z2[ZZ -Z, +1Ji1J,] -1 1J ,g'I" 

Beckers et a/. 
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AI = (ZI - Z2) -IG T(Z1112 - z2111)' 

A2 = (ZI -z2)-IG T(112 -111)' 

and finally 

(4.16c) 

GT[(ZI -Z2)-I(ZI -Z2 + 11211i -l1l11D]G=I. 
( 4.17) 

In (4.16) and (4.17), (11; z;) T (i = 1,2) are the compo­
nents of the two given particular solutions WI' W2 in affine 
coordinates. Note that we see that everything is expressed 
now in terms of the entry gil and the matrix G. 

All the other [( N + 1) /2] solutions V (i) == ( 4.4) will 
give us the element gil and the matrix entries of G. 

v. CONCLUSION 

We have shown that the concept of nonlinear ordinary 
differential equations with superposition formulas can be 
generalized to superequations. The approach that we gener­
alized was the one based on the transitive primitive action of 
a Lie group Gon a homogeneous space G /Go, where Go is a 
maximal Lie subgroup of G, not containing an invariant sub­
group of G.2 Replacing G and Go by supergroups [in this 
article G-OSP(m,2n) and Go is given in (2.7)] we obtain 
the system of superequations (2.13). This system has a su­
perposition formula (2.14). 

Let us mention that this is not the only path available for 
extending the concept of nonlinear superposition to supere­
quations. A different possibility is to follow the procedure of 
Fatyga et al. 23 One starts from a system of ODEs that has a 
superposition formula and views all the entries as Grass­
mann valued functions. As an example, consider the ordi­
nary Riccati equation 

zU) = a l (I) + a2 (t)z + a3 (t)Z2, (5.1) 

where z(t) and aiel) (i = 1,2,3) are Grassmann valued 
functions. Splitting each of them into even and odd parts 

Z=W+l1, a;=r;+a;, (5.2) 

we obtain the system 

tV = r l + r2w + a 211 + r3w2 + 2a3wl1, 

q=al +r211+a2w+2r3wl1+a3w2. (5.3) 

The system (5.3) is not of the type considered in this 
article, although it does inherit a superposition formula from 
the Riccati equation (5.1), namely 

Z= [Z2(Z3 -ZI)C-ZI (Z3 -Z2)]/ 

[(Z3 -ZI)C- (Z3 -Z2)]' (5.4) 
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A study of the relationship between the two types of 
generalizations goes beyond the scope of the present article. 
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A perturbative procedure due to Bender et 0/. (here referred to as the BMPS procedure) [J. 
Math. Phys. 30, 1447 (1989)] and useful in solving difficult nonlinear problems, has been used 
here to solve the Thomas-Fermi (T-F) equation. The present work attempts to balance the 
ease of the ensuing analysis with the use of an analytic, zero-order function that already 
contains a good deal of the nonlinearity of the T -F equation. The initial slope of the T-F 
potential is computed with 0.35% error in a second-order application of the theory. 

I. INTRODUCTION 

Recently, Bender et 0/. 1 (BMPS) have proposed a new 
approach to the analytic solution of nonlinear problems in 
mathematics and physics. Application of the method to non­
linear differential equations such as the Thomas-Fermi (T­
F) equation, 

et>"(x) = et>3/2(x)/5, et>(0) = 1, et>( 00) = 0, 
(1.1 ) 

might be especially far reaching. In this case, the BMPS pro­
cedure has consisted of replacing the right-hand side of the 
T-F equation by one which contains the parameter 8, i.e., 

et>" (x) = et>. (et>/X)c5. (1.2) 

The potential et> is then expanded in a power series in 8 

et> = et>o + 8et> 1 + 82et>2 + ... . ( 1.3) 

This, in turn, produces a set of linear equations for the et> n 

functions: 

et>" ° - et>o = 0, 

et>" 1 - et>, = et>o In(et>o/x), 

m" m [ et>O ] 1 2 et>O 
'¥ 2 -et>2 ='¥] 1 +In- +-et>o In -, 

x 2 x 

with associated boundary conditions et>o (0) = 1,et>o (00) 

= 0, and et>n (0) = et>n (00) = 0 for n> 1. The appropriate 
solution of the zero-order problem being 

et>o = e- X
• 

Solutions for the higher-order functions can be obtained by 
quadratures and a solution to the T -F equation is recovered 
by setting 8 = (l/2) in Eq. (1.3). For example, et>, is given 
by (r is Euler's constant) 

et>] =!e-x{r+ln(2) _X+X2 

+ (1 + 2x)ln(x) - e2x Ei( - 2x)}. 

Additional higher-order functions are also obtainable but 
complicated. 

One measure of the rapidity of convergence of the proce­
dure is provided by calculations of the value of the initial 
slope et>'(O) of the T-F potential. This quantity, difficult to 
compute by any means, plays an important role in determin­
ing many of the physical properties of the Thomas-Fermi 

atom. For example, the energy (in atomic units) for a neu­
tral atom of atomic number Z is 

E = ~(4/31T)2/3Z7I3et>'(0). 

A highly accurate numerical solution of the T -F equation 
has been provided by Kobayashi et af.2 who give the initial 
slope et>' (0) as - 1.588071 O. Given the nonlinearity of the 
T -F equation and the global nature of its boundary condi­
tions some 25 years passed from its inception until the slope 
was known to seven figures. Within the BMPS approach and 
with the choice made by Bender et 0/. in Eq. (1.2), the com­
puted initial slope at zero order is found to be in 36% error. 
At first, second, and third order the slope contains 25%, 
13%, and 6.9% error, respectively. Bender was able to im­
prove his estimate of the initial slope to a 1.1 % error by 
expressing Eq. (1.3) as a [2,1] Pade approximant with 
8=(112). 

II. AN ALTERNATE ANALYTIC T -F POTENTIAL 

In this paper we wish to point out that the BMPS ap­
proach is capable of much more rapid convergence near the 
origin if we include some of the nonlinearity for the full T-F 
equation in the zero-order function. We do this by replacing 
the T -F equation with 

et>" = (et>/5)et>D. (2.1) 

That is, we start with a 5 containing, but still analytic, zero­
order problem and gradually add the remaining nonlinearity 
at higher order. Representing et> by the series in Eq. (1.3) we 
get as before a sequence of inhomogeneous equations for the 
perturbation functions et> n (boundary conditions as before) 

et>" n - et>n/5 = Rn (x)/5. 

The first few inhomogeneous terms being given by 

Ro =0, 

R] = et>o In et>o, 

R2 = et>, [1 + In et>o] + !et>o In2 et>o, 

(2.2) 

1 et>i [ 1 ] R3 = et>d 1 + In et>o] + - - + et>\ 1 + -In et>o 
2 et>o 2 

X In et>o + J.. et>o In3 et>o. 
6 

Two linearly independent solutions for the zero-order equa-
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tion are immediately obtainable in terms of modified Bessel 
functions3 Kv and Iv with fractional order v, i.e., 

2 (2 )2/3 
j(x) = r(2I3) "3 /XK2/3 (~), 

( 2)(2)1/3 g(x) = r"3"3 /XI2/3 (~), (2.3 ) 

where the argument ~ is (4/3 )X
3/ 4• We note that <1>0 isj(x) 

since it satisfies the boundary conditions at zero and infinity. 
Construction of the Green's function for the operator in Eqs. 
(2.2) is straightforward and the general solution of those 
equations are 

<l>n (x) = ~ j(x) g(s)Rn (s) _s Lx d 

o .jS 

- g(x) j(s)Rn (s) _s . 1
00 d 

x .jS 
(2.4 ) 

The initial slopes of the potential functions <I> n follow from 
Eq. (2.4) and we obtain 

<1>' n (0) = - foo j(s)Rn (s) ~ . 
Jo .jS 

(2.5) 

III. NUMERICAL RESULTS 

In this section some comparisons will be made between 
the numerical solution2 to the T -F equation and the one 
obtained here. The present calculations are facilitated by 
noting that the modified Bessel functions encountered above 
are related to the Airy functions3,4 Ai(z), Bi(z), and their 
derivatives Ai' (z) and Bi' (z). We have 

j(x) = <1>0 (x) = A (z), 

g(x) = 21 (23 )1/3 r(2/3) [B(z) -A(z)], (3.1) 
r(1I3) 

where A(z) = Ai'(z)/Ai'(O), B = Bi'(z)/Bi'(O), and 

z = 22/3/X. The Airy functions satisfy the equation 
w" = zw(z) and have the initial values: 

Ai(O) = Bi(O)/~ = [32/3r(2I3)] -I = 0.355 028 0538, 

- Ai'(O) = Bi'(O)/~ = [3 113rO/3)]-1 

= 0.258819403 7. (3.2) 

The initial slope of the zero-order function consequently is 
just 

<1>'0(0) = _ (~)1!3 r(1/3) = -1.7282604. 
3 r(2I3) 

This is a good first approximation but too negative by about 
8%. The first-order slope is given by 

<1>'1 (0) = - 21/3 100 

A 2(z)ln[A(z) ]dz. (3.3) 

Analytic evaluation of this integral and the ones that follow 
does not appear to be possible. However, there is some hope 
(cf. the Appendix) that progress can be made in that direc­
tion if further work is done in this somewhat neglected area 
of special function theory. Numerical evaluation of the inte­
gral in Eq. (3.3) yields a value of 0.332 2260 and 

!<I>'dO) = +0.1661130. 
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To first order, the initial T-F slope is - 1.562 1474 with an 
error of 1.63%. Evaluation of the second-order, initial slope 
requires evaluation of integrals of the sort 

<1>' 2 (0) = _ ~ foo [j(s)lnj(s)] 2 ~ 
2 Jo IS 

- j(s) [1 + lnj(s) ]<1>1 (s) -. L·OO ds 

o IS 
With the help ofEqs. (2.4) and (3.1) these become 

<1>'2(0) = -(~r/3 100 

[A(z)lnA(z)]2dz 

+ (~)1!3 r(2I3) 
4 rO!3) 

X Loo fA2(Z)A(Z')[B(Z') -A(z')] 

X [In{A(z)A(z')} + 2InA(z)lnA(z') ]dz' dz, 

where we have inverted the order of integration in the inte­
gral representing <1>1' The magnitudes of these integrals have 
also been obtained numerically. The first has a value of 
0.213 390 and the second 0.018819. As a result 

!<I>' 2 (0) = - 0.031 446. 

Thus the initial slope of the T -F potential to second order is 
- 1.593593, i.e., an error of 0.35%. We see that the correc­

tions are causing the slope to oscillate about the "exact" 
value with rapidly decreasing amplitUde. This estimate of 
the initial slope can be further improved if, following Bender 
we convert Eq. (1. 3) to a [1,1] Pade approximant and 
evaluate this at D = (1/2). This results in an initial slope of 
- 1.588 588, i.e., an error of 0.03%. 

Encouraged by our estimates of the initial slope of the 
T-F potential we have also made a comparison (to first or­
der) of the numerical solution for <I>(x) with the "analyti­
cal" results obtained in this work. Higher-order calculations 
are certainly possible. We see in Fig. 1 that there is fairly 
good agreement (less than 5% error) between the two 
curves for x values less than 4 units. At larger distances the 
analytic solution drops off more rapidly than the exact one. 
This is to be expected since the Airy function Ai' (z) de­
creases exponentially for large x whereas the exact solution 
is known to vary as x - 3 in that range. Whether this situation 
is correctable at higher order is not clear at this point since a 
proper asymptotic analysis of the <I> n functions has not been 
made. Progress along those lines will depend on a deeper 
knowledge of the properties of Airy functions than is pres­
ently available. 

In summary, a judicious choice of the nonlinear term in 
the T -F equation together with the BMPS method has pro­
duced a rapidly converging analytic solution to that equa­
tion near the origin. At larger distances (the mid physical 
range) corrections higher than first order are needed to ob­
tain accurate values of the potential. Although the theory is 
perfectly amenable to numerical solution, it would be highly 
desirable to have an analytic representation for the potential 
at those distances. Some progress along that path might be 
possible as indicated in the Appendix. 
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FIG. I. Numerical and analytic (first-order) solutions of the Thomas-Fer­
mi equation. 

APPENDIX: INTEGRALS OF AIRY FUNCTIONS 

The existing literature on the integrals of Airy functions 
is quite small. However, there have been some recent contri­
butions5

,6 in that area. Here, we wish to note some addi­
tional results that might allow the analysis begun in this pa­
per to progress. We start by noting the elementary results: 

f Ae(x)dx = x Ai2(x) - Ai,2(x), 

f Ai'2(x)dx = + {x Ai'2(x) - x2 Ai2(x) 

+ 2 Ai(x)Ai'(x)}. 

Higher moment integrals of these Airy functions can also be 
obtained in closed form. If we define the functions Fn (x), 

and Gn (x) by 

Fn (x) = f xn Af(x)dx, 

Gn(x) = f x n- 1 Ai'2(x)dx, 

then integration by parts for each of this pair of functions 
produces the recurrence relations: 

(2n+ l)Fn(x) =!n(n-I)(n-2)Fn _ 3 (x) 

+ nxn- 1 Ai(x)Ai'(x) _xn Ai'2(x) 

+ xn- 2 Ai2 (x)[xl 
- n(n - 1)/2], 

nG" (x) = x"{Ai'2(x) - x Ai2(x)} + (n + 1 )F" (x). 
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(AI) 

We will denote values of the corresponding definite integrals 
over the interval O,X, 00 by F" and G". Using the results 
given above, together with the limiting values3 of the Airy 
functions we find 

Fo = [3 1IJr(+)r
2

, Fl = Ifrr' 

F2 = + [ 32/3r( ~ ) r 2, 

and the useful difference equations: 

(4n + 2)Fnln! = F,,_l/(n - 3)!, nG" = (n + I)F". 

The solution of these equations is not difficult and we have 
for general n: 

F = r(n + 1)r(7/6) F 
" r(n/3 + 716)12,,/3 0' 

(A2) 
G = r(n + 2)r(7/6) F. 

n nr(nl3 + 7/6) 12,,/3 0 

Applying these exact results to the problems in this paper is 
not completely possible as we shall see below. For example, if 
the integral in Eq. (3.3) is integrated by parts we find [with 
the help ofEq. (A2)] that 

100 A"2()1 Ai'(z) d _ J3 I 100 

~ Ai
3
(z)dz 

1 z n--- z- ---+- . 
o Ai' (0) 54rr 3 0 Ai' (z) 

Expansion of the ratio Ail Ai' in powers of z followed by 
term-by-term integration using Eq. (A2) yields a slowly 
converging series that is virtually useless. A further integra­
tion by parts, however, gives 

_ J3 + _1_ f"" r Ai4(z)dz 
27rr 12 Jo Ai'2(z) , 

where the integral term is fairly small. A final integration by 
parts yields the approximation, 

f"" z5Ai4(z)dz:::::; llr(l/3)6 _ _ 13_J3_3 
Jo Ai'2(Z) 96rr4 18rr 

As a result, the integral in Eq. (3.3) is roughly given by 

1"" 7 11 
A(z)2In A(z)dz:::::; --C+-C\ (A3) 
01272 

where C = r( 1/3) 131/3r( 2/3 ). Within this degree of ap­
proximation, the computed value of the integral in question 
is - 0.2593 whereas the value obtained by numerical inte­
gration is - 0.2637. The right-hand side ofEq. (A3) how­
ever, might be regarded as part of an asymptotic represen­
tion of the integral and therefore capable of refinement. 
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